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Abstract

Knowledge of prognostic factors is an important task for the clinical management of Non Hodgkin

Lymphoma (NHL). In this work, we study the variables affecting survival of NHL in Peru by means

of geoadditive Cox-type structured hazard regression models while accounting for potential spatial

correlations in the survival times. We identified eight covariates with significant effect for overall

survival. Some of them are widely known such as age, performance status, clinical stage and lactic

dehydrogenase, but we also identified hemoglobin, leukocytes and lymphocytes as covariates with

a significant effect on the overall survival of patients with NHL. Besides, the effect of continuous

covariates is clearly nonlinear and hence impossible to detect with the classical Cox method.

Although the spatial component does not show a significant effect, the results show a trend of low

risk in certain areas.

MSC: 62P10 (Applications to biology and medical science) 62N01 (Censored data models) 6207

(Data analysis)
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1. Introduction

Non-Hodgkin lymphomas (NHLs) are a group of lymphoproliferative malignancies

of the lymphatic system defined by different morphological, immunophenotypic and

genetic features. This heterogeneity determines different patterns of prognosis in the

NHL patients that should be considered to optimize their treatment benefit (Friedberg et

al., 2008).
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Traditionally, the International Prognostic Index (IPI) has been used to classify the

NHL patients into four risk groups (low, intermediate low, intermediate high, high)

considering five variables of prognostic significance (age, performance status, clinical

stage, lactic dehydrogenase and extranodal sites) derived from a Cox regression analysis

based on categorical covariates (Shipp et al., 1993). However, a relatively important

group of patients presents poor survival, despite being classified as good prognosis

according to the IPI.

Several aspects can be related to the observed inaccuracy of the IPI. It is possible

that important prognostic factors are not being included in the analysis such as new

genetic and biological markers currently under investigation. Another important issue

that could lead to implausible results refers to the categorization of the continuous

covariates included in the IPI (age and lactic dehydrogenase).

Beyond the IPI, many studies of prognostic factors for NHL have been performed

using the classical Cox’s proportional hazard model. Within this framework, the effect

of the continuous covariates is assumed to have a linear functional form, however it is

important to note that when this assumption is not satisfied, the Cox model may lead

to biased inferences, loss of statistical power and incorrect conclusions (Therneau and

Grambsch, 2000).

In addition, in databases based on hospital records, referral centres, population

studies or multicenter clinical trials, the results may be affected by spatial correlations.

These complexities in the covariates affecting survival are not covered by the Cox model

and hence a more general and flexible regression framework is required.

A variety of flexible methods have been developed in recent years. An up-to-date

review of Cox-type models extensions can be found in Buchholz and Sauerbrei (2011).

In this article we use geoadditive Cox-type structured hazard models to inspect the

functional form of several covariates effects, including a spatial component, on the

overall survival of the patients with NHL.

The rest of the paper is organized as follows. In Section 2 structured geoadditive

Cox-type hazard regression models for modelling survival data are revisited. Section 3

presents the results of the analysis of the data set of NHL in Peru and finally, a discussion

concludes the paper.

2. Methodology

2.1. Geoadditive survival models

In many clinical studies, the common target of analysis is to model the effect of several

covariates (prognostic factors) on the survival time. A classical tool for studying the

effect of a vector of covariates v on continuous survival times is the Cox proportional

hazards model (Cox, 1972):
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λi(t,v) = λ0(t)exp(vT
i
γ) (1)

However, this specification is often not flexible enough for the correct modelling of

variables affecting survival in many applications.

In our analysis, we used structured geoadditive survival models (Hennerfeind et al.,

2006; Kneib and Fahrmeir, 2007), a flexible spatial generalization of the Cox model.

Specifically, the linear predictor of equation (1) was extended to a structured geoadditive

predictor, including a spatial component for geographical effects and nonparametric

terms for modelling unknown functional forms of the log-baseline hazard rate and

nonlinear effects of continuous covariates. Specifically, individual hazard rates are given

by:

λi(t) = exp(ηi(t)), i = 1, . . . ,n (2)

with geoadditive predictor

ηi(t) = g0(t)+ vT
i
γ+

q

∑
k=1

sk(xik)+ fspat(s) (3)

where g0(t) = log(λ0(t)) represents the log-baseline hazard rate, the vector γ contains

the usual linear effects, sk(xk) refers to the nonlinear effect of a continuous covariate xk,

and fspat(s) is the spatial effect in region s ∈ {1, . . . ,S}.

In this representation, all the nonparametric effects, including the log-baseline hazard

are modeled using penalized splines (P-splines, Eilers and Marx, 1996). Thus, the

nonparametric problem is replaced by a parametric equivalent, in which a vector of

regression coefficients is estimated under a smoothness penalty (details are given in

Section 2.2.). The general idea is to approximate the functions g0 and sk by linear

combinations of B-splines basis functions,

sk(x) =
dk

∑
j=1

β jB j(x) (4)

where vector βk = (β1, . . . ,βdk
) is the vector of unknown coefficients corresponding to

the B-splines basis of degree a and defined over a grid of k knots lying on the domain

of x, with dk = a+ k−1. Specifically, we considered B-splines basis of degree 3 and a

grid of 20 equidistant knots in our analyses.

At the same time, the spatial effect of each region s is split up into a structured part

and an unstructured part:

fspat(s) = fstr(s)+ funstr(s) (5)



224 Flexible geoadditive survival analysis of non-Hodgkin lymphoma in Peru

With this division of the spatial effects, we aim to distinguish between two types of

geographical influential factors. On the one hand, the structured effect refers to a general

smooth spatial effect along the whole studied area. On the other hand, the unstructured

effect accounts for possible effects that may be present only locally. The structured

spatial effects are modeled by means of Markov random fields, assuming that the

effect of an area s is conditionally Gaussian, where the expectation is the mean of the

effects of neighbouring areas and the variance is inversely proportional to the number of

neighbours, specifically

fstr(s) = β
str
s =

1

Ns
∑

s′εδs

β str
s′ +us, us ∼ N

(

0,
1

λstrNs

)

(6)

where δs denotes the set of neighbouring areas of s and Ns the corresponding number

of areas falling in δs. As for the unstructured spatial effects, a Gaussian region specific

i.i.d. random effect is assumed.

As a result, we can express each of the predictor components as the product

of an appropriate design matrix Z j and a vector β j of regression coefficients, and

consequently we can represent the predictor vector η in a generic matrix notation as

η = Vγ+Z1β1+ · · ·+ Zqβq+Zstrβstr+Zunstrβunstr, where V is the design matrix of

parametric effects.

Interestingly, from equations (2) and (3) we can extend the concept of hazard ratio

with respect to a reference value xref. In contrast to the linear hazard ratios derived from

the Cox model, the structured geoadditive survival specification provides flexible hazard

ratio curves. Hence, for a given smooth effect s associated to a continuous covariate

X , the adjusted hazard ratio for a subject with covariate x compared to a subject with

covariate xref is given by the smooth curve:

HR(x,xref) = exp(s(x)− s(xref)) (7)

2.2. Estimation of the parameters

Under the usual assumptions about non-informative censoring, the log likelihood, given

the vectors of all parametric effects γ and all nonparametric and spatial effects β , is

ℓ(γ,β) = δTη−1
T
Λ, where η denotes the linear predictor defined in (3) and δ and Λ

are, respectively, the vector of censoring indicators and cumulative hazard rates.

However, instead of obtaining the estimates of β by means of the unpenalized

likelihood, a penalty term is added to control the level of smoothness by penalizing

wiggly functions. The most commonly used penalization term is based on the integral
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of the second derivative of the smooth functions, sk:

pen(sk) =
1

2
λi

∫ ∞

0
[s′′k (zi)]

2dzi (8)

Since equation (8) is a quadratic form of the corresponding vector of regression

coefficients β j, it can be written as 1
2
λ jβ j K jβ j, where the penalty matrix K j is a

positive semidefinite matrix and λ j a smoothing parameter. Furthermore, the smooth

functions for the nonlinear effects are represented in terms of B-splines and it allows

to approximate the penalty term in terms of the squared differences of coefficients

associated with adjacent basis functions (Eilers and Marx, 1996). As a result, the

difference penalty matrix can be written as K j = DTD, with D the second order

difference matrix of neighbouring coefficients.

A special remark about the spatial smoothing is required. In this case, the smoothing

referees to the intuitive idea that risk in neighbouring areas should be close to each other.

We define as neighbour areas those sharing a common boundary and analogously to the

nonlinear effects, we penalize large deviations between neighbouring coefficients βstr,

where λstr from equation (6) is considered as the corresponding smoothing parameter.

Hence, the corresponding penalty matrix Kstr is defined as an adjacency matrix. For the

unstructured spatial effect, the penalty matrix is simply the identity matrix correspond-

ing to independent and identically distributed random effects for the regions.

As a result, the estimation of the regression effects is based on the penalized log-

likelihood to ensure a compromise between fidelity to data (in terms of the likelihood)

and smoothness (in terms of the penalty terms):

lpen(γ,β) = l(γ,β)−
q

∑
j=1

λ jβ
T
j K jβ j −λstrβ

T
strKstrβ str −λunstrβ

T
unstrKunstrβunstr (9)

Empirical Bayes inference was used to fit the model. This inferential procedure is

based on a mixed model representation of equation (9) where the smoothing parameters

(λ j) are considered as variance components corresponding to the vector of regression

coefficients (β j). It allows for the simultaneous estimation of the regression coefficients

and the smoothing parameters corresponding to each unknown function g0, sk or fspat

using restricted maximum likelihood (REML) estimation. See Kneib and Fahrmeir

(2007) for details.

The analysis was conducted using BayesX statistical software (Brezger et al., 2005)

freely available online from www.bayesx.org. Empirical Bayes inference was per-

formed due to its equivalence to the penalized splines likelihood in the frequentist frame-

work but BayesX also allows for a full Bayesian inference by means of MCMC simula-

tion techniques (Hennerfeind et al., 2006). To check the consistency of our results with

regard to the inference procedure, the corresponding full Bayesian analysis was also

conducted.
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Figure 1: Density function of survival time (left) and Kaplan-Meier estimate of the overall survival curves

with corresponding 95% confidence bands(right).

3. Application to NHL

We analyzed survival data for 2160 patients diagnosed NHL, older than 14 years and

treated at the Instituto Nacional de Enfermedades Neoplásicas (INEN), Lima, Peru,

between 1990 and 2002. The clinical features evaluated were age, sex, performance

status (zubrod), primary disease, clinical stage (CS), B symptoms, hemoglobin (Hbg),

log leukocytes (ln(WBC)), lymphocytes and log lactic dehydrogenase (ln(LDH)).

Table 1: Fixed and random estimates of the fitted model.

Variables df HR (95% CI)

Fixed effects:

Sex: male 1 1.25 (1.07,1.46)

Zubrod: 2-4 1 1.88 (1.59,2.22)

Primary: nodal 1 0.90 (0.76,1.06)

CS: III-IV 1 1.44 (1.22,1.71)

B-symptoms 1 1.16 (0.99,1.37)

Non-parametric effecs:

g(t) 3.52 see figure 2

Age 2.67 see figure 2

Hbg 4.16 see figure 2

ln(WBC) 2.63 see figure 2

Lymphocytes 5.79 see figure 2

ln(LDH) 4.16 see figure 2

Spatial effects:

Random component 5.41 see figure 3

Spatial component 1.06 see figure 3

AIC 6549.95

BIC 6750.99
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Figure 2: Logarithm of the smooth hazard ratio curves derived from the geoadditive model fit. Clinical

cut-off values were used as reference points in the analysis. 80% (green) and 95% (grey) credible intervals

are shown.

The median age was 54.0 years (range: 14-96 years). Most patients presented

advanced-stage disease at diagnosis: 50.8% presented Stage I-II and 49.2% presented

Stage III-IV. Thirty-eight percent of the patients had B symptoms at diagnosis. The

median length of follow-up for the patients was 12.6 months. Among all the patients,

32.8% had died before the end of the follow-up period (uncensored cases) and 67.2%
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remained alive (censored cases). Figure 1 shows the distribution of survival time of

patients with and without censoring (left) and the Kaplan-Meier estimate of the overall

survival curve (right). According to the structured geoadditive Cox-type hazard analysis,

eight prognostic factors were identified associated with worse survival (Table 1). Three

categorical covariates: male patients, zubrod 2-4 and clinical stage III-IV at diagnosis

were associated with worse prognosis for overall survival. The location of the disease

described as primary nodal or extranodal, and the symptoms B had no significant effect

on the overall survival.

A significant nonlinear relationship was identified for the effects of all continuous co-

variates: age, Hbg, ln(WBC), lymphocytes and ln(DHL). Figure 2 shows the functional

form of the covariate effects in the log hazard ratio. Usual clinical cut-off values were

used as reference points: 60 years (age), 12 g/dL (Hbg), 103 counts/dL (WBC), 40%

(lymphocytes) and 240 UI/L (DHL). Note that a strong nonlinear effect (d f = 5.79)

was found for Lymphocytes with increased hazard ratios for lowest and highest values.

Risk geographical pattern is presented in Figure 3. Although Lima and Apurimac areas

were identified as increased risk areas, the spatial effect was not significant according to

the included variables.

As for the inference procedure, the results obtained from the full Bayesian inference

(not shown) are very similar to the ones derived from REML estimation, hence we can

assess that both inferential methods perform equivalently to our data.

4. Conclusions

The study of new covariates (with possible non-linear functional forms) in a flexible

way and the existence of spatial correlation are examples of new challenges that the

traditional tools of survival analysis do not allow to manage in an efficient way. Recent

development of flexible methods for survival analysis allow for a deeper investigation

of the variables affecting survival.

We used structured geoadditive survival models, a nonparametric approach that

allows for the joint estimation of the baseline and covariates effects by means of

a modelling through P-splines. Specifically, we considered nonlinear effects for the

continuous covariates and we also account for possible geographical correlation.

In this work we identified eight covariates with significant effect for overall survival

by means of the fitted geoadditive Cox-type structured hazard model. Age, zubrod, CS

and DHL are prognostic factors reported in many published series, but we also identified

hemoglobin, leukocytes and lymphocytes as covariates with a significant effect on the

overall survival of patients with NHL.

Besides, the effect of continuous covariates is clearly non linear and hence impos-

sible to detect with the classical Cox method. Nicely, the concept of hazard ratio is

extended to obtain smooth hazard ratio curves for each of the continuous covariates.
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Figure 3: Spatial effect estimates.

Although the spatial component does not show a significant effect, the results show

a trend of low risk in certain areas. This phenomenon could be associated with certain

subtype of NHL more frequent in these areas. So, the spatial analysis points out that

further inspection of the NHL subtypes is required.

Still, it is noteworthy that more general specifications of the predictor are possible in

the structured geoadditive Cox-type hazard regression framework, such as the inclusion

of time-varying effects which allows to relax the proportional hazards assumption or the

inclusion of interactions between covariates. In fact, possible extensions of the present

work considering time-varying prognostic factors and interactions between them are

currently under investigation.

To sum-up, geoadditive Cox-type structured hazard regression is a useful tool for

assessing prognostic factors for the survival in a flexible way. This methodology allows

to detect variables that may affect the risk of mortality while taking the possible spatial

correlation of data into account.
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