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Abstract

This paper analyzes the performance of linear regression models taking into account usual criteria

such as the number of principal components or latent factors, the goodness of fit or the predictive

capability. Other comparison criteria, more common in an economic context, are also considered:

the degree of multicollinearity and a decomposition of the mean squared error of the prediction

which determines the nature, systematic or random, of the prediction errors. The applications use

real data of extra-virgin oil obtained by near-infrared spectroscopy. The high dimensionality of

the data is reduced by applying principal component analysis and partial least squares analysis.

A possible improvement of these methods by using cluster analysis or the information of the

relative maxima of the spectrum is investigated. Finally, obtained results are generalized via cross-

validation and bootstrapping.
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1. Introduction

Principal component analysis (PCA) and partial least squares (PLS) are widely used in

linear modelling when the number of explanatory variables greatly exceeds the number

of observations. PCA and PLS calculate, from the explanatory variables, a reduced
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number of components or latent factors orthogonal among themselves. These compo-

nents or factors are obtained as linear combinations of the explanatory variables, for

PCA explaining the variability among these variables and, for PLS maximizing the co-

variance between each explanatory variable and the response one. Both methodologies

reduce the dimensionality of the space of explanatory variables as the information pro-

vided by these variables is summarized in only a few ones.

PCA and PLS have been used in the last decades in some chemometric areas

such as, for example, in pattern recognition (in this context, PCA or PLS linear

discriminant analyses establish classification models based on experimental data in

order to assign unknown samples to a sample class) and in multivariate calibration,

in which PCA or PLS regression models predict a numeric variable as a function

of several explanatory ones. Although papers comparing the goodness between PCA

and PLS are well-known, most of them even considering PLS preferable to PCA for

both regression and discrimination (see, for example, Frank and Friedman (1993) or

Barker and Rayens (2003)), the fact is that PCA (besides PLS) is still widely used

nowadays in chemometrics. Papers such as Gurdeniz and Ozen (2009), López-Negrete

de la Fuente, Garcı́a-Muñoz and Blegler (2010), Mevik and Cederkvist (2004), Nelson,

MacGregor and Taylor (2006) and Yamamoto et al. (2009) can be cited as examples

of using PCA in discrimination and calibration. For this reason, this paper revisits

the comparison between PCA and PLS regressions in new terms. Firstly, the possible

improvement of the regression models incorporating causal additional information of

data is analyzed. Secondly, a proposed decomposition of the prediction errors makes it

possible to determine the nature of these errors and evaluate their predictive capacity.

In this paper, the described methodology is applied to data obtained by near-

infrared (NIR) spectroscopy. The NIR methods are used in food chemistry providing

fast, reliable and cost-effective analytical procedures which, contrary to some others

– such as gas chromatography – require no or little sample manipulation. Even though

the data acquisition process is relatively easy for all spectral techniques, interpretation

of spectra can be difficult. Separation techniques, such as gas chromatography, lead

to discrete information including several usually well-defined, separated peaks from

which, on proper integration, the content of various chemical components in the sample

can be determined. On the contrary, spectroscopy generates continuous information,

rich in both isolated and overlapping bands attributed to vibration of chemical bonds in

molecules, which leads to the availability of multivariate data matrices. In this context,

the use of mathematical and statistical procedures allows us to extract the maximum

useful information from data (Berrueta, Alonso-Salces and Héberger, 2007).

There are many chemometric papers establishing comparison criteria of models.

Thus, for example, Gowen et al. (2010) or Li, Morris and Martin (2002) propose some

measures to determine the optimal number of latent factors in PLS regression mod-

els; Anderson (2009) compares diverse models of PLS regression as a function of their

stability; Andersen and Bro (2010) or Reinaldo, Martins and Ferreira (2008) propose

several selection criteria for variables in multiple calibration models; and Mevik and
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Cerderkvist (2004) provide estimators of the mean squared error of prediction (MSEP)

in PCA and PLS regression models. The aim of this paper is to compare PCA and PLS

regression models on the basis of some criteria such as the number of latent factors or

components, the goodness of fit and the predictive capability. However, this study goes

a step further, incorporating an approach usually associated with an economic context.

The degree of multicollinearity (absent when the regressors of the model are uncorre-

lated among themselves) is considered. Moreover, a decomposition of MSEP is pro-

posed in order to point out the nature, systematic or random, of the prediction errors. As

a final conclusion, the development of the study highlights the potential of the PLS re-

gression.

There are several examples in the literature on the application of PCA and PLS re-

gression models to near-infrared spectral data from oils and fats. For instance, Dupuy et

al. (1996), Gurdeniz and Ozen (2009), Kasemsumran et al. (2005) and Öztürk, Yalçin

and Özdemir (2010) use these multivariate calibration models to predict the content of

some olive oil compounds in order to detect possible adulteration with some other veg-

etable oil. In the present study, the application is carried out by using NIR spectral data

of extra-virgin olive oil and estimates the capability of the models to predict the oleic

acid content. However, our approach could be used to estimate some other chemicals or

features of importance in food chemistry from spectral data (see Mevik and Cederkvist

(2004)). Firstly, the regression models are fitted by applying PCA and PLS from all the

variables associated to different wavelengths of the spectrum (considering the matrix

of data as a black box). Later on, models incorporating information provided by the

relative maxima of the curve are estimated, because the principal components and the

factors are obtained, in an independent manner, in each spectral peak. Then, PCA and

PLS regressions are applied in combination with cluster analysis, a multivariate statisti-

cal technique that uses a measure of distance or similarity to classify a set of variables

or cases in clusters of variables or cases, respectively, similar among themselves; in

this case, components and factors are obtained independently in each cluster of wave-

lengths. The above-mentioned criteria are calculated for each model in order to evaluate

their performance. For models in which PCA or PLS are carried out in an independent

manner in different parts of the spectrum and so the resulting components or factors

are not orthogonal among themselves, the degree of multicollinearity is also considered.

Finally, techniques of cross-validation and bootstrapping are incorporated to extend the

previous results to more general applications.

2. Review of selection criteria in regression models

2.1. Common comparison criteria

a) Goodness of fit. Let s2
Y and s2

Ŷ
be the respective variances of the observations,

y1,y2, . . . ,yn, of the dependent variable Y , and the corresponding predictions,
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ŷ1, ŷ2, . . . , ŷn, in a regression model. The coefficient of determination, R2 = s2

Ŷ
/s2

Y ,

ranges in the interval [0,1] by definition and, expressed as a %, indicates the

percentage of variability of the dependent variable explained by the regression

model. Obviously, a model is better as the coefficient of determination approaches

1. The adjusted coefficient of determination, R
2
, is calculated from R2, taking

into account the number of observations and the number of the regressors in the

regression, in such a way that the goodness of fit is not overestimated.

The mean squared error of calibration, MSEC = ∑
n
i=1 (yi − ŷi)

2 /n, takes values

nearer to 0 for a good fit, but it is non-dimensionless, that is, it depends on the

units of measure of the variable.

There are other measures of the goodness of fit, that are not contemplated in this

study, based on the likelihood criterion (see Burnham and Anderson (2004)).

b) Predictive capability. Given the predictions for the future t observations, ŷn+1,

ŷn+2, . . . , ŷn+t , of a certain regression model, the mean squared error of the pre-

diction, MSEP=∑
t
j=1 (yn+ j − ŷn+ j)

2 /t, evaluates the predictive capability of a re-

gression model. The predictive capability of a model is obviously better as MSEP

approaches 0, taking into account that it also depends on the measurement units.

As is indicated by Berrueta et al. (2007), the ideal situation is when there are

enough data available to create separate test set completely independent from the

model building process (this validation procedure is known as external validation).

When an independent test set is not available (e.g., because cost or time constraints

make it difficult to increase the sample size), MSEP has to be estimated from

the learning data, that is, the data used to train the regression. In this context,

Mevik and Cederkvist (2004) present several estimators for MSEP, based on cross-

validation or bootstrapping: Let X=[X1|X2|...|Xp] be the matrix containing the

explanatory variables in a regression model and let Y be the dependent variable.

For a set of n observations, it is assumed that L = {(xi,yi) : i = 1, . . . ,nL} is a

learning data set (of nL observations) and T = {(xnL+i,ynL+i) : i = 1, . . . ,nT} is a

test data set (of size nT ). Besides, fL is a predictor trained on L. When L is divided

randomly into K segments, L1,L2, . . . ,LK , of roughly equal size (n1,n2, . . . ,nK),

fk is a predictor trained on L\Lk. Finally, R bootstrap samples are drawn in L,

L∗
1,L

∗
2, . . . ,L

∗
R, and f ∗r is a predictor trained on L∗

r . In the described context, Mevik

and Cederkvist (2004) present the MSEP estimators shown in Table 1.

c) Number of regressors. Attending to the parsimony principle, if some regression

models present similar characteristics in terms of goodness of fit, predictive

capacity and multicollinearity, the simplest among them, i.e. the one with the

smallest number of regressors, is considered the best.
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Table 1: MSEP estimators adopted from Mevik and Cederkvist (2004).

MSEP Estimator Definition

Test set estimate MSEPtest =
1

nT

nT

∑
i=1

( fL (xnL+i)− ynL+i)
2(= MSEP)

Apparent MSEP MSEPapp =
1

nL

nL

∑
i=1

( fL (xi)− yi)
2(= MSEC)

Cross-validation MSEPcv.K =
1

nL

K

∑
k=1

∑
i∈Lk

( fk (xi)− yi)
2

Adjusted

cross-validation

MSEPadj.cv.K = MSEPcv.K +MSEPadj, where

MSEPadj = MSEPapp −
1

nL

K

∑
k=1

nk

nL
∑

i 6∈Lk

( fk (xi)− yi)
2

Naive bootstrap

estimate

MSEPnaive =
1

R

R

∑
r=1

1

nL

nL

∑
i=1

( f ∗r (xi)− yi)
2

Ordinary bootstrap

estimate

MSEPboot = MSEPapp +Biasapp, where

Biasapp =
1

R

R

∑
r=1

(
1

nL

nL

∑
i=1

( f ∗r (xi)− yi)
2 −

1

nL

nL

∑
i=1

( f ∗r (xr
i )− yr

i )
2

)
,

where
(
xr

i ,y
r
i

)
is the ith observation of the rth bootstrap sample

Bootstrap smoothed

cross-validation

MSEPBCV =
1

nL

nL

∑
i=1

1

R−i
∑

r:i 6∈L∗
r

( f ∗r (xi)− yi)
2
,

where R−i is the number of bootstrap samples excluding observation i

The 0.632 estimate MSEP0.632 = 0.632 ·MSEPBCV +(1−0.632) ·MSEPapp,

where 0.632 ≈ 1− e−1 is approximately the average fraction

of distinct observations in each bootstrap data set

In PCA, the Kaiser criterion is the default in SPSS and most statistical software

(but many authors do not recommend to use it as the only cut-off criterion as it

tends to extract too many factors): Let X∗
1 ,X

∗
2 , . . . ,X

∗
p be the standardized variables

of the explanatory variables, X1,X2, . . . ,Xp. When a random sample of dimension n

is considered, X∗ = [X∗
1 |X

∗
2 | · · · |X

∗
p ] is a matrix of dimension n× p. Then, X∗TX∗ is

a square p× p matrix and has p eigenvalues, λ1,λ2, . . . ,λp. The eigenvalueλk rep-

resents the variance of the k-th principal component (or factor), k = 1, . . . , p. The

Kaiser criterion suggests that those factors with eigenvalues equal or higher than 1
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should be retained (taking into account that the variables are standardized and so

the average of the eigenvalues is precisely 1).

In PLS analysis, the criterion of the first increase of the mean squared error

of prediction is considered: the number of latent factors taken into account is

h∗ = min{h > 1 : MSEP(h+1)−MSEP(h)> 0}, where MSEP(h) the mean squared

error of prediction of the regression model with h factors.

Gowen et al. (2010) show that the over-fitting in a regression model entails

some additional problems, such as the introduction of noise in the regression

coefficients. More specifically, their paper presents some measures for preventing

the over-fitting in PLS calibration models of NIR spectroscopy data, investigating

the use of both model bias and variance simultaneously in selecting the number

of latent factors to include in the model. Initially, the authors consider the Durbin-

Watson statistic:

DW =
∑

p
i=1 (bi −bi−1)

2

∑
p
i=0 b2

i

,

being p the number of the regressors and b0,b1, . . . ,bp the coefficients of the mul-

tiple regression model. The named regression vector measure, RVM, is calculated

by rescaling DW from 0 to 1. Then, a bias measure, BM, is obtained once the root

of the mean squared error of calibration, RMSEC, is rescaled from 0 to 1. Gowen

et al. (2010) propose to obtain the measures RVM j and BM j for models with j latent

factors or components, varying j. Finally, the optimal number of latent factor to

consider in a PLS regression model is j∗ if the minimum of the sum RVM j + BM j

is obtained for j = j∗.

2.2. Other comparison criteria

In this section, other comparison criteria, more frequent in economics research, are pro-

posed. Thus, for example, the decomposition of MSEP provided in d) below is devel-

oped in EViews, a program of econometric analysis. Similarly, Essi, Chukuigwe and

Ojekudo (2011), Greenberg and Parks (1997), Mynbaev (2011), Spanos and McGuirk

(2002) and Yamagata (2006) deal with the multicollinearity under different hypotheses

in an economic context. These new criteria establish additional arguments to the ones

proposed in a)-c) and can assist in selecting the most adequate model.

d) Decomposition of MSEP. In Section 2.1.b, MSEP has been established as a

criterion for evaluating the predictive capability of a model which, in general

terms, is better as MSEP approaches 0. But this issue can be dealt more in depth,

trying to determine the causes of the prediction errors.



Sánchez-Rodrı́guez, M. I. et al. 63

Around 1920, Fisher introduced analysis of variance (ANOVA), a collection of

statistical procedures in which the observed variance in a particular variable is

partitioned into components attributable to different sources of variation. Diverse

authors, e.g. Climaco-Pinto et al. (2009), Mark (1986), Mark and Workman

(1986), Zwanenburg et al. (2011) have used the ANOVA in a chemometric context.

We use this technique to decompose MSEP into three components, with the aim

of investigating if there is any systematic cause that produces the prediction errors

or if they are randomly distributed.

Given the predictions for the future t observations, ŷn+1, ŷn+2, . . . , ŷn+t , of a certain

regression model, y and ŷ are the means of the observations and the predictions,

respectively, sY and s
Ŷ

are the corresponding standard deviations and s
YŶ

is the

covariance. Then, the MSEP,

MSEP =
1

t

t

∑
j=1

(yn+ j − ŷn+ j)
2 =

1

t

t

∑
j=1

y2
n+ j +

1

t

t

∑
j=1

ŷ2
n+ j −

2

t

t

∑
j=1

yn+ jŷn+ j,

can be decomposed, once the terms
(

y− ŷ
)2

and 2s
YŶ

are added and subtracted,

in the following way

MSEP =
(

y− ŷ
)2

+
(
sY − s

Ŷ

)2
+2
(
sY s

Ŷ
− s

YŶ

)
= EB +EV +ER,

or, equivalently, by the identity

1 =
EB

MSEP
+

EV

MSEP
+

ER

MSEP
=UB +UV +UR,

where UB is the part of MSEP corresponding to the bias, representing systematic

errors in the prediction; UV indicates the difference between the variability of the

real values and the variability of the observed ones; finally, UR shows the random

variability in the prediction errors.

The decomposition of MSEP evidences that the predictions are affected by sys-

tematic and random errors. Random errors are, in general, low in absolute value,

resulting from the additive effect of many insignificant events (detected with dif-

ficulty) and so inherent to a process. This kind of error can only be reduced with

the increasing of the sample size, and fluctuate around a constant value, being dis-

tributed as a white noise. However, systematic errors are usually associated with

an identifiable cause, such as an interference in the observation process or a defect

of calibration in the instrument of measurement. They usually originate in a great

fluctuation in the evolution of a process and must be detected and eliminated (for
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example, this is the objective of statistical quality control or the aim of papers such

as Guldberg et al. (2005) or Vasquez and Whiting (2006)).

A model is obviously better as MSEP approaches 0 (taking into account that

MSEP is not upperly bounded and depends on the unit of measurement). But,

using the proposed decomposition, if MSEP shows a great percentage attributable

to systematic errors, this aspect indicates that there is some detectable cause

originating these deviations in the predictions. This cause must be detected in order

to eliminate systematic errors. Thus, a great percentage of MSEP attributable to

systematic prediction errors indicates that the fit model can be improved in some

sense. Nevertheless, this improvement is difficult if the predictions generated by a

model have a random nature.

However, the study of the statistical general linear model (in particular, the mul-

tivariate linear regression model) assumes the random nature of its perturbations

(which must be, by hypotheses, centered, homoscedastic, uncorrelated and nor-

mally distributed random variables). And so the presence of systematic errors in

the predictions (represented by a high UB ratio) or the discrepancy between the

variability of the real and the observed values (represented by a high UV ratio)

prevent the validation of the fitted model, since these facts point out the absence

of the hypotheses of randomness and homoscedasticity.

Definitively, the ideal situation for evaluating the predictive capability of a model

is presented when MSEP has a value nearer to 0 and besides UB = 0, that is,

systematic errors do not exist in the prediction; UV = 0, which indicates that the

variability of the real values is the same as that of the predictions; and UR = 1,

which corresponds to random prediction errors.

e) Possible existence of multicollinearity1. In the fit of a regression model, it is

frequent the appearance of a certain linear relationship among the regressors,

which can be even exact (for example, when the number of cases is lower than

the number of explanatory variables). The presence of multicollinearity in the

regression makes that the least squares estimators obtained are not, in general, very

precise. Although these estimators are still linear, unbiased and efficient (Gauss-

Markov theorem), the multicollinearity complicates the precise quantification of

the effect of each regressor on the dependent variable, because the variances of the

estimators are high.

1. In PCA and PLS regressions, the orthogonal character of the components or factors guarantees the absence of
multicollinearity in the model. In this paper, multicollinearity is evaluated in models whose components or factors are
obtained applying PCA or PLS to different parts of the spectrum, in an independent manner. Thus, these components or
factors are uncorrelated only in the corresponding spectral part.
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In a multiple linear regression model, the estimator of the variance of a certain

coefficient, β̂ j, is given by the expression

̂
Var

(
β̂ j

)
=

σ̂2

p
(

1−R2
j

)
s2

j

, j = 1, . . . , p,

where σ̂2 is the estimation of the disturbance variance, assumed to be constant by

the hypothesis of homoscedasticity; p is the number of explanatory variables in

the model; R2
j is the coefficient of determination of the regression of the variable

X j on the rest of the explanatory variables; and s2
j is the observed variance of X j.

The variance inflation factor, VIF, is defined as the ratio between the observed

variance and the variance existing when X j is uncorrelated to the rest of the

regressors of the model (and, then, R2
j = 0). Some authors consider that there is

a grave multicollinearity when VIF

(
β̂ j

)
> 10 for any j = 1, . . . , p, that is, when

R2
j > 0.90. Some computational programs (SPSS, for example) define the term

“tolerance” as Tj = 1−R2
j ; in this case, a serious multicollinearity is identified

when Tj < 0.10 for any j = 1, . . . , p.

Then, let X∗TX∗ be the matrix defined in Section 2.1.c (X∗ contains the standard-

ized observations). As indicated in that section, it is a square matrix of dimension

p and, therefore, has p eigenvalues. In this case, its condition number, κ, is de-

fined as the root of the ratio between the highest eigenvalue (λmax) and the lowest

one (λmin). The condition number measures the sensitivity of the least-squares es-

timates to small changes in the data. The multicollinearity can be considered as

serious if κ (which is not affected by the measurement units because it is calcu-

lated, as stated above, from standardized variables) ranges between 20 and 30; if

κ is greater than 30, the multicollinearity is very serious.

3. Materials and methods

3.1. Acquisition of spectral data

This work is based on data obtained from olive oil from different olive varieties (mainly

‘Zaity’, ‘Arbequina’, ‘Frantoio’, ‘Picual’ and ‘Hojiblanca’) harvested in the 2005/06,

2006/07, 2007/08 and 2008/09 seasons. Samples correspond to Andalusian olive oils

principally, though some others from Tarragona and Edleb (Syria) have also been

included. There are 302 cases in total. Olive oil was either extracted by the producers

through a two-phase centrifugation system or by the staff of the Agronomy Department

of University of Córdoba via the Abencor System. This system reproduces the industrial
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process on the laboratory scale and follows the same stages of grinding, beating,

centrifugation and decantation.
1H-NMR analyses were carried out at the NMR Service of the University of Sevilla

on a Bruker Avance spectrometer (Kahlsruhe, Germany), by using a resonance fre-

quency of 500.2MHz and a direct-detection 5mm QNP 1H/15N/13C/31P probe. De-

termination of oleic acid content was carried out following the method suggested by

Guillén and Ruiz (2003). NIR spectra were obtained by the staff of the Organic Chem-

istry Department of the University of Córdoba within 15 days after reception of the

samples, which where kept in the fridge so that properties were not modified (Baeten

et al., 2003). The instrument employed for spectra collection was available at the Cen-

tral Service of Analyses (SCAI) at the University of Córdoba. It consisted of a Spectrum

One NTS FT-NIR spectrophotometer (Perkin Elmer LLC, Shelton, USA) equipped with

an integrating sphere module. Samples were analyzed by transflectance by using a glass

petri dish and a hexagonal reflector with a total transflectance pathlength of approxi-

mately 0.5 mm. A diffuse reflecting stainless steel surface placed at the bottom of the

cup reflected the radiation back through the sample to the reflectance detector. The spec-

tra were collected by using Spectrum Software 5.0.1 (Perkin Elmer LLC, Shelton, USA).

The reflectance (log 1/R) spectra were collected with two different reflectors. Data corre-

spond to the average of results with both reflectors, thus ruling out the influence of them

on variability of the obtained results. Moreover, spectra were subsequently smoothed us-

ing the Savitzky-Golay technique (that performs a local polynomial least squares regres-

sion in order to reduce the random noise of the instrumental signal). Once pre-treated,

NIR data of 1237 measurements for each case (representing energy absorbed by olive

oil sample at 1237 different wavelengths, from 800.62 to 2499.64 nm) were supplied to

the Department of Statistics (University of Córdoba) in order to be analyzed.

3.2. Calibration models

As stated above, the aim of this study is to compare PCA and PLS regression models

following the criteria described in Section 2. In this application, the regression models

predict the content in monounsaturated acids (fundamentally, oleic acid, fatty acid of

the omega 9 series with beneficiary cardiovascular and hepatic effects) of extra-virgin

olive oil by using NIR spectral data. For each statistical case, that is, for each oil

sample – n = 302, in total – the observations corresponding to p = 1237 wavelengths

of the spectrum – varying from 800.62 to 2499.64 nm – are available. Therefore, a

statistical approach considers a matrix of data, X, of dimensions n = 302× p = 1237,

whose rows are referred to the cases studied and the columns are associated to the

different explanatory variables in the regression. The dependent variable, Y , is given

by the content in oleic acid of olive oil, in percentage, observed by using proton nuclear

magnetic resonance (1H-NMR). The information provided by the potential explanatory

variables (1237 in total, corresponding to the different wavelengths), will be summarized
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in a reduced number of uncorrelated factors in order to avoid multicollinearity, due to the

high dimensionality of the space of the explanatory variables. The factors are obtained

by using the procedures described as follows:

Method 1. Extraction of latent factors from the whole space of explanatory variables

Firstly, a small number of latent factors or components are determined from the whole

space of 1237 explanatory variables. The factors are obtained as linear combinations of

the explanatory variables and summarize the information provided by these variables.

The components are extracted by PCA and, later on, by using PLS. In PCA, the

factors initially considered are associated to the eigenvalues of the correlation matrix

of the explanatory variables greater than 1 (Kaiser criterion), resulting 6 components

(as λ6=1.706 and λ7=0.941). In PLS analysis, the criterion of the first increase of

MSEP (see Section 2.1.c) is considered; as shown in Table 2, h∗ = 9 in this case. Then,

the number of factors is increased to 15, number of components closer to the ones

considered by next Methods 2 and 3. For subsequent comparisons, the results for 6, 9

and 15 latent factors in PCA and PLS are considered. The percentage of the explanatory

variables explained, in each case, by the extracted factors is greater than 99%.

Table 2: Optimal number of factors in PLS analysis.

Nr. components 1 2 3 4 5 6 7 8 9 10

MSEP(h) 20.68 20.14 13.87 9.22 8.41 6.49 2.07 1.42 0.79 0.89

MSEP(h+1)−MSEP(h)−0.54 −6.27 −4.65 −0.81 −1.92 −4.42 −0.65 −0.63 0.10

Table 3: Optimal number of factors (according to criterion by Gowen et al. (2010)).

Model No. factors (j) DW j RVM j RMSEC j BM j RVM j +BM j

1.1.1 (6 PCA) 6 1.004 0.326 3.673 1 1.326

1.1.2 (9 PCA) 9 1.001 0 3.323 0.806 0.806

1.1.3 (15 PCA) 15 1.010 1 1.868 0 1

2.1.1 (6 PLS) 6 1 1 2.363 1 2

2.1.2 (9 PLS) 9 0.999 0.568 1.252 0.329 0.897

2.1.3 (15 PLS) 15 0.998 0 0.707 0 0

Once the components summarizing the sample information have been obtained, PCA

regression models (Models 1.1.1, 1.1.2 and 1.1.3 with 6, 9 and 15 factors, respectively)

and PLS regression models (Models 2.1.1, 2.1.2 and 2.1.3 with 6, 9 and 15 factors,

respectively) are proposed. These models consider the content in oleic acid by 1H-NMR

spectroscopy as explained variable (Y ) and the previously obtained factors as regressors.

The last column of Table 3 shows that, based on the criterion presented in Gowen et al.
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(2010) (see the measures defined in Section 2.1.c), the optima models among PCA and

PLS regression ones are those with 9 and 15 components, respectively.

Method 2. Extraction of latent factors from the different spectral peaks

NIR spectroscopy yields spectra presenting both isolated and overlapping bands as-

signed to vibrations of one or more chemical bonds in molecules. For this reason, the

explanatory variables associated to wavelengths corresponding to NIR spectral peaks

could contain valuable information to predict the content in oleic acid of olive oil. Thus,

wavelength intervals associated to spectral peaks are determined (Figure 1 shows six re-

gions corresponding to wavelengths 800.62-936.74 nm, 1142.99-1280.49 nm, 1349.24-

1486.74 nm, 1658.62-1899.24 nm, 2105.49-2208.62 nm, 2242.99-2499.64 nm, approx-

imately). Therefore, if X is the matrix containing the 1237 explanatory variables, X can

be divided into six boxes, X
p

(1),X
p

(2), . . . ,X
p

(6), each one containing the explanatory vari-

ables associated to the corresponding region and a seventh box, with residual character,

X
p

(r), containing the remaining explanatory variables: X =
[
X

p

(1)|X
p

(2)| · · · |X
p

(6)|X
p

(r)

]
.

Then, PC and PLS analyses are applied to each of the seven boxes previously

considered, in an independent manner, with the aim of determining factors summarizing

the information associated to each region of the spectrum (Table 4). Afterwards, a PCA

regression model (Model 1.2, Peaks PCA) and a PLS regression model (Model 2.2,

Peaks PLS) are proposed to predict the content in oleic acid of olive oil, Y , considering

the above-mentioned factors as regressors. The regressors (principal components or

factors) in these last models are not uncorrelated among themselves; they are only

orthogonal for each of the defined boxes: X
p

(1),X
p

(2), . . . ,X
p

(6),X
p

(r). This fact introduces

any degree of multicollinearity in the models.

Method 3. Extraction of latent factors from the different clusters of spectral wavelengths

Cluster analysis is applied to determine ten groups of similar explanatory variables, in

terms of the squared Euclidean distance, in order to predict the composition in oleic

acid of the olive oil. Therefore, the matrix of the explanatory variables, X, is expressed

as X =
[
Xc

(1)|X
c
(2)| · · · |X

c
(10)

]
, where Xc

(i) contains the explanatory variables classified

in the i-th cluster, i = 1, . . . ,n, after the application of the procedure. The graphical and

analytical results obtained, in this case, are shown in Figure 2 and Table 5, respectively.

As in Method 2, PCA and PLS are applied to summarize in a reduced number

of components or factors the information of the explanatory variables associated to

each cluster, in an independent manner (which also introduces a certain degree of

multicollinearity among components or factors). Subsequently, a PCA regression model

(Model 1.3, Clusters PCA) and a PLS regression model (Model 2.3, Clusters PLS) are

proposed considering the estimated factors as explanatory variables and the content in

oleic acid, as determined by 1H-NMR, as dependent variable.
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Figure 1: Wavelength intervals associated

to spectral peaks.

Figure 2: Clusters of wavelength.

Table 4: Factors in wavelength intervals associated to spectral peaks.

Wavelength

interval
Nr. int. var. X Box % Y var.(a) Nr. fac.(b)

% int. var.(c)

(PCA)

% int. var.(c)

(PLS)

800.62-936.74 100 X
p

(1)
50.8 2 98.49 98.2

1142.99-1280.49 101 X
p

(2)
52.1 1 99.30 99.2

1349.24-1486.74 101 X
p

(3)
35.0 1 99.03 98.8

1658.62-1899.24 176 X
p

(4)
91.4 3 99.61 99.4

2105.49-2208.62 76 X
p

(5)
81.7 1 99.32 99.4

2242.99-2499.64 188 X
p

(6)
95.3 2 99.32 97.9

Rest of wavelenghts 495 X
p

(e)
82.2 3 99.49 99.4

(a) Percentage of Y variance explained by X
p

(i)

(b) Number of factors according to Kaiser criterion in PCA

(c) Percentage of X
p

(i) variance explained by interval factors

4. Results and discussions2

Taking into account the results shown in Table 6 and Table 7, the comparison among

the values R
2
, MSEP and κ allows us to conclude that all the PLS regression models

clearly provide better results in terms of goodness of fit, predictive capability and

multicollinearity than the corresponding to PCA regressions with the same number of

latent factors.

2. The chemometric applications can be developed using different software. Some packages of statistical or mathe-
matical analysis have implemented the principal techniques usual in chemometrics, such as PASW Statistics – formerly
SPSS, currently belonging to IBM, UNSCRAMBLER from CAMO, the PLS Toolbox of MatLab from MathWorks, or
the free package “pls” in R.



70 New insights into evaluation of regression models through a decomposition...

Table 5: Factors in clusters of NIR spectrum.

Cluster Nr. clus. var. X Box % Y var.(a) Nr. fac.(b)
% clus. var.(c)

(PCA)

% clus. var.(c)

(PLS)

1 119 Xc
(1) 93.4 4 99.02 98.2

2 191 Xc
(2) 95.2 4 99.65 99.5

3 12 Xc
(3) 86.0 1 98.33 98.0

4 13 Xc
(4) 44.4 1 98.92 98.5

5 41 Xc
(5) 88.3 1 99.42 99.3

6 35 Xc
(6) 80.3 1 99.50 98.7

7 50 Xc
(7) 85.4 1 99.81 99.8

8 10 Xc
(8) 72.2 1 99.60 99.6

9 13 Xc
(9) 49.4 1 99.59 99.6

10 5 Xc
(10) 5.0 1 99.84 99.8

(a) Percentage of Y variance explained by Xc
(i)

(b) Number of factors according to Kaiser criterion in PCA

(c) Percentage of Xc
(i) variance explained by cluster factors

Table 6: Comparison of models.

Model Nr. fac. R2 R
2

MSEP κ

1.1.1 (6 PCA) 6(a) 0.023 -0.004 19.094 −(c)

1.1.2 (9 PCA) 9(b) 0.200 0.166 13.770 −(c)

1.1.3 (15 PCA) 15 0.748 0.729 1.839 −(c)

1.2 (Peaks PCA) 13 0.349 0.308 7.662 195.698

1.3 (Clusters PCA) 16 0.619 0.591 4.156 301.477

2.1.1 (6 PLS) 6(a) 0.596 0.584 6.490 −(c)

2.1.2 (9 PLS) 9(b) 0.887 0.882 0.792 −(c)

2.1.3 (15 PLS) 15 0.964 0.961 0.307 −(c)

2.2 (Peaks PLS) 13 0.692 0.672 2.557 183.837

2.3 (Clusters PLS) 16 0.859 0.847 0.382 370.059

(a) Number of factors according to Kaiser criterion in PCA

(b) Number of factors according to the first increase of the MSEP in PLS regression

(c) Orthogonal factors

Focusing on PCA regression, the model with 15 latent factors calculated from the

explanatory variables directly, neither extracting the components in each interval of

wavelengths associated to spectral peaks nor applying cluster analysis, is the one that

provides the best results in fit and prediction. This model is named Model 1.1.3 (15

PCA) and has associated values R
2

113=0.729 and MSEP113=1.840. Besides, the orthogonal
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Table 7: Decomposition of MSEP.

Model ŷ s
Ŷ

s
YŶ

MSEP EB EV ER UB UV UR

1.1.1 (6 PCA) 80.902 0.493 0.557 19.094 0.834 15.061 3.200 0.044 0.789 0.168

1.1.2 (9 PCA) 81.189 1.811 4.516 13.770 0.392 6.570 6.808 0.028 0.477 0.494

1.1.3 (15 PCA) 81.268 3.569 15.164 1.840 0.299 0.648 0.892 0.163 0.352 0.485

1.2 (Peaks PCA) 81.115 2.387 8.830 7.662 0.490 3.946 3.227 0.064 0.515 0.421

1.3 (Clusters PCA) 80.860 3.251 13.229 4.156 0.912 1.261 1.983 0.220 0.303 0.477

2.1.1 (6 PLS) 80.775 3.015 11.406 6.490 1.083 1.848 3.560 0.167 0.285 0.549

2.1.2 (9 PLS) 81.228 3.996 17.328 0.792 0.346 0.143 0.303 0.436 0.180 0.383

2.1.3 (15 PLS) 81.625 4.397 19.098 0.307 0.036 0.001 0.270 0.118 0.002 0.881

2.2 (Peaks PLS) 81.407 3.537 14.627 2.556 0.167 0.700 1.689 0.065 0.274 0.661

2.3 (Clusters PLS) 81.746 4.039 17.533 0.382 0.005 0.112 0.265 0.013 0.295 0.693

Note: y = 81.8153, sY = 4.3740

character of the components guarantees the absence of multicollinearity in the model.

Finally, the decomposition of MSEP according to expression given in Section 2.2.d (see

Table 7) points out that the last term, UR,113=0.485, is the highest one, thus indicating

that the prediction errors are random, ideal situation for the predictions of a model.

As regards PLS regression, the model in which the sample information is summa-

rized directly from the explanatory variables in 15 PLS components (Model 2.1.3, 15

PLS) shows the best results: R
2

213=0.961, MSEP213 = 0.307 and absence of multicollinear-

ity because of the uncorrelated character of the latent factors. Likewise, this model has

the highest value for the term UR in the decomposition of MSEP (UR,213=0.881 in Table

7); which again confirms the random nature of the prediction errors.

Taking into account the two previous conclusions, neither the distinction of the infor-

mation associated to the spectral peaks nor the previous application of cluster analysis

improve the results of the regression on the PC or PLS latent factors obtained directly

(Method 1). In fact, the results are worse because of the appearance of multicollinearity,

as the values of κ contained in Table 6 evidence.

Finally, in view of the above-mentioned considerations, Model 2.1.3 (15 PLS) is the

best among all the fit models, presenting optimal characteristics regarding number of

latent factors (Table 6 and Table 7), goodness of fit, predictive capability (and causes of

prediction errors) and obviously absence of multicollinearity.

4.1. Cross-validation and bootstrapping

In this section, the attention is focused on the PLS regression model with 15 latent factor

(Model 2.1.3, 15 PLS) as it has been considered the best among all the models studied

above. This model will be compared to the PCA regression model with 15 components

(Model 1.1.3, 15 PCA) in terms of cross-validation and bootstrapping with the aim of

generalizing the previously obtained results.
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Table 8: MSEP estimations.

MSEP Estimation PCA regression (Model 1.1.3) PLS regression (Model 2.1.3)

MSEPtest 1.838 0.308

MSEPapp 3.486 0.500

MSEPcv.K 20.119 2.360

MSEPadj.cv.K 22.539 5.609

MSEPnaive 3.672 0.492

MSEPboot 4.224 0.569

MSEPBCV 3.273 0.480

MSEP0.632 3.352 0.487

Figure 3: MSECi and MSEPi for Model 1.1.3 (15 PCA)

and Model 2.1.3 (15 PLS) –i = 1,2, . . . ,50–.

Firstly, Table 8 shows the estimations of MSEP obtained, in this case, from the

different estimators considered in Mevik and Cederkvist (2004) and presented in Table

1 (see Section 2.1.b). The corresponding algorithms divide the learning data set, L,

into K = 6 segments, L1,L2, . . . ,L6, of equal size (nk = 39) for cross-validation; so, 6

regression models, f1, f2, . . . , f6, are fit (where each model fk uses the observations not

contained in Lk). Regarding the bootstrapping, R = 50 bootstrap samples (of size 25),

L∗
1,L

∗
2, . . . ,L

∗
50, are drawn from the learning data set, L. For r = 1,2, . . . ,50, f ∗r is the

regression model trained on L∗
r . Table 8 shows that all the estimations of MSEP obtained

by using the different algorithms described are greater for Model 1.1.3 (15 PCA) than

for Model 2.1.3 (15 PLS). Again, this fact points out that the predictive capability is

higher for the PLS model than for the PCA one.

Afterwards, also in the context of bootstrapping, another algorithm is programmed

to compare MSEP in both models. Now, the objective is to change, in each iteration

i of the algorithm (i = 1,2, . . . ,50), the learning data set, Li, and the test data set, Ti.
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Then, MSECi(= MSEPapp,i) and MSEPi(= MSEPtest,i) are calculated and compared for each

iteration i. Besides, MSEPi is decomposed (Section 2.2.d) in the components UB,i, UV,i and

UR,i, in order to determine the nature of the prediction errors, investigating if they are

randomly distributed or they respond to a systematical cause. In this context, Figure 3

shows that MSECi and MSEPi – calculated for Model 1.1.3 (15 PCA) and Model 2.1.3 (15

PLS) – are clearly higher in PCA regression than in PLS regression, for each iteration

i = 1,2, . . . ,50. Furthermore, the variability of both goodness of fit and predictive

capability is higher in PCA regression, appearing for PLS regression as a white noise.

Regarding the decomposition of MSEP, Figures 4 and 5 depict that, although the

component UR,i is the highest in both PCA and PLS models for i = 1,2, . . . ,50, in PLS

one UR,i represents a percentage of the variability of the prediction errors higher than in

PCA one.

Figure 4: Component UR,i of MSEPi, –i = 1,2, . . . ,50–, for Model 1.1.3 (15 PCA)

and Model 2.1.3 (15 PLS).

Figure 5: Decomposition of MSEPi –i = 1,2, . . . ,50–, for Model 1.1.3 (15 PCA)

and Model 2.1.3 (15 PLS).
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Figure 6: MSEC and MSEP for PCA and PLS regression as a function of the number of latent factors.

Figure 7: Component UR of MSEP in PCA and PLS regression as a function of the number of latent factors.

Figure 8: Decomposition of MSEP in PCA and PLS regression as a function of the number of latent factors.
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Finally, the evolution of MSEC and MSEP (and their components UB, UV , UR) is

studied as a function of the number of latent factors or components (from 1 to 15) in

PCA and PLS regression models, the learning and the test data set being changed for

each number of latent factors. Figure 6 shows that obviously MSEC and MSEP tend

to decrease with the inclusion of latent factors in the model. However, the decrease

is more pronounced for PLS regression. Figure 7 illustrates that the component UR,

which is associated to the random variability in the prediction errors, increases with the

number of latent factors. Nevertheless, UR represents a percentage or MSEP higher in

PLS regression than in PCA regression. Figure 8 shows that, on average, the component

UB of MSEP – which represents the systematic prediction errors – stay invariant with the

inclusion of new latent factors in the regression models; UV is higher when there are few

components in the model and the random component UR increases with the inclusion of

latent factors in the model. The improvement is clearly higher for PLS regression than

for PCA regression as evidenced by these figures.

5. Conclusions

This paper presents linear regression models explaining the oleic acid chemical com-

position of olive oil through factors extracted by principal components and partial least

squares regression analyses from NIR spectral data. Relative maxima of the spectrum

and cluster analysis are used to previously classify the explanatory variables. The dif-

ferent proposed models are compared on the basis of several criteria such as the number

of latent factors or components, the goodness of fit and the mean squared error of pre-

diction. The comparison among the models is improved by the consideration of some

issues more commonly used in an economic context. More specifically, an exhaustive

study about the multicollinearity is developed and a decomposition of MSEP is set up

in order to analyze the nature of the prediction errors. In conclusion, the PLS regression

model (of 15 latent factors) directly obtained from the data matrix (considered as a black

box), applying neither additional information about the spectral peaks nor cluster anal-

ysis, is the best among all the considered models and exhibits optimal features on the

basis of the diverse comparison criteria previously established. Besides, the decomposi-

tion of MSEP of this model points out the absence of systematic causes in the predictive

errors, that are randomly distributed. Finally, cross-validation and bootstrapping allow

us to confirm and generalize the previously obtained results, highlighting the potential

of the PLS regression.
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