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Abstract

Fitting parametric survival models with interval-censored data is a common task in survival

analysis and implemented in many statistical software packages. Here, we present a novel

approach to fit such models if the values on the scale of interest are measured with error. Random

effects ANOVA models are used to account for the measurement errors and the likelihood function

of the parametric survival model is maximized with numerical methods. An illustration is provided

with a real data set on the rejection of yogurt as a function of its acid taste.
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1. Introduction

Since the publication of the work of Hough et al. (2003), survival data methods

have become a common tool for the analysis of sensory shelf-life data of foods; see

applications, among others, in Curia et al. (2005), Araneda et al. (2008) and Østli

et al. (2013). The methodology has also been applied to determine consumer acceptance

limits of sensory defects (Hough et al., 2004), and to optimize the concentration of food

ingredients (Garitta et al., 2006).
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A typical shelf-life study consists of storing food samples for different lengths of

time. For each time, consumers evaluate the product and report their acceptance or

rejection. For example, for a yogurt study (Curia et al., 2005), samples were stored

for 0, 14, 28, 42, 56, 70, and 84 days. A typical consumer’s response would be: accept,

accept, accept, reject, reject, reject, and reject, for each one of the respective times. This

consumer’s data is interval-censored between 28 and 42 days. Another consumer might

accept all samples, and in this case the data would be right-censored at 84 days. A left-

censored consumer would be one who rejects the sample which has only been stored

for 14 days. Thus, data on the acceptance or rejection of a food product are generally

interval-censored – including both left and right censoring as particular cases – where

the intervals contain the real unknown values of rejection on the scale of interest; for the

yogurt example the scale of interest was storage time.

The methodology proposed by Hough et al. (2003) furnishes the estimation of

the rejection quantiles of interest for a given parametric model such as the Weibull,

loglogistic or lognormal distribution. It assumes that the endpoints of the observed

censoring intervals are all measured exactly without any error. Another instance of

the application of this methodology is found in Sosa et al. (2008) who estimated the

optimum concentration of salt in French-type bread from a consumer’s perspective.

They prepared samples of bread with 0.6, 1.2, 1.8, 2.4, 3.0, 3.6, and 4.2 g sodium

chloride per 100 g of flour. Since the weighing error of these salt quantities could be

considered negligible, the values could be taken as exact.

However, the values of the independent variable may not always be free of error.

Consider the case of a yogurt manufacturer who has applied survival analysis method-

ology to establish sensory shelf life of his product as described by Hough et al. (2003).

If this manufacturer, in the future, wants to test a formulation change and make sure

the sensory shelf life is still valid, he/she would have to assemble approximately 100

consumers (Hough et al., 2007). This is a costly and time-consuming experiment. If the

critical descriptor (Hough, 2010) of yogurt from a consumer’s perspective is acid taste,

it would be of interest to the manufacturer to know how much the acid taste can in-

crease before reaching 50% consumer rejection. If this acid taste cut-off value is known,

then for future shelf-life determinations of the yogurt, the manufacturer can assemble

a trained panel to measure acid taste instead of assembling the costly consumer panel.

In this case the independent variable of the survival analysis experiment would become

acid taste. These values are measured on a sensory scale by a sensory panel consisting

of trained assessors. Presented with the same stimulus (a sample of yogurt) different as-

sessors can produce different responses on the sensory scale; and the same assessor can

produce different responses to sample replicates; thus the measurements are with error.

The objective of this work is to estimate the quantiles of the rejection distribution

of a given food product integrating data from trained assessors and from consumers.

Trained assessors provide the value of a certain characteristic of the product, such as the

acid taste of yogurt. These values are random and subject to two sources of variability,

one inherent to the assessor and the other corresponding to the specific acid taste of
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the product. Consumers will evaluate the same products as the trained assessors, stating

their acceptance or rejection. Consumer data is interval-censored, where the endpoints

of the intervals are random variables corresponding to the trained panel’s measurements.

Unlike other works, the law of the censoring endpoints is taken into account.

The content of the remainder of this work is the following. After describing the data

of both trained assessors in Section 2 and consumers in Subsection 3.1, the likelihood

function of the model and data under study is derived in Subsection 3.2. In Section 4,

we give details on how to maximize this function in the framework of a parametric

model and how to estimate the parameters and quantiles of interest. Section 5 presents

the application of the estimation proposal to the motivating data set under study and in

Section 6 the main results of this work are discussed.

2. Trained assessors: data, model, and analysis

For the sake of a better understanding, throughout the following sections, we use the

data on the rejection of yogurt as a function of its acid taste. Yogurt samples were stored

different times so that they would develop different levels of acid taste. These samples

were given both to a panel of trained assessors and to consumers. Assessors received

three replicates of each sample and measured their level of acid taste on a common scale

from 0 to 100. Consumers received a single replicate of each sample and judged whether

or not they would accept it.

2.1. Data and Model

A panel of J trained assessors are given K replicates of I different samples of yogurt

which correspond to I different degrees of acid taste. Acid taste, denoted by Xi jk, was

measured on a sensory scale from 0 (minimum acid taste) to 100 (maximum value),

where k stands for replication (k = 1, . . . ,K), j for assessor ( j = 1, . . . ,J), and i for

sample (i = 1, . . . , I). In our motivating example, we have K = 3, J = 13, and I = 6. A

graphical representation of all trained assessors’ data is shown in Figure 1.

It is assumed that the data of a given sample i, i = 1, . . . , I, come from a one-way

random effects ANOVA model:

Xi jk = µi +αi j +εi jk, (1)

where αi j ∼ N (0,σ2
b;i) and εi jk ∼ N (0,σ2

w;i). For sample i, the grand mean µi, repre-

senting the unknown acid taste of sample i, is the parameter of interest, αi j is the random

effect corresponding to assessor j, j = 1, . . . ,J, and σ2
b;i and σ2

w;i denote, respectively,

the between and within-assessors variances. Note that σ2
b;i is equivalent to the covari-

ance between two observations on the same assessor (Vittinghoff et al., 2005, Chap. 8).
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Figure 1: Estimates of acid taste of yogurt given by 13 trained assessors on three replications of six

different samples. Acid taste was measured on a 0 (minimum) to 100 (maximum) sensory scale.

The model assumes independence among the assessors and between αi j and εi jk.

Hence, the overall variance of Xi jk is the sum of both variance components, that is,

Var(Xi jk) = σ
2
b;i +σ

2
w;i. In addition, and without loss of generality,

0 < µ1 < · · ·< µI < 100, (2)

where 100 may be substituted by any other value determined to be the maximum of the

scale of interest.

2.2. Estimation

The estimator of the grand mean µi, i = 1, . . . , I, is given by the overall mean of all J ·K
measurements given for each sample:

µ̂i = X̄i =
1

J

1

K

J

∑
j=1

K

∑
k=1

Xi jk,

and its variance is equal to

Var(X̄i) =
1

J ·K (σ2
w;i +K ·σ2

b;i).
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See Appendix A for further details.

Given the normal distribution assumption in model (1), the distribution of X̄i is

X̄i ∼ N
(
µi,

1

J ·K (σ2
w;i +K ·σ2

b;i)
)
, (3)

and for J = 13 and K = 3, the overall mean X̄i follows a normal distribution with mean

µi and variance 1
39
(σ2

w;i +3 ·σ2
b;i).

Several estimators exist for both variance components including the restricted max-

imum likelihood estimators shown in (4). They are based on the between and within-

assessors sum of squares (SSb;i and SSw;i):

σ̂2
w;i = min

( SSw;i

J(K −1)
,
SSw;i +SSb;i

J ·K −1

)

,

σ̂2
b;i = max

(

0,
1

K

(
SSb;i

J−1
− SSw;i

J(K −1)

))

,

(4)

where SSw;i = ∑
J
j=1 ∑

K
k=1(Xi jk − X̄i j)

2 and SSb;i = ∑
J
j=1 K · (X̄i j − X̄i)

2. Herein, X̄i j is the

mean of assessor j’s values for the ith sample. For a detailed discussion on these and

other possible estimators, see Chapter 2 in Sahai and Ojeda (2004). In Appendix B, we

give some details on computational aspects with R (The R Foundation for Statistical

Computing).

Applying the previous formulas to our data set, we obtain sample mean estimates,

the between and within-assessors standard deviations as well as the standard errors of X̄i

for all six samples which are shown in Table 1. We observe, for example, that the within-

assessors standard deviations for samples 1 and 6 are much smaller then the rest; this is

also reflected in Figure 1. When assessors measure samples with very low (sample 1)

or very high (sample 6) acidities, they are all in agreement as to how to score these

extreme samples. However, when intermediate acidities (samples 2 to 5) are presented,

assessors can differ in their scores due to different perceptions and responses. This can

be observed in the case of sample 3, where the estimated between-assessors variance is

virtually 0, indicating that the variability observed in the estimation of the acid taste of

this sample can be attributed entirely to the within-assessors variance.

Table 1: Estimation results for model (1) for all six samples.

Sample

1 2 3 4 5 6

µ̂µµi 4.2 39.2 46.2 62.7 85.8 93.4

σ̂σσw;i 5.9 17.7 23.4 17 8.6 5.6

σ̂σσb;i 3.9 8.5 0.0 11.4 15 8.3

σ̂σσX̄i
1.4 3.7 3.7 4.2 4.4 2.5
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Figure 2: Density functions of sample mean estimators X̄i, i = 1, . . . ,6.

In Figure 2, the density functions of all six mean estimators are represented assuming

σ2
b;i and σ2

w;i are equal to the estimates shown in Table 1. In the following section, we

will show how the uncertainty in the estimation of µi is taken into account in the analysis

of the consumers’ data.

3. Consumers: Data, rationale, and likelihood function

3.1. Data, rationale, and notation

In Section 1, the typical characteristics of a shelf-life study were presented. It was

mentioned that the resulting data from the consumers, who are given the food product

under study, are generally interval-censored containing the unknown value of rejection.

Note that survival analysis methods can be applied to any positive random variable, for

instance, yogurt’s acid taste, as it is applied in the study that motivated the present work.

A total of n = 74 subjects are presented with I = 6 yogurt samples of different acid

taste in a random order and have to answer the question whether they would normally

consume such a yogurt or not. Based on their answers (acceptance/rejection), intervals

of degrees of acid taste are determined that contain the acid taste from which a yo-

gurt would be rejected. The interval for subject m, m = 1, . . . ,n, is of either of the two

following types, where lm and rm indicate the sample number: (lm, rm] or, in case of

a right-censored observation, (lm, ∞). In case of a left-censored observation, we define

lm = 0. Hence, lm ∈{0, . . . , I},∀m, and rm ∈{1, . . . , I,∞},∀m. We denote the correspond-

ing (unknown) acid tastes on the sensory scale from 0 to 100 by (Xlm , Xrm ], m = 1, . . . ,n.

In Table 2, the frequency distribution of the intervals obtained is shown. It can be

seen that there are no left-censored and two right-censored data. That is, all subjects

accepted sample 1, and two subjects did not reject any of the six samples. The fact that

apart from the two right-censored observations not all of the remaining intervals are of

type (lm, lm + 1] is due to certain inconsistencies of the consumers’ answers such as a

sequence of “accept, reject, accept, reject”. In that particular case, the interval obtained
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Table 2: Frequency distribution of intervals that contain rejection value.

Interval n %

(1, 2] 5 6.8

(1, 4] 5 6.8

(1, 5] 7 9.4

(2, 3] 10 13.5

(2, 5] 7 9.4

(3, 4] 12 16.2

(3, 6] 1 1.4

(4, 5] 25 33.8

(6, ∞) 2 2.7

Total 74 100

is of type (lm, lm + 3], for example (1, 4]; see Hough et al. (2003) for a more detailed

discussion.

If the sample numbers were substituted by the corresponding estimated acid tastes

shown in Table 1 without taking into account the uncertainty of the estimation, one could

apply standard nonparametric methodology such as the Turnbull estimator (Turnbull,

1976) to estimate the quantiles of interest. The resulting graphical representation is

shown in Figure 3 indicating, for example, that, according to this estimation, the median

lies between 46.2 and 62.7.
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Figure 3: Turnbull estimator of F if acid tastes were estimated without error.

3.2. The likelihood function

In the following, we denote the distribution function of the random variable T , the acid

taste from which yogurts are rejected, by FT .
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Assuming non-informative censoring (Oller et al., 2004) and if the acid tastes were

measured without error, the contribution to the likelihood function of subject m, whose

rejection value lies in interval (xlm , xrm ], would be (Gómez et al., 2009)

Lm = FT (xrm)−FT (xlm). (5)

However, the exact acid tastes are unknown and estimates obtained from the panel of the

13 trained assessors are given instead. For this reason, we substitute the unknown acid

tastes by these estimates and account for the corresponding uncertainty by integrating

over the whole range of µ̂i, i = 1, . . . , I, which are all real-valued numbers in [0, 100]

restricted to xlm < xrm . Hence, the likelihood contribution in (5) converts into

Lm =

∫ 100

0

∫ r

0

(
FT (r)−FT (l)

)
dFX̄lm

(l)dFX̄rm
(r). (6)

Given a sample of size n, (lm, rm], m = 1, . . . ,n, and assuming independence among the

observations, the likelihood function is

L =
n

∏
m=1

∫ 100

0

∫ r

0

(
FT (r)−FT (l)

)
dFX̄lm

(l)dFX̄rm
(r). (7)

In case of left and right-censored observations, that is lm = 0 and rm = ∞, respectively,

the likelihood contribution in (6) reduces to the following respective single integrals:

Lm =
∫ 100

0 FT (r)dFX̄rm
(r) (left censoring) and Lm =

∫ 100
0

(
1 − FT (l)

)
dFX̄lm

(l) (right

censoring).

4. Maximization of the log-likelihood function

To maximize the logarithm of the likelihood function (7), following Wang (2010),

discrete supports for X̄i, i = 1, . . . , I, with corresponding probability masses have to be

chosen. We denote these by

S i = {si1 , . . . ,sipi
} and Πi = {πi1 , . . . ,πipi

}, i = 1, . . . , I, (8)

respectively. Different discrete supports of X̄i can be thought of. For example, using the

notation in (8), the first and last element of each support could be:

• si1 = 0 and sipi
= 100,

• si1 = x̄i−1 and sipi
= x̄i+1 with x̄0 = 0 and x̄I+1 = 100,

• si1 = max(0, x̄i − p · σ̂x̄i
) and sipi

= min(100, x̄i + p · σ̂x̄i
) for some p ∈ N.
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In either case, the mesh size h should be kept constant over the whole support,

choosing, for example, h = 0.1 or h = 0.5.

The resulting expression of the log-likelihood function for the likelihood function

given in (7) is as follows:

l =
n

∑
m=1

ln
( prm

∑
v=1

plm

∑
w=1

(
FT (srmv

)−FT (slmw
)
)
πlmw

πrmv
{slmw

< srmv
}
)

, (9)

where both indices, v and w, cover the ranges of the corresponding supports but are

restricted to slmw
< srmv

,∀v,w, because of (2).

Given that X̄i follows a normal distribution according to (3) and defining ∑Πi
=

∑
pi
l=1 fX̄i

(sil ), we propose the following probability masses Πi, which are proportional to

the density function of X̄i evaluated in each point of the support S i:

πiv = fX̄i
(siv)

/

∑Πi
, v = 1, . . . , pi,

where

fX̄i
(x) =

1√
2πσ̂X̄i

exp

(

−1

2
(
x− x̄i

σ̂X̄i

)2

)

.

Hence, the expression of the log-likelihood function (9) becomes:

l =
n

∑
m=1

ln

(( prm

∑
v=1

plm

∑
w=1

(
FT (srmv

)−FT (slmw
)
)

· 1

2πσ̂X̄lm
σ̂X̄rm

exp
(

− 1

2

(
(

slmw
− x̄lm

σ̂X̄lm

)2 +(
srmv

− x̄rm

σ̂X̄rm

)2
))

{slmw
< srmv

}
)/

∑Πlm
·∑Πrm

)

=
n

∑
m=1

(

ln
( prm

∑
v=1

plm

∑
w=1

(
FT (srmv

)−FT (slmw
)
)

· 1

2πσ̂X̄lm
σ̂X̄rm

exp
(

− 1

2

(
(

slmw
− x̄lm

σ̂X̄lm

)2 +(
srmv

− x̄rm

σ̂X̄rm

)2
))

{slmw
< srmv

}
)

− ln
(

∑Πlm
·∑Πrm

︸ ︷︷ ︸

�

))

.

and since � does not depend on F , the log-likelihood function to be maximized is

l =
n

∑
m=1

ln
( prm

∑
v=1

plm

∑
w=1

(
FT (srmv

)−FT (slmw
)
)

· 1

2πσ̂X̄lm
σ̂X̄rm

exp
(

− 1

2

( (slmw
− x̄lm)

2

σ̂2
X̄lm

+
(srmv

− x̄rm
)2

σ̂2
X̄rm

))

{slmw
< srmv

}
)

. (10)
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In case of left and right-censored data, the contributions to the log-likelihood function

are, respectively:

lm = ln
( p1

∑
v=1

FT (s1v

) 1√
2πσ̂X̄1

exp
(
− 1

2
(
s1v − x̄1

σ̂X̄1

)2
))

,

lm = ln
( pI

∑
w=1

(
1−FT (sIw)

) 1√
2πσ̂X̄I

exp
(
− 1

2
(
sIw − x̄I

σ̂X̄I

)2
))

.

As pointed out in the introduction, our objective consists of estimating the quantiles of

the rejection distribution under different parametric models. That is, we will substitute

F by different expressions according to the parametric choices for T as shown in the

following section.

5. Quantile estimation for parametric models

Three parametric laws, which are commonly used for shelf-life studies of foods (Hough

et al., 2003), are considered for the random variable of interest T :

• Weibull with shape parameter k, scale parameter λ, distribution function given by

FT (t) = 1− exp(−(t/λ)k), and tα = λ · ln( 1
1−α)

1/k as the quantile α,

• loglogistic with shape parameter k, scale parameter λ, FT (t) = 1− 1
1+(t/λ)k , and

tα = λ(
α

1−α)
1/k,

• lognormal with parameters µ and σ, FT (t) = Φ
( ln(t)−µ

σ

)
, and tα = exp

(
µ+σ ·

Φ−1(α)
)
.

For sample i, i = 1, . . . , I, we have chosen a discrete support with first element given

by si1 = max(0, x̄i −3 · σ̂x̄i
), last element given by sipi

= min(100, x̄i +3 · σ̂x̄i
), and with

mesh size equal to 0.1. These supports cover intervals on the domain of X̄i of probability

masses larger than 0.99 for each sample. With these choices, the computation time for

the maximization of the log-likelihood function takes about 25 seconds with the Intel i7

processor (1.73 GHz) under Windows 7. Technical details on the implementation in R

are given in Appendix B.

The maximization of function (10) yields the parameter estimates and five quantiles

as shown in Table 3. Whereas the standard errors are returned together with the

parameters’ estimates, the delta method is used in order to compute the standard errors

of the log-transformed quantiles. 95% confidence intervals are computed for ln(tα) and

the exponential transformation is applied to obtain the confidence intervals for tα. They

are, hence, not symmetric with respect to t̂α.
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Table 3: Estimates obtained under different parametric models: parameter estimates are shown together

with standard errors, quantile estimates together with 95% confidence intervals.

Weibull Loglogistic Lognormal

θ̂θθ (s.e.(θ̂θθ)) k̂ = 4.113 (0.467) k̂ = 6.510 (0.805) µ̂= 4.044 (0.036)

λ̂= 65.138 (2.292) λ̂= 57.426 (2.153) σ̂ = 0.263 (0.029)

Quantiles (95%-CI)

0.1 37.7 ([32.2, 44.2]) 41.0 ([36.5, 46.1]) 40.7 ([36.5, 45.4])

0.25 (Q1) 48.1 ([43.0, 53.8]) 48.5 ([44.4, 53.0]) 47.8 ([43.9, 52.1])

0.5 (Median) 59.6 ([55.1, 64.5]) 57.4 ([53.3, 61.9]) 57.0 ([53.0, 61.3])

0.75 (Q3) 70.5 ([65.9, 75.4]) 68.0 ([62.6, 73.8]) 68.1 ([63.0, 73.6])

0.9 79.8 ([74.3, 85.7]) 80.5 ([72.4, 89.5]) 79.9 ([72.5, 88.1])

We can see, for example, that the estimated median under the Weibull model is 59.6

and that the corresponding 95% confidence interval ranges from 55.1 to 64.5. That is,

under the Weibull model, 50% of all consumers are expected to reject yogurt with an

acid taste above 59.6 and this value would serve as the cut-off value for the yogurt

manufacturer if the objective is to produce yogurt whose acid taste is rejected by at most

50% of all consumers. Note that the median estimates are somewhat lower in case of the

two other parametric choices (57.4 and 57, respectively) and that all three estimates lie

in the interval obtained by the nonparametric estimation shown in Figure 3.

6. Conclusions and discussion

In this work, we have presented an approach to fit parametric models to interval-

censored data when the interval limits are not fixed values, but are rather measured with

certain error. As stated in the introduction, survival analysis methodology has so far

been used to estimate rejection probabilities in food products as a function of variables

of interest such as storage time which were measured exactly. However, there are other

situations in which the variable of interest is not error-free, such was the case of acid

taste in yogurt presented as an example in this work. We have developed a model to take

account of the variability in the measurement of the independent variable.

Since the maximization of the likelihood function with such data is not implemented

in statistical software, we have accomplished the parameter estimation in R with

different functions of contributed packages; see Appendix B. The R code used can be

provided on request from the authors.

The results obtained permit us to draw conclusions about the rejection distribution

of a given food product based on a scale whose values are estimated by a trained panel.

However, from a statistical point of view, our primary interest is the comparison of the

obtained results with the ones of the method that ignores the uncertainty of the sample

mean estimation. It could be expected that our approach would yield larger standard
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errors and confidence intervals, nonetheless, the results (not shown here) are fairly

similar. For example, the standard errors of both parameters of the Weibull distribution

do only differ in the second decimal place among both methods, whereas they are even

virtually the same considering the lognormal distribution. Therefore, the differences of

the quantiles obtained with both methods as well as the widths of the corresponding

confidence intervals are notably small. The same findings held when we used broader

discrete supports for X̄i, i = 1, . . . ,6.

Another approach to estimate the parameters is to use multiple imputations as

described in Rubin (1987). For each of B runs, sample mean values would be generated

from the normal distributions (3) and the parametric models would be fitted assuming

these values were measured error-free. The parameters estimates are then obtained

as means over the B estimates obtained. We did this for B = 1000 obtaining similar

parameter estimates (results not shown) but with larger standard errors (between 18%

and 44% larger) reflecting both sources of variances: between and within-imputation

variances. We, therefore, do not recommend this approach.

Two aspects of interest, which were not addressed in this work, are the nonparametric

estimation of F and methods to judge the goodness-of-fit of a given parametric choice.

These are relevant topics for further research.

In summary, final results showed small differences in quantile estimations between

our model and the ad hoc calculations that did not consider variability. Whether these

small differences will hold for most practical applications is difficult to predict. Our

recommendation is for researchers to apply the complete model presented in this work

in order to be sure that their quantile estimations are correct.
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A. Variance of the sample mean estimator X̄iX̄iX̄i

In the following, the variance of the sample mean estimators X̄i, i = 1, . . . , I, is derived.

Remember that independence is assumed among assessors and that the covariance

between two observations on the same assessor is equal to the between-assessors

variance:
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B. Computational Issues

All computations of this work were carried out with R (The R Foundation for Statistical

Computing), version 3.0.1. Following, we give some details on the functions used.

The estimates of the one-way random effects ANOVA model shown in Table 1 are

obtained by fitting model (1) with function lme of package nlme (Pinheiro et al., 2013).

This function, which uses the restricted maximum likelihood estimators in (4) for the

variance components by default, could also handle unbalanced designs with different

numbers of replicates among assessors.

The maximization of the log-likelihood function (10) under different parametric

models was accomplished with function mle2 of the contributed package bbmle (Bolker

and R Development Core Team, 2012). This function returns both the maximum like-

lihood estimates and their standard errors. As initial values for the parameters to be

estimated, which are required by the maximization algorithm, one can choose the pa-

rameter estimates that are obtained by fitting the corresponding parametric model under

the assumption that sample means were measured error-free.
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