
Perfectly Matched Layers for time-harmonic second order

elliptic problems
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Abstract The main goal of this work is to give a review of the Perfectly Matched

Layer (PML) technique for time-harmonic problems. Precisely, we focus our atten-

tion on problems stated in unbounded domains, which involve second order elliptic

equations writing in divergence form and, in particular, on the Helmholtz equation at

low frequency regime. Firstly, the PML technique is introduced by means of a simple

porous model in one dimension. It is emphasized that an adequate choice of the so

called complex absorbing function in the PML yields to accurate numerical results.

Then, in the two-dimensional case, the PML governing equation is described for sec-

ond order partial differential equations by using a smooth complex change of variables.

Its mathematical analysis and some particular examples are also included. Numerical

drawbacks and optimal choice of the PML absorbing function are studied in detail. In

fact, theoretical and numerical analysis show the advantages of using non-integrable

absorbing functions. Finally, we present some relevant real life numerical simulations

where the PML technique is widely and successfully used although they are not covered

by the standard theoretical framework.
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1 Introduction

Most numerical simulation involving mechanical models are governed by partial dif-

ferential equations which can be stated either in bounded or unbounded domains de-

pending on the physics of the problem.

If the domain is assumed to be bounded, the numerical difficulties to ensure an accu-

rate and reliable numerical simulation are related to the use of adequate discretization

methods.

However, if the domain where the model is defined is unbounded, a preliminary

problem arises before the use of a discretization technique: how to apply a numerical

method to a problem that, by its original nature, is not finite discretizable.

If we are only interested in computing an approximate solution in a small portion

of the unbounded domain, the first naive and tentative approach could consist of trun-

cating the unbounded domain to obtain a bounded computational one, and then to

proceed as usual by applying our favorite discretization method.

For instance, as naive as it looks, due to the exponential decay of the solutions at

the infinity in the Poisson or Stokes problem (see [79] and references therein), if the

truncation of the unbounded domain is done far enough from the physical domain of

interest, the approximate solution will be accurate and the truncation error will keep

the same order of magnitude as the numerical error arising from the discretization

procedure.

However, if we try to proceed analogously for the Helmholtz problem stated in

an unbounded domain, a simple truncation of the domain leads to spurious numerical

results. This different numerical behavior comes from the oscillatory pattern of the

Helmholtz solution, which does not decay exponentially when the spatial coordinates

tend to infinity.

Since our final goal is to compute an accurate numerical approximation of the

solution of a physical problem by using a discrete procedure, at some stage of the

algorithm we have to truncate the original unbounded domain. Thus, we need to know

how to make it without perturbing too much the solution of the original problem.

It is obvious that, ideally, the method to truncate the computational domain should

be accurate, efficient, easy to implement, robust to fitting parameters, and applicable

for a wide class of problems.

For instance, in the framework of time-harmonic acoustics, the first step for the

numerical solution of any scattering problem stated in an unbounded domain entails an

inherent difficulty: to choose boundary conditions to replace the Sommerfeld radiation

condition at infinity (see, for instance, [39]).

For this purpose there exist several classical numerical techniques: boundary ele-

ment methods, infinite element methods, approximate Dirichlet-to-Neumann operators

based on truncating Fourier expansions, absorbing boundary conditions, etc. Their po-

tential advantages have been widely studied in the literature (see, for instance, [5,32,

48,63], and [39] for a classical review on this subject).

Let us make some comments on the last mentioned technique: local absorbing

boundary conditions (ABCs) can be used to handle unbounded problems. Those by

Bayliss and Turkel [9], Givoli [38], Engquist and Majda [33], and Feng [35] are among

the most widely used. However, while computer implementation of lowest order ABCs

is very easy, good accuracy is only achieved for higher order ones [72], because ABCs

conditions are not fully non-reflecting on the truncated boundary of the computational

domain. As a consequence, high accuracy using ABCs leads to a substantial computa-
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tional cost and increases the difficulty of implementation. Recently, a promising way

has been open: higher order ABCs not involving higher order derivatives (see [40,50]).

Moreover, new ABCs has been developed recently (see [41,42] and references therein)

for time domain problems.

Let us remark that, if the domain of the original problem is truncated with a

sphere, then the Dirichlet-to-Neumann (DtN) boundary condition is exactly known

(see [39,61]). However, this boundary condition involves an infinite series which must

be truncated for its numerical use. Moreover, the exact DtN condition is non local,

leading to dense blocks in the linear system to be solved when a finite element method

is used.

Another alternative approach to make the truncation of unbounded domains is the

so-called Perfectly Matched Layer (PML) method, which was introduced by Berenger [13–

15] for electromagnetic problems. It is based on introducing an absorbing layer of

anisotropic damping material surrounding the domain of interest. This has the effect

of a thin sponge which absorbs the scattered field radiated to the exterior of this do-

main. This layer is said as ‘perfectly matched’ because its interface with the physical

domain does not produce spurious reflections inside the domain of interest, as it is the

case of ABCs.

This method has been applied to different problems. It was initially settled for

Maxwell’s equations in electromagnetism [11,13] and subsequently used for the scalar

Helmholtz equation [44,67,78], advective acoustics [2,10,47], shallow water waves [62],

elasticity [8,29], poroelastic media [81], and other hyperbolic problems (see for instance

[59] among many other papers).

Instead of restricting our attention to a unique problem, the introduction of the

PML governing equation can be unified for several time-harmonic problems. Hence,

in the present paper we first deal with the description and the partially incomplete

mathematical analysis of the PML technique for second order elliptic problems. Then,

some sections are devoted to the optimal fitting of this technique for time-harmonic

scattering problems in linear acoustics, i.e., for the scalar Helmholtz equation. In both

cases, for the sake of simplicity, we restrict ourselves to the two-dimensional case.

Although this work is entirely devoted to time-harmonic problems, let us say a few

words about time dependent problems. The PML technique was originally developed for

being applied in the framework of the finite difference time domain (FDTD) methods.

In deducing the PML technique [13], Berenger used an artificial splitting of the

physical unknowns, to force the tangential components of both velocities (in the acous-

tic medium and in the PML layer) to coincide on the interface for any frequency and

any angle of incidence, thus guaranteeing the absence of spurious reflections [48]. How-

ever, from a mathematical point of view, this non physical splitting has been shown

unnecessary to state the PML equations.

In fact, some authors (see for instance [1]), based on the fact that the PML model is

a zero order perturbation of a weakly hyperbolic first order system (see [54]), assumed

that the Berenger PML model could be ill-posed for time dependent problems, despite

of its good numerical accuracy. Now it is well known that this is not the case.

Notice that, the well posedness of the time domain PML formulations does not

depend on the absorbing behavior of layer. In fact, as shown in [11], their weak stability

only relies on the symbol expression of the hyperbolic differential operator.

Obviously, it is straightforward to introduce the time-harmonic PML technique by

means of the time-Fourier transform, from the classical Berenger’s split formulation.

However, being incoherent with the historic development of the PML technique, we
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introduce the time-harmonic version of the Berenger’s split formulation in Section 2 as

a modification of the Darcy’s like porous model.

There exist a huge amount of possible alternatives to introduce a PML technique

in time dependent problems. Let us mention, for instance, the split-field PML (orig-

inal derived by Berenger); the unaxial PML (UPML) which can also be understood

as an artificial anisotropic material (see [71,36,37]); the complex shifted PML (see

[55]) which generalizes the positive profile of the absorbing functions and allows work-

ing with arbitrary complex absorbing functions; the Zhao-Cangellaris formulation (see

[82]) or, equivalently, formulations with auxiliary differential equations (ADE) which

recover formally the equations of the original hyperbolic problem; and the convolu-

tional PML (see [69]) that introduce the absorbing coefficients of the PML by means

of convolutional products in the time variable.

Contrary to this wide variety of choices for time dependent problems, most of

them can be reduced to a unique PML governing equation in the frequency domain,

eventually with different absorbing functions. The exception arises from the UPML

technique whose governing equation can be understood as the adjoint formulation of

Berenger equations (see [79] for details).

Let us remark that, even if the governing equation is the same in the time-harmonic

regime, this fact does not imply that the solutions obtained with two different PML

formulations remain equal for time dependent problems. For instance, the solutions

of the Berenger’s split and the Zhao-Cangellaris formulation are different in the time

domain. Nevertheless, both model are equivalent, because the solution of each of them

can be written in terms of the solution of the other (see [11]).

Moreover, Chew and Weedon [25] and Rappaport [68] showed that the PML equa-

tions can be obtained using a complex-valued coordinate stretching, in the framework

of time-harmonic wave propagation. Related to this, Lassas et al. [58,56] showed that

the PML, and in general a family of absorbing conditions, can be obtained by using

complex Riemann metric tensors.

The use of the complex stretching of coordinates is closely related to an old tech-

nique called complex scaling technique (also referenced as analytic dilatation tech-

nique), which was developed in the seventies of the last century to simulate numerically

the eigen-states of quantum and atomic systems (see the first contributions [3,73] or

the textbook [45] and references therein). In fact, part of the numerical behavior of the

PML technique was already described in these pioneer works.

Furthermore, in spite of the fact that the PML has been originally settled in Carte-

sian coordinates by Berenger, Collino and Monk [28] proposed a similar complex-valued

change of coordinates to build a PML in curvilinear coordinates, as we have also em-

phasized in [19].

In practice, since the PML has to be truncated at a finite distance of the physical

domain of interest, its exterior boundary produces artificial reflections. Theoretically,

these reflections are of minor importance because of the exponential decay of the acous-

tic waves inside the PML. In fact, for Helmholtz-type scattering problems, Lassas and

Somersalo [57] proved, by using boundary integral equation techniques, that the ap-

proximate solution obtained by the PML method converges exponentially to the exact

solution in the computational domain as the thickness of the layer tends to infinity.

This result was generalized by Hohage et al. [46] using techniques based on the pole

condition. Moreover, Bécache et al. [10] proved an analogous result for the convected

Helmholtz equation.
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When the problem is discretized to be numerically solved, the approximation error

typically becomes larger. Increasing the thickness of the PML may be a remedy, but it

is not always possible because of the computational cost. An alternative is to take larger

values for the absorbing function involved in the complex-valued coordinate stretching.

However, Collino and Monk [27] showed that this methodology may produce an error

growth in the discretized problem. Consequently, an optimization problem arises: given

a data set and a mesh, to choose the optimal absorbing function to minimize the error.

In this framework, Asvadurov et al. [6] proposed a pure imaginary stretching to op-

timize the PML error. They recovered exponential error estimates using finite-difference

grid optimization. However, to the best of our knowledge, the optimization problem is

still open in that there is no optimal criterion to choose a bounded absorbing function

independently of data and meshes. As an alternative procedure to avoid this drawback,

our main contribution (see [16,19,17]) is based on using an absorbing function with

unbounded integral on the PML.

The outline of the paper is as follows. Firstly, in Section 2 we introduce a sponge

layer model to truncate the unbounded computational domain and, as an improvement

of this model, the PML governing equation is derived modifying the stiffness term of

the Darcy’s like porous model. A detailed comparison between the Darcy’s like porous

model and the PML is done by solving one-dimensional acoustic problems.

Then, in Section 3, after the introduction of the so called absorbing function for

the PML, we illustrate the role that the real and imaginary parts of the absorbing

function play with respect to the behavior of the PML solution in three different one-

dimensional problems. In this simple framework, we include a straightforward result

ensuring the exponential decay of the root mean square error between the solution of

the original problem, stated in an unbounded domain, and the solution computed with

the PML technique.

Following the ideas developed for the analytic dilatation technique, the PML gov-

erning equation is derived for second order problems written in divergence form in

Section 4. For the sake of simplicity we restrict ourselves to two-dimensional problems

and show that the derived PML model recovers the well-known Cartesian and radial

PML equations for isotropic acoustic fluids and linear elastic materials.

In Section 5 we describe a theoretical result which guarantees the existence and

uniqueness of solution for the PML problem when second order elliptic equations are

involved. For the sake of completeness, the sketch of the proof is also included. Since

this theoretical result is not totally satisfactory, a particular and more complete result

for the Helmholtz equation is also reported from the work by Bramble and Pasciak [22],

where not only the uniqueness of solution but also the exponential decay of the trun-

cation error are proved.

As a preliminary study, in Section 6 we include the analysis of the plane wave

propagation with oblique incidence in a two-dimensional unbounded domain. We show

that a PML method based on a non-integrable absorbing function allows recovering

the exact solution in the domain of interest. Section 6 also includes some numerical

results which illustrate the efficiency and accuracy of the PML technique with a non-

integrable absorbing function. A comparison using different absorbing profiles is also

given.

Moreover, we review the theoretical results guaranteeing the accuracy of the radial

PML technique with non-integrable absorbing functions. In fact, we show the exactness

of the PML technique when a non-integrable smooth absorbing function is used in the
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construction of the perfectly matched layer. The numerical accuracy of this problem is

also illustrated with an academic problem where the exact solution is known.

Three relevant real-life numerical simulations, which are not supported by any

theoretical result until now, are presented in Section 7. Despite of the theoretical lack

for time-harmonic problems involving half-space domains, linear elastic waveguides or

stratified acoustic fluids, the accuracy of the numerical results is usually assumed in

the literature.

Finally, some remarks about further research on the PML technique for time-

harmonic problems, the PML optimal parameter fitting and other related open prob-

lems are discussed in Section 8.

2 A mechanical derivation for a simple PML model

If we focus our attention on real life engineering solutions, which are applied to isolate

a physical region of interest without introducing spurious reflections (as in the case of

anechoic rooms), we observe that most of them are based on sponge layers (see [12]).

Thus, it is quite natural to consider porous layers for our computational purpose.

To illustrate the numerical performance of this strategy, we are going to solve a

simple one-dimensional toy problem whose solution is a plane wave with amplitude one

and null phase, propagating in the positive real axis. More precisely, we consider the

following problem:

Given ω > 0, find the scalar field u such that

−(ρc2u′)′ − ω2ρu = 0 in (0,+∞), (1)

u = 1 at x = 0, (2)

ρcu′ − iωρu = 0 at x→ +∞, (3)

where u represents the displacement field, c is the sound speed, ρ the mass density, and

ω the angular frequency. If all the physical parameters are constant then the solution

is given by u(x) = ei(ω/c)x.

As we have described above, we truncate the interval (0,+∞) with an absorbing

porous layer of finite thickness. With this purpose, we introduce the most simple model

for porous materials, which can be derived from the Darcy’s law for incompressible fluid

flows (see [4]).

The physical domain of interest is fixed to be (0, 1) and the porous layer is placed

in (1, 1 + L) with L > 0. This truncated problem is written in terms of the coupled

displacements (uF, uA), where uF is the solution computed in the physical domain and

uA is the solution in the porous layer. The equations describing the coupled problem
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are

−(ρc2u′F)′ − ω2ρuF = 0 in (0, 1), (4)

−
„

ρc2

φµ
u′A

«′

− ω2ρ

„

1 + i
σ

ωρ

«

uA = 0 in (1, 1 + L), (5)

u = 1 at x = 0, (6)

uF = uA at x = 1, (7)

ρc2u′F =
ρc2

φµ
u′A at x = 1, (8)

uA = 0 at x = 1 + L, (9)

where σ is the flow resistivity of the porous layer, φ is the porosity and µ is the ratio

of specific heats of fluid.

Here, and through the rest of the paper, we consider the branch of the square

root with positive real part. If we introduce the wavenumbers kF(ω) = ω/c, kA(ω) =

(ω/c)
p

φµ(1 + iσ/(ωρ)) and the characteristic impedances ZF(ω) = ρc, ZA(ω) =

ρc
p

φµ(1 + iσ/(ωρ)) of both media, and assume that all the physical parameters are

constant, a direct computation leads to

uF(x) = eikFx +A
“

−eikF(x+1) + e−ikF(x−1)
”

in (0, 1), (10)

uA(x) = B
“

−eikA(x−(1+2L)) + e−ikA(x−1)
”

in (1, 1 + L), (11)

where

A =
ZF sin(kAL) − iZA cos(kAL)

2(ZF sin(kAL) cos(kF) + ZA sin(kF) cos(kAL))
,

B =
ZFe

ikAL

2(ZF sin(kAL) cos(kF) + ZA sin(kF) cos(kAL))
.

If we set the physical parameters to ρ = 1.0 kg/m3, c = 340.0 m/s, ω = 6800 rad/s,

σ = 3500 kg/(m3s), φ = 0.71, µ = 1.4, and L = 1.0 m, the plots in Figure 1 show the

real part of the solution u for the original unbounded problem (1)-(3) and the real part

of the solution (uF, uA) for the coupled problem (4)-(9).

With this physical setting, the L2-relative error in the physical domain (0, 1.0), i.e,

the quantity (
R 1
0 |u(x) − uF(x)|2 dx)

1
2 /(
R 1
0 |u(x)|2 dx)

1
2 , is equal to 15.5%. In fact, a

simple inspection of the formulas above allows us to verify that the difference between

u and uF comes from the second term in (10), which corresponds to a reflected plane

wave in the physical domain.

Hence, to approximate accurately u by uF, the reflected amplitude should be null

and the incident amplitude should remain equal to one. Obviously, we could argue that

the flow resistivity or the thickness of the porous layer has not been chosen adequately.

In Figure 2, we show the L2-relative error for a fixed flow resistivity, varying the

thickness of the layer, and also for a fixed thickness varying the flow resistivity.

In both cases we check that the relative error is not smaller than around 10% and

this error does not decrease if the thickness of the layer or the flow resistivity are

increased. On the contrary, if σ is fixed then the relative error tends to be constant for

large thickness and, if we fix L, the error increases monotonically for large values of σ.
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Fig. 1 Real and imaginary parts of the solution for problems (1)-(3) and (4)-(9).
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Fig. 2 L2-relative error for σ = 3500 kg/(m3s) varying the thickness of the porous layer (left)
and for L = 1.0 m varying the flow resistivity (right).

In fact, both plots illustrate the same phenomenon: if the thickness of the porous

layer or the value of the flow resistivity is increased then the second term in the

numerator of (11) becomes null, what corresponds to the amplitude of the reflected

plane wave in the porous layer. However, the second term in (10) remains far from

negligible. In fact, since the real and imaginary part of kA are positive, we have that

tan(kAL) goes to i when L tends to ∞ and so the amplitude A is proportional to

ZF − ZA.

On one hand, if the characteristic impedances of both media do not coincide (see

[23]) even for large thickness of the porous layer, the reflected plane wave generated

on the interface between the physical domain and the absorbing layer is not small and

the solutions u and uF remain different.

On the other hand, if σ is small enough and µφ is close to one then ZF and ZA

will be similar. Thus, ZA −ZF is small and so A will also become small. Consequently,

the difference between uF and u will be negligible.

In conclusion, it would be convenient to make as small as possible the reflections

from the interface between both media. In order to do that, there exists at least two

possible solutions. On one hand, we could change the constant flow resistivity by using a

variable profile in such a way that the transition between both media becomes smooth.
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On the other hand, we could think up a different governing equation for the absorbing

layer, which does not generate reflections on the interface.

In the first alternative, the reflections from the porous medium can be done ar-

bitrarily small as much as the gradient of σ is sufficiently small (see [49] or [64]).

This behavior is claimed to be based on adiabatic results which guarantee the energy

dissipation in the porous layer without spurious reflections.

Precisely, this strategy consists in changing the constant flow resistivity in the

absorbing layer (1, 1 + L) by using a smooth profile, for instance, σ(x) = σ0(x − 1)2

being σ0 a constant value to be fitted. Now, since the flow resistivity has a variable

profile, formulas (10)-(11) are not longer valid so it is not possible to write the solution

in terms of reflected and transmitted plane waves. Throughout the rest of the section,

a standard finite element method on a fine enough mesh has been used to compute an

accurate solution for the problems involving a variable profile.

Obviously, now σ(x) can be smoothly extended to the full domain (0, L+1) as it is

null at the interface x = 1. Analogous to the analysis made with the constant profile,

we have computed the L2-relative error against the thickness of the porous layer and

the parameter σ0. The results are shown in Figure 3.
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Fig. 3 L2-relative error for σ0 = 3500 kg/(m3s) varying the thickness of the porous layer
(left) and for L = 1.0 m varying parameter σ0 (right), in both cases using the smooth profile
σ(x) = σ0(x − 1)2.

Now, the L2-relative error is lower than 3.5% for σ0 = 3500 kg/(m3s) and L = 1.0 m.

Moreover, if the flow resistivity parameter σ0 and the thickness L are increased in a

reasonable interval, the relative error remains small and lower than 0.5%.

Thus, if the variable smooth profile for the flow resistivity is used and adequate

values for L and σ0 are fitted, we recover accurately the solution of the original problem

u by computing the solution uF. In fact, some authors use this kind of slow varying

smooth profiles for σ, that leads to the minimization of the energy reflected towards

the physical domain from the absorbing layer (see [49] for details).

However, the procedure described above has an important drawback related with

the computational cost of this strategy. Even in this simple toy problem, if we compare

the thickness of the porous layer with the characteristic wavelength λ of the problem

in the physical domain, where λ = 2π/kF, we check that it has been necessary to use

a thickness L > 3λ to obtain a relative error lower than 3.5%.
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In order to illustrate the behavior of the L2-relative error with respect to the

wavelength, it has been depicted in Figure 4, where constant and variable profiles for

σ have been considered as above. In both cases we have fixed σ0 = 3500 kg/(m3s) and

L = 1.0 m.
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Fig. 4 L2-relative error for σ0 = 3500 kg/(m3s) and L = 1.0 m varying the wavelength of the
problem using a constant profile σ(x) = σ0 (left) and a variable profile σ(x) = σ(x − 1)2.

Although the relative error remains below 3%, for small wavelengths (at high fre-

quency regime), the truncation of the unbounded physical domain with a porous layer

of finite thickness fails to approximate the original solution u by using uF, for large

wavelengths (at low frequency regime). This behavior is similar for the constant and

for the smooth variable profiles of σ. Hence, in order to guarantee accurate results at

low frequency regime it is necessary to take into account a large thickness parameter.

Consequently, the strategy becomes highly expensive from a computational point of

view.

In conclusion, the first of the two alternatives that we have previously announced

does not achieve the purpose of elaborating an algorithm allowing us to compute ac-

curately the solution of problem (4)-(9) with a low computational cost.

Next we explore the second alternative that was sketched above. As we have already

analyzed, the main problem about the truncation of the unbounded domain (0,+∞)

with a porous layer relies on the different characteristic impedances of both media.

This difference produces reflected waves on the interface between the physical domain

and the porous layer, what leads to inaccurate results. Hence, we are going to modify

the Darcy’s like porous model with the aim of satisfying the following two properties:

1. the model should have a dissipative behavior like a porous material,

2. its characteristic impedance would match the characteristic physical impedance of

the media at the interface.

In the sequel, these are the conditions we are going to require to the PML model.

To verify this two properties, an additional artificial dissipation term is included in

the stiffness term of the Darcy’s like porous model. Consequently, the one-dimensional

PML governing equation can be understood as an artificial absorbing material. More

precisely, the porous bulk modulus (ρc2)/(φµ) is multiplied by the non-dimensional

factor φµ/(1 + iσ/(ωρ)). Notice that the denominator of this expression is just the

dissipative mass term multiplying the mass density in the Darcy’s like model.
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Hence, we replace problem (4)-(9) by the following one:

−(ρc2u′F)′ − ω2ρuF = 0 in (0, 1), (12)

−
 

ρc2

1 + i σ
ωρ

u′A

!′

− ω2ρ

„

1 + i
σ

ωρ

«

uA = 0 in (1, 1 + L), (13)

u = 1 at x = 0, (14)

uF = uA at x = 1, (15)

ρc2u′F =
ρc2

1 + i σ
ωρ

u′A at x = 1, (16)

uA = 0 at x = 1 + L. (17)

Now, if σ is constant, the exact coupled solution has a closed form given by

uF(x) = ReikF(x−1) + Te−ikF(x−1) in (0, 1), (18)

uA(x) = ReikA(x−1) + Te−ikA(x−1) in (1, 1 + L), (19)

where the reflected and transmitted amplitudes are respectively

R =
1

eikF − e−ikFe−2ikAL
, T = − e−2ikAL

eikF − e−ikFe−2ikAL
,

the wavenumber of the PML model is given by kA(ω) = (ω/c)(1 + iσ/(ωρ)), and its

characteristic impedance by ZA(ω) = ρc.

Since we have forced the values of the characteristic impedances of both media to

be equal, no reflected waves are generated at the interface between the physical domain

and the absorbing one. Consequently, a reduction of the relative error between u and

uF is expected. It is easy to check that the amplitudes of the coupled solution (18)-(19)

can be computed from those in (10)-(11), by taking into account that ZF(ω) = ZA(ω).

Obviously, we are now in a position to use the constant or the variable profile

for parameter σ which has lost its proper physical meaning. The solution of the cou-

pled problem (12)-(17) has been computed with σ = σ0 and with the variable profile

σ = σ0(x − 1)2 using the physical parameters described above. The real part of both

solutions have been plotted in Figure 5. Now, the relative errors are much smaller than

those corresponding to the truncation with the porous layer given before; precisely,

they are 0.002% and 0.446% for the constant and variable cases, respectively.

In spite of improving the L2-relative errors from those obtained for the truncation

strategy with a Darcy’s like porous layer, the error is not negligible. In fact, this error

is still produced by the spurious reflections that comes from the exterior boundary of

the PML domain. Obviously, these reflections are related to the finite thickness of the

absorbing layer.

Most of the literature about the PML technique in the time-harmonic regime tries

to obtain an estimate of these spurious reflections in terms of the PML thickness and,

somehow, in terms of the value of σ0. Some of these results are reviewed in Section 5.

Finally, to compare the behavior of the PML model with the Darcy’s like model,

in the plots of Figure 6 we show a similar study to previously done by analyzing the

behavior of the L2-relative error versus the flow resistivity σ0, the thickness of the

absorbing layer L and the wavelength λ.
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Fig. 5 Real part of the solution of problem (12)-(17) with constant profile σ = σ0 (left) and
variable profile σ = σ0(x − 1)2 (right).
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Fig. 6 L2-relative error for constant and variable profile versus the flow resistivity (upper
left), the thickness of the layer (upper right), and the wavelength (lower center).

It is checked that the behavior of the relative error, when the thickness or the

parameter σ0 is varying, is similar to those shown in Figure 3 for the Darcy’s like

model with smooth variable profile for σ. However, the main difference lies in the plot

of the relative error versus the wavelength. Instead of having a monotonically increas-

ing behavior as depicted in Figure 4, the error remains constant for the considered

entire range of wavelengths. This fact represents a fundamental advantage for compu-
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tational purposes, since the PML technique guarantees that the truncation error is not

increasing in the low frequency regime.

3 Absorbing behavior of PML models

In the previous section, we have introduced the PML governing equation from a Darcy’s

like porous model. In fact, we have been guided by the physical meaning of the flow

resistivity, which plays a main role in the dissipative behavior of PML and porous

layers. However, we can suspect that this situation is fairly particular and strictly

related to the one-dimensional problem considered in Section 2, where all the physical

coefficients were positive. Thus, it could be claimed that the derived PML equation is

only valid for the acoustic model.

The aim of this section consists of making the one-dimensional mechanical deriva-

tion of the PML governing equation developed in the previous section as general as

possible. With this purpose, firstly let us recall again the two requirements stated

by the PML model: 1.- dissipative behavior similar to that of porous media and 2.-

matching its characteristic impedance with the one of the physical medium. As we have

already seen, the second item is satisfied for any value of σ. More precisely, since the

characteristic impedance is defined as the bulk modulus multiplied by the factor kA/ω,

we have

ZA(ω) =
ρc2

1 + i σ
ωρ

kA
ω

=
ρc2

1 + i σ
ωρ

ω

c

1 + i σ
ωρ

ω
= ρc = ZF(ω).

Hence, we have to pay attention only to verify the first property.

From the expression above, we must realize that the main role is not played by the

parameter σ but by the quantity 1 + iσ/(ωρ). Following this idea, if we introduce the

complex-valued function γ = 1+ iσ/(ωρ) then the PML governing equation in problem

(12)-(17) is written in a simpler form,

−
„

ρc2

γ
u′A

«′

− ω2ργuA = 0 in (L,L+ 1). (20)

Through the rest of the paper, both for one-dimensional and two-dimensional prob-

lems, the complex-valued function γ will be called PML absorbing function. Let us

remark that in the literature, other terminology as “absorption coefficient” or “damp-

ing function” can be used for γ or, even, the term “absorbing function” can denote

other different functions related with but not equal to γ.

Obviously, we could use the physical guidance given in the previous section and

choose γ = 1 + iσ/(ωρ) with a positive-valued function σ. However, in the case of

the simple one-dimensional problem (1)-(3), the two properties of the PML model are

satisfied for any complex-valued function γ, eventually being independent of ω, with

the unique requirement of satisfying Im(γ) > 0 (see Lemma 1).

Now, we are in a position to test the generality of the PML governing equation

(20) in other one-dimensional problems different from (1)-(3). More specifically, to

check whether (20) remains valid for other mechanical models and, moreover, whether

the requirement Im(γ) > 0 is a sufficient condition to construct a PML governing

equation that allows computing accurately the solution of general problems involving

unbounded domains.
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In the rest of this section we will show that the answer to the two questions above

are negative and, to illustrate it, we consider below three different one-dimensional

problems where the PML technique is used. In these three problems, as it has been

done previously, the unbounded domain is truncated with a PML placed in (1, L+ 1)

and the same physical parameters set in Section 2 are used, where it applies. Moreover,

let us remark that two different complex absorbing functions, γ = 1 + iσ0/ω and

γ = exp(iπ/6), has been considered in these three test problems.

1. The propagation of plane pressure waves (see [23]) with an oblique angle of inci-

dence θ (θ = 0 for normal incidence) in an isotropic compressible fluid occupying the

two-dimensional half-space (0,+∞)×R is described by exp(i(ω cos(θ)/c)x2)u(x1),

where θ ∈ (0, π/2) and u is the solution of the following problem:

−(ρc2u′)′ − ω2 cos2(θ)ρu = 0 in (0,+∞), (21)

u = 1 at x = 0, (22)

ρcu′ − iω cos(θ)ρu = 0 at x→ +∞. (23)

The L2-relative error between the exact solution of problem (21)-(23) and the one

computed with the PML technique is depicted in Figure 7.
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Fig. 7 L2-relative error for problem (21)-(23) varying parameter σ0 with fixed θ = π/4 (left)
and varying the angle of incidence θ with fixed σ0 = 3500 kg/(m3s).

Obviously, the truncation error for γ = exp(iπ/6) is independent of σ0 and it is

remarkable that if γ = 1 + iσ0/(ωρ) is used, there exists a local minimum for the

relative error around σ0 = 3500 kg/(m3s), both cases achieving the same order of

relative error. If σ0 is fixed and the angle of incidence is changed, both absorbing

functions have the same behavior with a poor accuracy when the angle of incidence

is close to π/2, i.e, when the oblique plane wave is far from being normal.

2. Let us consider a two-dimensional closed waveguide (0,+∞) × (0, a) with a > 0,

filled with an isotropic compressible fluid. The expression describing the motion of

a fixed evanescent mode (see [60]) is given by φ(x1, x2) = exp(−βx2)u(x1) where
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β > 0, β 6= ω/c, and u is the solution of the following problem:

−(ρc2u′)′ − (ω2 − c2β2)ρu = 0 in (0,+∞), (24)

u = 1 at x = 0, (25)

ρcu′ − iρ
p

ω2 − c2β2u = 0 at x→ +∞, (26)

where boundary condition (25) has been fitted to impose unit amplitude and null

phase of the evanescent mode at x = 0.

Since β is a fixed positive constant, it can be chosen larger than ω/c and so the

coefficient multiplying the mass term becomes negative. This situation can arise in

other contexts as in meta-material modeling (see [31]) where the refraction index

is allowed to be negative.
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Fig. 8 L2-relative error for problem (24)-(26) varying parameter σ0 with β = 20.2 m−1 (left)
and varying the values for the transverse mode β with fixed σ0 = 3500 kg/(m3s) (right).

The L2-relative error is shown in Figure 8 when σ0 lies in the range between

0 kg/(m3s) and 2 × 104 kg/(m3s) and the transverse mode β is fixed to 20.2 m−1.

We observe that the relative error remains constant for the two different absorbing

functions.

Moreover, notice that since ω/c = 20 m−1, if the value of β is changed then the

relative error presents a singular behavior just at β = 20m−1, where the problem

(26)-(26) is not well-posed.

3. The expression governing the motion of a fixed leaky mode (see [20]) in a two-

dimensional open waveguide (0,+∞)×(0,+∞) filled with an isotropic compressible

fluid depends on the solution u of the following problem:

−(ρc2u′)′ − ω2θρu = 0 in (0,+∞), (27)

u = 1 at x = 0, (28)

ρcu′ − i
√
ω2θρu = 0 at x→ +∞, (29)

where we assume that θ is a fixed non-dimensional complex parameter such that

|θ| = 1 and Im(θ) < 0. In this case, the L2-relative error plots are reported in

Figure 9. If we fix θ = exp(−iπ/10), the solution of the PML problem roughly



16

0 0.5 1 1.5 2

x 10
4

10
1

10
2

Flow resistivity (σ
0
)

L 2 r
el

. e
rr

or
 (

%
)

 

 

γ=1+iσ
0
/(ωρ)

γ=exp(iπ/6)

0 0.1 0.2 0.3 0.4 0.5

10
−2

10
0

10
2

|arg(θ)|

L 2 r
el

. e
rr

or
 (

%
)

 

 

γ=1+iσ
0
/(ωρ)

γ=exp(iπ/6)

Fig. 9 L2-relative error for problem (27)-(29) varying parameter σ0 with θ = exp(−iπ/10)
(left) and varying the phase of β with fixed σ0 = 3500 kg/(m3s) (right).

approximate the exact solution of problem (27)-(29) for small or large values of σ0,

achieving only an acceptable accuracy in a small range of values of σ0.

The situation becomes more dramatic if the phase of θ is close to −π/2. In fact, it

is enough to fix arg(θ) > π/6 to obtain relative errors larger than 5%.

These three test problems have been chosen to illustrate that, depending on the

model, there are different kinds of waves that should be absorbed into the PML domain.

Whereas in the first problem all waves are propagative (with a positive wavenumber),

in the second one the waves are evanescent and so exponentially decreasing. In the

third problem, the solution is composed of waves that are exponentially increasing

with respect to the spatial variable.

Hence, even remaining valid the PML governing equation given by (20), what

ensures that the characteristic impedances of the physical medium and the absorbing

PML domain match, the requirements for the absorbing function γ must be changed

from one problem to another.

In fact, one of the main drawbacks of the PML technique is the lack of a general

rule guaranteeing the dissipative behavior stated as the first required property in the

PML conditions. In spite of this fact, for the simple one-dimensional problems that

we have considered above, it is possible to write a result specifying the assumptions

required to construct an accurate PML model. In what follows we describe this result.

Let us assume that u is the unique solution to the problem

−(Cu′)′ −Au = 0 in (0,+∞), (30)

boundary conditions at x = 0, (31)

u′ − i
p

A/Cu = 0 at x→ +∞, (32)

where A and C are non-null constant (possibly complex and depending on the angular

frequency ω). Let us introduce the truncation of this problem by a PML domain of



17

finite thickness L, which is described by the coupled problem

−(Cu′F)′ −AuF = 0 in (0, 1), (33)

−
„

C

γ
u′A

«′

−AγuA = 0 in (1, 1 + L), (34)

boundary conditions at x = 0, (35)

uF = uA at x = 1, (36)

Cu′F =
C

γ
u′A at x = 1. (37)

uA = 0 at x = 1 + L. (38)

In this context, we have the following lemma.

Lemma 1 Let u be the unique solution to problem (30)-(32) and (uF, uA) the unique

solution to PML problem (33)-(38). If Im(
p

A/C
R L+1
1 γ(s) ds) is a positive non-

decreasing function with respect to L, then fixed L0 > 0, there exists a positive constant

M independent of L and γ such that

Z L

0
|u(x) − uF(x)|2 dx ≤Me

−4Im

„

q

A

C

R

L+1
1 γ(s) ds

«

,

for all L > L0

The sketch of the proof is as follows. The solution of problem (30)-(32) is u(x) =

AeikF(x−1) +Be−ikF(x−1), with kF =
p

A/C. Since any boundary condition at x = 0

can be written in terms of the amplitudes A and B as rA + sB = t, where t is an

arbitrary constant and r 6= 0 and s are complex-valued constants depending on kF.

Hence, the amplitude of the solutions is fixed by the boundary conditions to A =

(t/r)eikF and B = 0.

Taking into account the differential equations (33) and (34) and the boundary

conditions (35) and (36), the solution of the PML problem is given by uF(x) =

ÃeikF(x−1) + B̃e−ikF(x−1) and uA(x) = ÃeikF

R

x

1 γ(s) ds + B̃e−ikF

R

x

1 γ(s) ds. If we im-

pose the boundary conditions at x = 0 and x = L+ 1, we obtain

Ã =

t

r
eikF

1 − s

r
e2ikFe2ikF

R

L+1
1 γ(s) ds

, B̃ = −
t

r
eikFe2ikF

R

L+1
1 γ(s) ds

1 − s

r
e2ikFe2ikF

R

L+1
1 γ(s) ds

, (39)

where the denominators are not null since we have assumed that the solution (uF, uA)

is unique.

Since |e2ikF

R

L+1
1 γ(s) ds| = e−2Im(kF

R

L+1
1 γ(s) ds), the modulus of the denominators

in (39) are increasing functions which tends to one when L → ∞, and so they remain

lower bounded by a constant M1 for all L > L0. Moreover, from (39) it is easy to obtain

|A − Ã| ≤ ts/(r2M1)e
−2Im(kF

R

L+1
1 γ(s) ds) and |B̃| ≤ t/(rM1)e

−2Im(kF

R

L+1
1 γ(s) ds).

Finally, taking into account that there exists a positive constant M2 such that

Z L

0
|u(x) − uF(x)|2 dx ≤M2

“

|A− Ã|2 + |B̃|2
”

,

the estimate of the lemma is concluded.
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Now, we are able to reinterpret the results shown in the three test problems above

thanks to Lemma 1. In the first problem, since the wavenumber
p

C/A = ω cos(θ)/c is

always positive and tends to zero as θ → π/2, the relative error is allowed to increase

when θ → π/2. In the second problem, if β > ω/c then the wavenumber
p

C/A is pure

imaginary and so the exponential decay coefficient of the truncation error only depends

on the real part of γ. Hence, this fact explains why the relative error is independent of

σ0 in the left plot of Figure 8.

In the case of the third test problem, since
p

C/A has a negative imaginary part, a

straightforward computation shows that only if − arg(θ) < 2 arg(γ), the relative error

is exponentially decreasing with respect to the thickness of the PML. Otherwise, the

estimate given in Lemma 1 blows up exponentially and the approximation uF becomes

totally spurious what happens in this problem for arg(θ) < −π/6.

Despite Lemma 1, some tasks in this first one-dimensional analysis remain open.

From the figures shown in Section 2 and 3, it is concluded that the relative errors are

quite sensitive to the profile chosen for the absorbing function γ (and, in particular,

for σ). For instance, it is remarkable that as naive as it looks, the choice γ = exp(iπ/6)

keeps a robust behavior in most of the problems presented in this paper and it also

leads to reasonable accurate results.

However, just the choice of the absorbing function in the PML model is one of the

most relevant topics for this numerical technique in time-harmonic problems. In fact,

our main contribution focuses on this aspect and will be described in Section 6, in the

context of the two-dimensional Helmholtz equation.

4 PML and the analytic dilatation technique

In the previous two sections, the PML governing equation has been derived for one-

dimensional problems via a modification of the Darcy model and its damping behavior

has been ensured by Lemma 1. However, to extend the PML technique to two dimen-

sional problems involving other models different from the acoustic one, such simple

mechanical derivation is not useful.

With this extensional purpose, in this section we derive the PML governing equa-

tion by using a complex stretching of the spatial coordinates. We recover the same

PML equation as in the one-dimensional case and, furthermore, we extend the PML

technique to models that involve general second order partial differential equations.

4.1 One-dimensional dilatation analytic technique

In the context of the PML literature, Chew and Weedon [25] were the first authors to

think up the construction of the PML governing equation by using a complex stretch-

ing of the spatial variables. An analogous strategy, called complex scaling or analytic

dilatation technique, had been already developed some decades ago for the Schrodinger

equation. In fact, nowadays this technique is still used to simulate numerically disper-

sion in quantum systems (see [45] and references therein).

We sketch briefly the procedure for writing the dilatation analytic technique in the

one-dimensional problem (30)-(32) and, thereby, for introducing the PML governing

equation through a complex stretching of coordinates.
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Let us define the complex spatial change of variable S(x) = 1 +
R x
1 γ(s) ds for

x ∈ (1, 1+L) and let us also assume that the coefficients A and C of problem (30)-(32)

are functions that depends analytically on the spatial variable x and, additionally, 1/C

is well defined and also analytic. Under these conditions, the solution u is analytic so

it can be evaluated along the complex path S(0,+∞).

In fact, since u is analytic and satisfies (30) in (1, 1 + L), then it also satisfies this

ordinary differential equation in S(1, 1 + L), namely,

− d

dx̃

„

C
du

dx̃

«

−Au = 0 in S(1, 1 + L),

where the spatial derivatives with respect to the variable x have been replaced by the

derivatives with respect to x̃ = S(x) and coefficients A and C are properly evaluated

on S(1, 1 + L).

Since x̃ is complex, the spatial derivatives with respect to x̃ must be understood in

the usual Cauchy-Riemann sense (see [70]), i.e., du/dx̃ = dReu/ds− idImu /dt where

s = Re x̃ and t = Im x̃.

To rewrite the previous equation stated in the original real interval (1, 1 +L), it is

enough to apply the chain’s rule. If coefficients A and C are constant, A ◦ S = A and

C ◦ S = C. Moreover, if we assume additionally that γ does not vanish in (1, 1 + L)

and since S′(x) = γ(x), we recover (34) in the absorbing domain (1, 1 + L) which has

been claimed as the one-dimensional general PML governing equation in the section

above.

4.2 PML governing equation for second order PDEs

Now, we follow the same one-dimensional idea based on the complex coordinate stretch-

ing in a more general framework. As we have checked, the description of the PML

governing equation is related to an analytic dilatation of the original equation in one-

dimensional problems. In what follows we detail the same analytic dilatation procedure

to write the PML equation in two dimensions.

We restrict ourselves to the two-dimensional case and to models which are described

by second order partial differential equations with only mass and stiffness terms. How-

ever, analogous constructions could be done for the three-dimensional case and for

higher order differential equations.

To write the partial differential equation of this general model, tensors and vec-

tor fields are described by using the Cartesian reference system with canonical basis

{e1, e2}. Thus, if the contrary is not explicitly specified, vector and tensor coordinates

are given in the Cartesian reference system.

We also assume the Einstein convention that the repeated subscript adds. Moreover,

given a C
2-vector field v, the partial derivative of the component i with respect to the

j-th variable is denoted by vi,j , where 1 ≤ i ≤ 2 and j = 1, 2.

Let us assume that the second and fourth order linear tensors A and C have co-

efficients (possibly complex and depending on the angular frequency ω), which are

analytic functions with respect to x.

In this general framework, let us also introduce a compact domain O with smooth

boundary ∂O, which plays the role of a scatter. The general second order scattering

problem is stated in the exterior of the bounded domain O and described by the

following set of equations:
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Given the angular frequency ω > 0 and a C
2-vector source f with compact support, find

the C
2-vector field u such that

−(Cijkluk,l),j −Aijuj = fi in R
2 \O, i = 1, 2, (40)

Cijkluk,lnj = 0 on ∂O, i = 1, 2, (41)

radiation conditions at |x| → ∞, (42)

where n is the unit normal vector on ∂O outward to O.

Obviously, for every particular problem, different radiation conditions should be

specified depending on A and C to guarantee the right decay behavior of the solution

at infinity and to get the uniqueness of solution. In what follows we assume that (40)-

(42) have a unique solution.

Now we are in a position to describe the PML technique corresponding to this

second order problem. Since the domain of this problem, Ω = R
2 \ O, is unbounded

and our attention is restricted to compute the solution only in a bounded region of

interest, namely, the physical domain ΩF, we place the PML absorbing medium ΩA

surrounding the region of interest (see Figure 10). At this stage, no considerations will

be done about the boundedness of the PML domain, which is not relevant for the

derivation of the PML governing equation.
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Fig. 10 General convex domain ΩB for the PML problem.

It is also useful to introduce the notation of ΓD and ΓI for the exterior boundary

of the PML domain and the interface between ΩF and ΩA, respectively. Moreover, the

union of physical and PML domain will be denoted by ΩB ⊂ Ω.

Associated to the construction of the PML equation, we are going to define a

complex change of variable S : x ∈ ΩB ⊂ R
2 → S(x) = x̃ ∈ S(ΩB) ⊂ C

2 and then to

introduce the PML problem as a ‘complexified’ version of problem (40)-(42).

Since we want to keep the original solution in the physical region of interest ΩF ⊂
ΩB which contains the support of the source term defined by f , we assume that S(x) =

x in ΩF, whereas it is complex-valued outside ΩF.

First, we introduce the weak problem associated with (40)-(42). If we multiply (40)

by the conjugate of a complex vector field v of compact support containing ΩF, we
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obtain
Z

ΩB

`

Cijkluk,lv̄i,j −Aijuj v̄i

´

dV =

Z

ΩB

fiv̄i dV.

In what follows, we assume that the solution u and the test functions and their

partial derivatives admit an extension in the closure of S(ΩA). Hence, as it has been

done for the one-dimensional problem, we are able to evaluate u and v at points

x̃ ∈ S(ΩB), and so the analytic continuation of u makes sense in S(ΩB).

Moreover, we can replace formally the spatial derivatives with respect to coordi-

nates x by derivatives with respect to x̃. Analogous to the notation introduced above,

vi,j̃ denotes the partial derivative of the i-th component with respect to the j-th coor-

dinate of x̃. Consequently, we have

Z

S(ΩB)

“

Cijkluk,l̃v̄i,j̃ −Aijuj v̄i

”

dṼ =

Z

ΩB

fiv̄i dV.

Let us remark that since S(x) = x, then S(ΩF) = ΩF and so the source term in the

right-hand side remains equal in the analytic continuation of the weak problem.

Then, we rewrite the previous weak problem coming back to the real-valued domain

ΩB applying the chain’s rule for S. More precisely, let us assume that S is smooth and

inversible in ΩB, we have

Z

ΩB

“

(C ◦ S)ijkl(u ◦ S)k,n(H−1)nl(v̄ ◦ S)i,m(H−1)mj

−(A ◦ S)ij(u ◦ S)j(v̄ ◦ S)i
´

detH dV =

Z

ΩB

fiv̄i, dV,

where H is the Jacobian matrix of S.

Now, if we introduce the notation ũ = u ◦ S and ṽ = v ◦ S, we have

Z

ΩB

“

(C ◦ S)ijkl(H
−1)nl(H

−1)mj ũk,n
¯̃vi,m

−(A ◦ S)ij ũj
¯̃vi

´

detH dV =

Z

ΩB

fi
¯̃vi, dV. (43)

Finally, integrating by parts, we obtain the partial differential equation governing

the propagation in the PML problem, written in divergence form as

−(C̃ijklũk,l),j − Ãij ũj = fi in ΩB, i = 1, 2, (44)

where Ãij = (detH)(A ◦ S)ij and C̃ijkl = (detH)(C ◦ S)imkn(H−1)jm(H−1)ln.

Although we have required that S is smooth, we will see in Section 5 that, in general,

the coefficients of tensor C̃ can be discontinuous. In this case, we must understand that

ũ satisfies (44) in a weak sense, i.e., if and only if ũ satisfies (43) for any ṽ with compact

support in ΩB.

Equivalently, we could also introduce a coupled formulation, as we have already

done for (30)-(32) in the one-dimensional case, and specify explicitly that ũi and

C̃ijklũk,lnj are continuous on ΓI.

The PML governing equation given by (44) will be considered as the general frame-

work throughout the rest of the paper. Let us remark that, since S(x) = x in ΩF, the

source term in (44) remains unchanged with respect to (40).
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A direct inspection of the construction described above shows that, since u is an

analytic solution satisfying the partial differential equation (40) and the boundary

condition (41), then ũ, i.e, u ◦ S, satisfies the same boundary condition (41) and the

partial differential equation (44).

Let us recall that until now we have only derived the governing equation of the PML

but not the complete PML problem which is going to replace (40)-(42). Moreover, the

derivation of (44) has been done independently of possible requirements either on the

signs of the real and imaginary part of the complex stretching of variables S or on the

geometry of the absorbing domain ΩA.

Notice also that, at this point, it does not exist any restriction to be assumed about

the complex change of variable S which can be eventually dependent on ω. In fact, this

dependency becomes useful to obtain a uniform exponential decay of the truncation

error with respect to the angular frequency (see Section 5 for details).

Finally, let us remark that the assumption of analyticity for coefficients A and C

has been done to ensure that Aij ◦ S and Cijkl ◦ S are well defined. However, this

assumption can be made milder by only requiring that Aij and Cijkl are analytic in

the two-dimensional complex manifold S(ΩB).

4.3 Cartesian and radial PML equation

Now, we are in a position to recover the PML equations in the particular cases where

the change of variable uses Cartesian and radial coordinates. In the literature, there are

a wide variety of PML models using different local coordinate systems as cylindrical [65]

or spherical coordinates [76],[77] in the three-dimensional case or, with more generality,

a combination of those [80], a conformal transformation of coordinates [58], or even

using polygonal convex coordinates locally [83].

For the sake of brevity, we only describe the most usual complex coordinates stretch-

ing in the context of the general second order elliptic operators.

Let us start revising the standard Cartesian PML equation governing the motion in

a corner domain ΩA = {x ∈ R
2 : x1 > L1, x2 > L2}. For this geometry, we introduce

the following complex change of variable:

S(x) =

8

<

:

“

L1 +
R x1

L1
γ1(s) ds, L2 +

R x2

L2
γ2(s) ds

”

if x ∈ ΩA,

x otherwise,
(45)

where γ1, γ2 are the so-called absorbing functions in the x1 and x2-directions, respec-

tively. These functions are a priori complex-valued and no restriction are imposed to

obtain the “perfectly matched” behavior between the physical domain and the PML

region. Taking into account this complex coordinate stretching, the Jacobian matrix

H is diagonal,

Hij =

(

γiδij in ΩA,

δij otherwise.
(46)
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and so we have

Ãij =

(

γ1γ2Aij in ΩA,

Aij otherwise,
(47)

C̃ijkl =

8

<

:

γ1γ2
γjγl

Cijkl, in ΩA,

Cijkl otherwise,
(48)

where no summation arise on indices j and l.

In the case of the radial PML, the deduction is also straightforward from the

complex change of variable. If we introduce the radial and angular coordinates r = |x|
and θ = arg(x), and assume that the PML domain is placed surrounding the ball of

radius R, i.e., ΩA = {x ∈ R
2 : |x| = r > R}, we have

S(x) =

(

`

R+
R r
R γr(s) ds

´

(cos θ, sin θ), if x ∈ ΩA,

x otherwise,
(49)

where γr, is again the so-called absorbing function in the radial direction. Analogous to

the Cartesian case, γr is a complex-valued function without any special requirements.

After some algebraic manipulations, this complex change of variable leads to

H =

„

cos θ sin θ

− sin θ cos θ

«t„
γr 0

0 γ̃

«„

cos θ sin θ

− sin θ cos θ

«

,

where γ̃ = 1
r (R+

R r
R γr(s) ds).

In order to obtain simple expressions of coefficients Ãij and C̃ijkl for the PML

model, it is necessary to write tensors and vector fields in terms of the polar canonical

vector basis {er, eθ}. In this basis, the Jacobian matrix H becomes diagonal and its

expression is again given by (46) where γ1 and γ2 must be replaced by γr and γ̃,

respectively.

If, for the sake of simplicity, we abuse of notation and use the same variables for the

radial coordinates of the tensor and vector fields, the PML governing equation involves

the same coordinate tensors in vector basis {er, eθ} given by (47)-(48), where we recall

that we should read γ1 = γr and γ2 = γ̃ for the radial PML.

Let us remark that in the Cartesian and radial cases, since the Jacobian matrix H

is diagonal respect to the canonical bases {e1, e2} and {er, eθ}, respectively, then no

summations arise in the formulas for the coefficients of Ã and C̃. This issue has special

relevance from a implementation point of view, since the inclusion of the PML technique

only requires to multiply the implemented PDE coefficients by some complex-valued

factors.

However, in a hypothetical general case where each component of the complex

coordinate stretching S depends on all spatial coordinates, it is not possible to choose a

local orthogonal system of reference for which the Jacobian matrixH becomes diagonal.

4.4 Some examples

Now, we apply the formal construction of the PML governing equation to obtain well-

known Cartesian PML models in simple cases such as the pressure and displacement

formulations for the motion of an isotropic acoustic fluid from the rest, and the PML
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model for isotropic linear elastic materials. Analogous considerations could be done

for more sophisticated models such as the linearized Euler equation or those modeling

viscoelastic or poroelastic materials.

1. The time-harmonic motion of an isotropic compressible fluid at rest under the

action of a volumetric source term f can be described in terms of the scalar pressure

field p by

−c2div grad p− ω2p = f, (50)

being ω the angular frequency and c the sound speed. A direct inspection of this

equation leads to A11 = −ω2 and C1j1l = c2δjl for j, l = 1, 2 in the physical

domain. If we apply formulas (47)-(48) for the Cartesian PML technique then we

have Ã11 = −ω2γ1γ2, C̃1111 = −c2γ2/γ1 and C̃1212 = −c2γ1/γ2 in the absorbing

medium ΩA. This set of expressions yields the PML governing equation:

−c2div

„„

γ2/γ1 0

0 γ1/γ2

«

grad p̃

«

− ω2γ1γ2p̃ = 0, (51)

which is the well-known Cartesian PML equation for the Helmholtz equation.

2. The description of time-harmonic motion in a isotropic compressible fluid at rest

in terms of the displacement vector field is given by the following equation:

−grad(ρc2div u) − ω2ρu = f , (52)

where ρ is the mass density and, again, ω and c are the angular frequency and

the sound speed, respectively. If we rewrite the previous equation using the general

second order form (40) and use (47), (48) we obtain the following PML coefficients:

Ã11 = Ã22 = −ω2ργ1γ2, C̃1111 = −ρc2γ2/γ1, C̃2222 = −ρc2γ1/γ2, and C̃1122 =

C̃2211 = −ρc2. Hence, the resulting PML equation is given by

−grad

„„

ρc2γ2/γ1 ρc2

ρc2 ρc2γ1/γ2

«„

ũ1,1

ũ2,2

««

− ω2ργ1γ2ũ = 0. (53)

Analogous to the relation between (50) and (52), where p can be written as p =

−ρc2div u, it is remarkable that it is possible to recover the pressure field p̃ satis-

fying (51) from the displacement field ũ in (53) by

p̃ = −ρc2
„

1

γ1
ũ1,1 +

1

γ2
ũ2,2

«

.

3. Under the assumption of isotropy, the time-harmonic motion of an elastic mate-

rial modeled by the linear Hooke’s constitutive law is described, in terms of the

displacement field u, as

−divΣ(u) − ω2ρu = f , (54)

where Σ(u)ij = λδijE(u)kk + 2µE(u)ij , being E(u)ij = (1/2)(ui,j + uj,i) and λ

and µ the so called Lame’s coefficients. Again, a simple computation shows that

the previous equation is a particular case of (40) with tensors Aij = −ω2δij and

Cijkl = λδijδlk +µ(δikδjl + δilδjk). In this case, the index symmetries of tensor C,

namely, Cijkl = Cklij = Cjikl = Cijlk allows us to reduce the description of all the

tensor coefficients to nine of them. However, we use a redundant description which
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involves sixteen. If the following index mapping is used: {11} ↔ {1}, {22} ↔ {2},
{12} ↔ {3}, {21} ↔ {4}, then tensor C is described by the 4 × 4 matrix

0

B

B

@

2µ+ λ λ 0 0

λ 2µ+ λ 0 0

0 0 µ µ

0 0 µ µ

1

C

C

A

. (55)

A direct application of formulas (47)-(48) shows that Ã11 = Ã22 = −ω2ργ1γ2 and

hence tensor C̃ is described by the matrix

0

B

B

B

@

γ2
γ1

(2µ+ λ) λ 0 0

λ γ1
γ2

(2µ+ λ) 0 0

0 0 γ2
γ1
µ µ

0 0 µ γ1
γ2
µ

1

C

C

C

A

. (56)

Indeed, it is checked that the index symmetry {12} ↔ {21}, which is verified by

tensor C, is lost for the PML tensor C̃. From a physical point of view, this non-

symmetry can be associated to an anisotropic material where the stress tensor

depends on the full gradient of u (see [43] for details).

5 Theoretical results using bounded absorbing functions

In the previous section we have described the construction of the PML governing equa-

tion for models involving second order partial differential equations. Now we complete

the description of the PML problem assuming that the computational domain ΩB is

bounded and imposing homogeneous Dirichlet boundary conditions on the exterior

boundary ΓD.

Hence, problem (40)-(42), originally stated in an unbounded domain, is going to

be replaced by the following PML problem:

Given the angular frequency ω > 0 and a C
2-vector source f with compact support, find

the C
2-vector field ũ such that

−(C̃ijklũk,l),j − Ãij ũj = fi in ΩB, i = 1, 2, (57)

C̃ijklũk,lnj = 0 on ∂O, i = 1, 2, (58)

ũi = 0 on ΓD. (59)

Obviously, it would be desirable to have a result analogous to Lemma 1 where the

L2-error between ũ and the solution u of problem (40)-(42) were estimated theoreti-

cally. Unfortunately, the mathematical analysis of PML problem (57)-(59) is far from

being as simple as in the one-dimensional case. In fact, before studying the estimates

between u and ũ, we should ensure that there exists a unique solution for the PML

problem (57)-(59).
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5.1 Existence and uniqueness of solution

In this section, we restrict ourselves to those cases where the absorbing functions in

the PML domain ΩA are bounded. Later, in Section 6, we will describe a particular

case where unbounded absorbing functions are used.

First, we must precise the standard functional framework to study the PML prob-

lem (57)-(59). We recall the definition of some function spaces which will be used

throughout this section. Let L2(ΩB) be the space of square integrable complex valued

functions defined in ΩB,

L2(ΩB) =



f : ΩB → C :

Z

ΩB

|f |2 <∞
ff

.

We denote by H1(ΩB) the Sobolev space of functions belonging to L2(ΩB) together

with all their first order derivatives:

H1(ΩB) =
n

f ∈ L2(ΩB) : grad f ∈ L2(ΩB)2
o

.

Finally, the subspace of functions in H1(ΩB) vanishing on ΓD is denoted by H1
ΓD

(ΩB)

Moreover, we have to state the hypothesis for the complex stretching of the spatial

variables, S and its Jacobian matrix H. We assume that S depends analytically on the

angular frequency and that the following inequalities hold,

max
x∈ΩB

|Si(x)| <∞, max
x∈ΩB

|Hij(x)| <∞, max
x∈ΩB

|(H−1)ij(x)| <∞. (60)

Additionally, we also impose that H can be explicitly written as

H = U tΛU (61)

where U is a real unitary matrix and Λ is a non-singular complex diagonal matrix,

which eventually can have variable coefficients depending on the spatial variables.

This last assumption is related to restrict the complex stretching S to those map-

pings whose components only depend on one of the spatial coordinates in a local

orthogonal system of reference, as in the Cartesian and polar cases presented in Sub-

section 4.3, or, more generally, in systems of reference derived from a convex geometry

(see [58]).

Hence, taking into account that the Jacobian matrixH associated with the complex

stretching of variable S becomes diagonal in a particular local orthogonal system of

reference, we abuse of the notation, and tensors A, C, Ã, and C̃ and also the spatial

derivatives in problems (40)-(42) and (57)-(59) must be understood with respect to

this particular system of reference.

Under these considerations, the coefficients of tensors Ã and C̃ are given by (47)

and (48), respectively, where now γ1 and γ2 are the diagonal coefficients of matrix Λ.

Finally, we recall the assumptions done for the coefficients of tensors A and C, which

appear in the original elliptic problem (40)-(42). We suppose that they are analytic

functions with respect to the spatial variables in S(ΩB) and entire (analytic in C) with

respect to the angular frequency ω. Moreover, tensor C satisfies the following coercive

condition: there exists a constant α > 0 such that

Re
`

Cijklψijψ̄kl

´

≥ αψijψ̄ij ∀ψ ∈ C
2×2, ψ 6= 0, (62)
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uniformly for all x ∈ ΩB and for all ω > 0.

We also require the following milder condition on tensor −A: there exists an angular

frequency ω0 and a constant α > 0 such that

−Re
`

Aijφiφ̄j

´

≥ αφiφ̄i (63)

uniformly for all x ∈ ΩB.

Problem (57)-(59) can be written in a weak form as follows:

Given ω > 0 and f ∈ L2(ΩB)2 with compact support in ΩF, find ũ ∈ H1
ΓD

(ΩB)2 such

that
Z

ΩB

“

C̃ijklũi,j
¯̃vk,l − Ãij ũj

¯̃vi

”

dV =

Z

ΩB

fi
¯̃vi, (64)

for all ṽ ∈ H1
ΓD

(ΩB)2.

Now, under assumptions (60)-(63), we are in a position to prove a standard exis-

tence and uniqueness result based on the analytic Fredholm’s alternative theorem (see

[30]).

Theorem 1 Let us assume conditions (60)-(63) and f ∈ L2(ΩB)2 with compact sup-

port in ΩF. If, for all ω ∈ C, there exists a constant β > 0 such that

Re

„„

γ2
γ1

− 1

«

Ci1j1φiφ̄j

«

≥ 0, (65)

Re

„„

γ1
γ2

− 1

«

Ci2j2φiφ̄j

«

≥ 0, (66)

and for ω0 ∈ C, fixed in (63), the inequality

−Re
`

(γ1γ2 − 1)Aijφiφ̄j

´

≥ 0, (67)

holds then there exists a unique solution ũ ∈ H1
ΓD

(ΩB)2 of problem (64) for all ω ∈ C

except, at most, for a countable set of angular frequencies ω, which can be possibly

complex.

The sketch of the proof is as follows. First, since Aij and Cijkl are analytic functions

and S satisfies (60), then Ãij and C̃ijkl are bounded in ΩB. This fact allows us to define

the following continuous sesquilinear forms, whose domain of definition is H1
ΓD

(ΩB)2×
H1

ΓD
(ΩB)2,

a(ṽ, w̃) =

Z

ΩB

“

C̃ijklṽi,j
¯̃wk,l + ṽi

¯̃wi

”

dV

b(ṽ, w̃) =

Z

ΩB

“

Ãij ṽi
¯̃wj + ṽi

¯̃wi

”

dV.

Now, the weak problem (64) takes the writing

a(ũ, ṽ) − b(ũ, ṽ) =

Z

ΩB

f ¯̃v dV. (68)

From (62) and (65)-(66), tensor C satisfies the estimate

Re
“

C̃ijklψijψ̄kl

”

= Re

„

Cijklψij ψ̄kl +

„

γ2
γ1

− 1

«

Ci1k1ψi1ψ̄k1

+

„

γ1
γ2

− 1

«

Ci2k2ψi2ψ̄k2

«

≥ αψijψ̄ij
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for all ψ ∈ C
2×2. Hence, the form a(·, ·) is strongly coercive and using the Lax-

Milgrams’s lemma, we can define the invertible linear operator T : L2(ΩB)2 → H1
ΓD

(ΩB)2

given by

a(T ũ, ṽ) =

Z

ΩB

ũ¯̃v dV ∀ṽ ∈ H1
ΓD

(ΩB)2.

By using the Riesz representation theorem, we define the bounded linear operator

associated with the form b(·, ·) Q : L2(ΩB)2 → L2(ΩB)2

Z

ΩB

(Qũ)i ¯̃vi dV = b(ũ, ṽ) ∀ṽ ∈ H1
ΓD

(ΩB)2.

Thus, (68) can be rewritten as (I−QT )ũ = f where I denotes the identity operator in

L2(ΩB)2. Finally, assumption (63), the analyticity of S and tensors Ã, C̃ with respect

to ω and the compactness of operator T , understood as an operator with image space

L2(ΩB)2, complete the set of hypothesis to apply the analytic Fredholm’s Alternative

Theorem (see [30]). To fix which alternative of the theorem is applicable, we only need

to find a complex point ω0 such that (68) has a unique solution.

Such condition is satisfied by using the conditions (63) and (67) on tensor A, which

imply that operator Q is bounded from below (see [51]) for ω0 ∈ C, and the strong

ellipticity of the form a(·, ·). Hence the existence and uniqueness of solution, except

for a countable set of isolated complex angular frequencies {ωi}i∈N, is ensured. This

concludes the proof of the result.

Clearly, there is a wide class of mathematical models of interest, which are not cov-

ered by the ideas developed in this section. For instance, the two-dimensional Maxwell’s

equations or the equations for the displacement field in linear acoustics do not satisfy

assumptions (60)-(63), since operator T is not invertible in H1(ΩB)2.

Let us remark that the proof of Theorem 1 is a simple extension of some arguments

used by Collino and Monk in [28], where the existence and uniqueness of solution for

the radial PML problem involving the Helmholtz equation is analyzed.

The general framework where the previous result has been proved suffers from

two main lacks. First, Theorem 1 does not guarantee the existence and uniqueness of

solution for all positive value of the angular frequencies what, in most of real problems,

concerns the solution of the mechanical problem.

Second, the previous theoretical arguments can also provide an estimate of the

norm of the solution in terms of the norm of the data, i.e., there exists a positive

constant M such that
Z

ΩB

ũi
¯̃ui dV ≤M

Z

ΩB

fif̄i dV. (69)

However, it does not add any valuable information since the positive constant M is

neither independent nor given explicitly from the absorbing functions γj , the thickness

of the PML domain, and the value of the angular frequency.

These drawbacks can be avoided if the general framework is abandoned and the

PML technique is analyzed for a precise problem, and a particular choice of the system

of coordinates is made. In the following subsection we review those results that complete

the theoretical framework and fill the lacks found for Theorem 1 in the case of the

Helmholtz equation.

Let us mention that there exist promising new approaches to the PML problem (see

[34] or [52]) which analyze the spectrum of the operator (I −QT ). Consequently, new

norm resolvent estimates to obtain explicitly the constant M in (69) could establish

general PML convergence results.
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5.2 Helmholtz theoretical results

In what follows, we collect the theoretical results derived by Bramble and Pasciak (see

[22]). Similar results can also be reported from Bao and Wu in [7]. We adapt these

results to the framework used in this section.

Let us recall that the original scattering problem described in that work involves the

Helmholtz equation stated in an unbounded domain where the so-called Sommerfeld

radiation condition is imposed at infinity. More precisely, the statement of the problem

is as follows: given ω > 0 and f ∈ L2(ΩB) with compact support in ΩF, find u such

that

−∆u− ω2u = f in R
2 \ Ō, (70)

u = 0 on ∂O, (71)

lim
r→∞

√
r

„

∂u

∂r
− iωu

«

= 0. (72)

We notice that the above homogeneous Dirichlet boundary condition can be replaced

by a Neumann one (see [22]).

We must also remark that, even in the case of radial PML for the Helmholtz

equation, as far as the authors’ knowledge goes, there exist only theoretical results

on convergence, existence and uniqueness of the weak solution for the PML problem

(57)-(59) if the absorbing function is bounded and chosen with a specific profile.

Let us assume that the radial PML technique uses the complex stretching of variable

defined by (49) where ΩA is placed between the circumference of radius R0 and any

smooth curve exterior to the circumference of radius R⋆. The absorbing function is

assumed twice differentiable and given by

γr(r) =

8

>

<

>

:

1 if r ≤ R0,

1 + iσ̃(r) if R0 < r < R1,

1 + iσ0 if r ≥ R1,

(73)

where R1 < R⋆, σ0 is a positive constant and σ̃ is an arbitrary twice differentiable

function, which can be explicitly written via a fifth-order polynomial (see [22] for

further details).

Theorem 2 Let ω > 0 and f ∈ L2(ΩB) with compact support in ΩF. If R⋆ is large

enough and the absorbing function (73) is used, then there exists a unique solution

ũ ∈ H1(ΩB)) of the PML problem (57)-(59) associated with the Helmholtz problem

(70)-(72). Moreover, there exist a positive constant M independent of σ0 and R⋆ such

that

||ũ− u||L2(ΩF) ≤Me−2σ0ωR⋆

||f ||L2(ΩB).

Although this exponential estimate can be extended to other models as the Maxwell

equations [22], all the theoretical analysis has been done for the radial PML technique

and, in fact, the provided arguments cannot be straightforwardly extended to the

Cartesian PML technique.

Consequently, until now it does not exist any mathematical support, even for the

Helmholtz equation, to ensure the existence and uniqueness of solution of the Cartesian

PML problem for all positive angular frequencies and, moreover, there is not any general
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result on the error introduced by the PML problem with respect to the solution of the

original scattering problem when the thickness of the PML domain ΩA is enlarged or

the modulus of γj , j = 1, 2 are increased.

6 Optimal PML for the Helmholtz equation

We have already derived the construction of the PML equation by means of a complex

stretching of coordinates. We have also described the PML technique for problems in-

volving second order partial differential equations. However, in general (except partially

[56]) theoretical results about existence, uniqueness and error estimates does not take

advantage of the knowledge of this derivation. Indeed, we have also failed to obtain

general results for the existence and uniqueness of solution for all ω > 0.

We have already claimed that the absorbing functions play a key role in the damp-

ing behavior of the PML equations, and thereby, in the accuracy and robustness of

the discrete method Since we have checked that the real and imaginary parts of the

absorbing functions must be settled adequately for each particular model, trying to

determine a universal optimal absorbing function makes nonsense.

However, if the model is fixed then it is possible to find a kind of optimal absorbing

functions, which theoretically recover the exact solution of the unbounded problem

using a PML domain of finite thickness. Thus, in the sequel, we describe such optimality

features of singular absorbing functions in the case of Helmholtz equation.

In the PML literature, most absorbing functions considered for Helmholtz equation

keep the physical expression inherited by the time dependent formulation of the same

model, and hence absorbing functions are given by expressions of the type 1+ iσ/(ρω),

(already introduced in Section 2), where σ is assumed to be non-negative, continuous

inside the PML and monotonically increasing.

Throughout the rest of this section, we only consider absorbing functions as de-

scribed above and, moreover, despite the assumptions done on the regularity of σ in

Theorem 2, no requirements are imposed for its values on ΓI. Hence, the null condition

σ = 0 on the interface between the physical domain and the PML is not required for

the optimal absorbing functions.

Fixed the PML domain, the accuracy of standard PML techniques for the Helmholtz

problem relies on taking absorbing functions with bounded imaginary part and such

that their integrals are large enough. Until recently, as far as the knowledge of the

authors goes, there are few works (precisely, we should remark those from [22], [58]

and [34]), providing valuable theoretical results that confirms this numerical evidence

for arbitrary variable profiles of σ.

We propose, instead (see [17]), to use an unbounded profile for σ such that the

integral through a transverse section of the PML domain is infinite.

Throughout the rest of this section, first we compare the exact results of bounded

and singular absorbing functions for the one-dimensional Helmholtz equation derived

from a plane wave analysis at oblique incidence. More precisely, if the PML domain is

placed in the interval (L,L⋆), then we compare the most widely used classical choice,

namely the quadratic function taking the value σ⋆ on the exterior boundary of the

PML domain,

σ(x) = σ(Q)(s) =
σ⋆

(L⋆ − L)2
(x− L)2, x ∈ (L,L⋆), (74)
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and the following singular function with unbounded integral in (L,L⋆),

σ(x) = σ(U)(x) =
c

L⋆ − x
, x ∈ (L,L⋆). (75)

Obviously, other kind of absorbing functions, as linear or constant functions can be

considered (see, for instance, [10,13,28]), and also other kind of non-integrable functions

can be taken into account.

Moreover, we could wonder whether among this wide class of non-integrable func-

tions, there is one which is optimal. To the best of our knowledge, there are not a

precise answer and we can only compare different choices of non-integrable absorbing

functions. A detailed comparison of different singular absorbing functions is described

in [17].

Until now, there are not theoretical results guaranteeing the use of such kind of

singular absorbing functions for the Cartesian PML. However, we show in the next sub-

sections numerical evidences of the good accuracy in a simple plane wave analysis and

also in two-dimensional numerical simulations. The theoretical proof of the exactness

of Cartesian PML with non-integral absorbing functions is currently an open problem.

6.1 Plane wave analysis of the Cartesian PML

We illustrate the effect of using non-integrable absorbing functions in the behavior of

the PML technique for a one-dimensional toy problem, where the exact solution has a

closed form.

We recover a one-dimensional model that comes from the propagation of plane

pressure waves with an oblique angle of incidence θ. Notice that a similar model (see

(21)-(23)) has been already used to illustrate the ideas introduced in Section 3. Let

us write the equations describing the following one-dimensional problem stated in the

unbounded interval (0,∞):

Find u such that

−u′′ − k2 cos2(θ)u = 0 in (0,+∞), (76)

u′ + ik cos(θ)u = 2ik cos(θ) at x = 0, (77)

u′ − ik cos(θ)u = 0 at x→ +∞, (78)

where k = ω/c is the wavenumber, expressed in terms of the angular frequency ω and

the sound speed of the fluid c. Notice that the mass density has been simplified from

(76)-(78) by the sake of simplicity and, in what follows, it will be assumed equal to

1 kg/m3.

We introduce a PML in the interval (L,L⋆) to truncate the unbounded interval

(0,+∞). As we have already mentioned, we use a variable profile for the absorbing

function of the type

γ(x) =

8

<

:

1 in (0, L),

1 + i
σ(x)

ω
in [L,L⋆),

where we recall that σ is taken to be a quadratic or singular profile.
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Taking into account that the PML equation is derived by using a complex change

of variable and that the solution of the original problem is analytic, it is clear that the

solution of the PML problem can be written as a superposition of plane waves:

ũ(x) = Aeik cos(θ)x̃(x) +Be−ik cos(θ)x̃(x), x ∈ (0, L⋆),

where A is the amplitude of the incident wave incoming from the boundary x = 0, B

that of the reflected wave by the absorbing layer and x̃ defines the complex stretching

of the spatial variable as

x̃(x) =

(

x in (0, L),

L+
R x
L γ(s) ds in [L,L⋆).

Hence, from the boundary condition at x = 0 and the homogeneous Dirichlet boundary

condition at x = L⋆, we obtain

A = 1 −B, B =
e2ik cos(θ)L⋆

e2ik cos(θ)L⋆ − e
2 cos(θ)

c

R

L⋆

L
σ(s) ds

. (79)

Notice that the term involving B arises as a consequence of the waves reflected at

x = L⋆. Expression (79) for B shows that the larger the integral
R L⋆

L σ(s) ds, the

closer the B to zero and, consequently, the closer the ũ to the solution u of original

problem (76)-(78) in the physical domain (0, L). Indeed, straightforward computations

lead to
Z L

0
|ũ(s) − u(s)|2 ds = |B|2 2k cos(θ)L− sin(2k cos(θ)L)

k cos(θ)
. (80)

It is clear that if we use a non-integrable function, as σ(U) defined in (75), then

B = 0 and, consequently, the resulting ũ will coincide exactly with the solution u of

problem (76)-(78) in the physical domain.

In order to illustrate this behavior we take the following parameters: L = 0.5 m,

L⋆ = 0.6 m, ω = 1200 rad/s, c = 340 m/s, and θ = 3π
8 rad. We compare two examples

of the above mentioned absorbing functions: a classical quadratic absorbing function,

namely σ(Q) defined in (74), and the non-integrable function σ(U).

In the plots of Figure 11 we can see that, when choosing the quadratic function,

ũ approximates the exact solution u as σ⋆ becomes large. The reflection coefficient

is, in this case, B = 0.26 for σ⋆ = 50c, and B = 2.88 × 10−6 for σ⋆ = 500c. In the

same figure we can see that the error is null when choosing the unbounded absorbing

function, σ(U).

In Figure 12 we show the dependence of B with respect to the thickness of the

PML and to the value of σ⋆, when σ(Q) is used. As it is expected, in both cases the

spurious reflection B decreases when the thickness or the value of σ⋆ increases.

In the left-hand plot of Figure 13, we show the dependence of the reflection coeffi-

cient B with respect to the angle of incidence of the plane wave when σ(Q) is used. It

is important to emphasize that, in this case, the reflection coefficient (and hence the

error) increases as the angle of incidence increases, whereas the error is null for any

angle of incidence when σ(U) is used.

Analogously, in the right-hand plot of Figure 13, we show the dependence of B with

respect to angular frequency ω when σ(Q) is used. For this test we have taken again

θ = 3π
8 rad as angle of incidence. We observe that |B| achieves periodically maximum
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Fig. 11 Real part (left) and imaginary part (right) of exact and approximated pressures for
θ = 3π/8 rad.
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Fig. 13 Modulus of the reflection coefficient for σ(Q) versus incidence angle (right) and versus
frequency (left).

values for certain frequencies. Again, we want to remark that taking the unbounded

absorbing function σ(U) in the PML we recover B = 0, for any value of the frequency.
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In summary, from this simple illustration we can draw some conclusions. We have

seen that there exist two classical alternatives to obtain accurate numerical results for

the PML technique: either to enlarge the thickness of the PML domain or to increase

the maximum value for σ.

In the first alternative, enlarging the PML domain increases the computational

cost of the PML technique. However, the spurious reflections are uniformly bounded

because the exponential decay in Lemma 1 (see Section 3) remains constant. Similar

numerical behavior is also achieved in two-dimensional problems.

In the second alternative, we fix the thickness of the PML domain and increase

the value of σ. Obviously, if it is naively increased by taking large values for σ in the

whole PML domain, we reduce the magnitude of the spurious reflections generated by

the exterior boundary of the PML domain, but, from the numerical point of view, a

boundary layer is expected in the interface between the physical and PML domains.

In conclusion, the first alternative is not admissible since the computational domain

remains too large to deal with real-life numerical simulations. As naive as it can look,

a modification of the second alternative has not been studied until recent years (see

[17]).

More precisely, in the next subsections we check that a non-integrable absorbing

function is a good candidate to minimize the spurious reflections in the two-dimensional

case. Moreover, for the radial PML technique we prove that the exact solution of the

original problem is recovered even using a PML domain of finite thickness.

6.2 Numerical accuracy of Cartesian PML for the Helmholtz equation

First, let us recall the scattering problem involving the Helmholtz equation. As a par-

ticular case of problem (40)-(42), our goal is to compute an approximation with the

PML technique of the following problem with homogeneous Neumann boundary data:

−∆u− ω2

c2
u = f in R

2 \ Ō, (81)

∂u

∂n
= 0 on ∂O, (82)

lim
r→∞

√
r

„

∂u

∂r
− iωu

«

= 0, (83)

where n is the unit normal vector to ∂O toward the exterior of O. We also adapt

the general weak problem (64) to the particular case of the Helmholtz equation. Since

now the absorbing functions are going to be non-integrable, we only require the scalar

solution ũ to belong to

H̃1(ΩB) =
n

u : ΩB → C : u|K ∈ H1(K), ∀K compact, K ⊂ Ω̄B, K ∩ ΓD = ∅
o

In fact, the weak problem is described as follows:

Given ω > 0 and f ∈ L2(ΩB) with compact support in ΩF, find ũ ∈ H̃1(ΩB) such that

ũ = 0 on ΓD and satisfies

Z

ΩB

γ2
γ1

∂ũ

∂x1

∂ ¯̃v

∂x1
dV +

Z

ΩB

γ1
γ2

∂ũ

∂x2

∂ ¯̃v

∂x2
dV − ω2

c2

Z

ΩB

γ1γ2ũ¯̃v dV =

Z

ΩF

fv̄ dV, (84)

for all ṽ ∈ H̃1(ΩB) vanishing on ΓD.
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As we have already introduced in the previous sections, γj(xj) = 1 in ΩF and

γj(xj) = 1 + i/ωσ(xj) for j = 1, 2, where σ can be given by (74) or (75).

Let us remark that it does not exist any theoretical support to guarantee the

existence and uniqueness of solution. However, the accuracy of the numerical results

and the theoretical results shown for the radial PML technique can be considered

promising signs for the well-posedness of the previous weak problem.

Now we are in a position to use a standard finite element method for the numerical

solution of weak problem (84) and to show that the resulting discrete problem is well

posed only for certain unbounded absorbing functions. This will lead to additional

constraints on γ1 and γ2.

We consider a triangular mesh of the physical domain ΩF and a rectangular mesh

of the absorbing layer ΩA, matching on the common interface between the physical

and absorbing domains as shown in Figure 14. As usual, h denotes the mesh-size.

ΓD

ΓI

ΩA

ΩP

Fig. 14 Hybrid mesh on PML and physical domain.

The reason why we use such special hybrid meshes in this subsection is that triangles

are more adequate to fit the boundary of the obstacle, whereas rectangles will allow

us to compute explicitly the integrals involving the absorbing function appearing in

the elements in the layer. This is not strictly necessary, since these integrals can also

be efficiently computed by means of standard quadrature rules for triangles (see [17]).

However, we will mainly consider exact integration to be able to assess the accuracy

of the proposed PML independently of quadrature errors.

We compute the finite element approximations ũh of the pressure field in the physi-

cal domain and in the absorbing layer, by using linear triangular finite elements for the

former and bilinear rectangular finite elements for the latter. The degrees of freedom

defining the finite element solution are the values of ũh at the vertices of the elements.

Notice that, since a compatible mesh is used, each element is contained either in the

physical or in the absorbing domain which ensures the continuity of ũh at the vertices

on the interface between ΩF and ΩA.

Moreover, we impose the Dirichlet boundary condition ũh = 0 to the finite element

solution on the exterior boundary of the PML. Hence, ũh does not have any degree

of freedom on the outer boundary. This fact will be essential for the resulting discrete

problem to be well posed when a non-integrable absorbing function is used. Indeed,

computations show that the coefficients of the finite element matrices are bounded in

spite of the singularity of the absorbing function on the outer boundary of the PML

domain. For a detailed proof, see [17].
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As we have seen in the previous subsection, when quadratic absorbing functions

are used, the standard procedure to minimize the spurious reflections produced at the

outer boundary of the PML consists in taking large values for σ⋆. However, larger values

of σ⋆ lead to larger discretization errors. Therefore, σ⋆ cannot be chosen arbitrarily

large because, otherwise, the discretization errors would be dominant, deteriorating

the overall accuracy of the method.

As shown in [27], for a given problem and a given mesh there is an optimal value of

σ⋆ leading to minimal errors. Unfortunately, such optimal value depends strongly on

the problem data as well as on the particular mesh. Thus, in practice, it is necessary

to find a reasonable value of σ⋆ in advance. No theoretical procedure to tune this

parameter is known to date. Some efforts have been done in [74], but the dependence

of σ∗ with respect to the mesh has not been avoided.

With the purpose of comparison, we have applied our PML method with a non-

integrable absorbing profile σ to a scattering problem with known analytical solution

and assessed the accuracy of the numerical results.

Consider problem (81)-(83) where the obstacle O is the unit circle centered at the

origin. Given any inner point (x0
1, x

0
2) of this circle, it is well known that the function

u(x) =
i

4
H

(1)
0

„

k
q

(x1 − x0
1)

2 + (x2 − x0
2)

2

«

satisfies (81) and (83). Therefore, if the Neumann condition is adequately chosen then

u is the unique solution to this problem.

In our experiments we have taken x0
1 = 0.5 m, x0

2 = 0, c = 340 m/s, and differ-

ent values of angular frequency ω. As computational domains we have taken ΩB =

(−L⋆, L⋆) × (−L⋆, L⋆) and ΩB = (−L,L) × (−L,L) with L⋆ = 2.25 m and L = 2.0 m

(see Figure 15).

x1

x2

1m

x0
1 = 0.5m

L⋆
= 2.25m

L = 2m

L⋆
= 2.25m

L = 2m

Fig. 15 Domain of the scattering problem.

We have used uniform refinements of the mesh shown in Figure 15; the number N

of elements through the thickness of the PML is used to label each mesh.
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To measure the accuracy we have estimated the relative error in the L2-norm in

ΩF by:

Error :=
||ũh −Πhu||L2(ΩF)

||Πhu||L2(ΩF)
,

where we recall that ũh is the numerical solution and Πhu is the Lagrange interpolant

of the exact solution u.

In Table 1 we compare the errors of the PML method obtained by using the un-

bounded absorbing functions (75) and the quadratic absorbing functions (74). For the

latter, we have used the optimal value of σ⋆, which is also reported in the table. We

also include the condition number κ of the system matrix for each discrete problem.

Let us remark that, in both cases, we recover an order two of convergence in the

L2-norm, which is optimal for the proposed finite element discretization.

Table 1 Comparison of PML methods with unbounded and quadratic absorbing functions.

Unbounded (75) Quadratic (74)
ω(rad/s) Mesh Error(%) κ σ⋆ Error(%) κ

N = 2 0.763 6.7e+02 22.28 c 11.644 4.7e+02
250 N = 4 0.131 5.1e+03 29.57 c 3.675 5.0e+03

N = 8 0.029 4.1e+04 38.37 c 1.134 4.6e+04
N = 2 1.700 1.1e+02 27.67 c 7.602 1.1e+02

750 N = 4 0.447 7.0e+02 35.52 c 2.291 9.4e+02
N = 8 0.109 5.6e+03 43.49 c 0.698 8.2e+03
N = 2 6.958 2.7e+02 27.89 c 11.620 2.9e+02

1250 N = 4 1.946 1.1e+03 36.94 c 3.336 1.7e+03
N = 8 0.430 9.7e+03 45.70 c 0.919 1.5e+03

A significant advantage of the proposed unbounded absorbing functions (75) can

be clearly appreciated from this table. This is particularly remarkable for the lowest

frequencies, but the errors with the quadratic absorbing functions are larger in all

cases, even though the optimal value of σ⋆ has been used. On the other hand, in spite

of the singular character of the unbounded functions, the condition numbers of the

resulting system matrices are essentially of the same order of magnitude as those of

the quadratic functions.

On the other hand, Table 1 also shows that the optimal value of σ⋆ strongly depends

on the problem data (the frequency ω in this case) and the mesh. The errors and the

condition numbers κ would be significantly larger if any other value than the optimal

σ⋆ were used.

As a conclusion, the proposed PML method with unbounded absorbing function

(75) clearly beats the classical choice of bounded absorbing functions. Moreover, it

overcomes the problem of determining optimal parameters.

Similar numerical results can be found by using numerical quadrature rules with

inner nodes not only on quadrilateral meshes (see [17]) but also on triangular meshes

(see [66]).
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6.3 Optimal radial PML for Helmholtz equation

Radial PML methods are based on simulating dissipation in an annular domain, ΩA =

{x ∈ R
2 : R < |x| < R⋆}, surrounding the physical domain of interest ΩF. The first

contribution to the construction of the radial PML equation was done by Collino and

Monk [28] who, by means of a complex-valued radial stretching, wrote the radial PML

governing equation for the Helmholtz equation. This construction is equal to that done

in Subsection 4.3 for general second order problems.

If we apply the radial PML technique with singular absorbing functions to the

Helmholtz problem (70)-(72), the weak problem is written as follows:

Given ω > 0 and f ∈ L2(ΩB) with compact support in ΩF, find ũ ∈ H̃1(ΩB) such that

ũ = 0 on ∂O and satisfies

Z

ΩB

det(H)H−1H−t
grad ũ · ¯̃v dV − ω2

c2

Z

ΩB

det(H)ũ¯̃v dV =

Z

ΩF

f ¯̃v dV, (85)

for all ṽ ∈ H̃1(ΩB) vanishing on ∂O.

Notice that, as we have introduced in Section 4, matrix H is given by

H =

„

cos θ sin θ

− sin θ cos θ

«t„
γr 0

0 γ̃

«„

cos θ sin θ

− sin θ cos θ

«

, (86)

where we recall that γ̃ = 1
r (R +

R r
R γr(s) ds) and γr is a complex-valued function

satisfying γr = 1 in ΩF and γr(r) = 1 + (i/ω)σ(r) in ΩA, being σ a positive non-

decreasing function.

In the development of [66], we have extended the previous existence and uniqueness

results to the case of a non-integrable absorbing function (see also [19] for details). In

order to prove the existence and uniqueness of solution to the weak PML problem

(85) when a non-integrable function is used, we have to introduce the non-standard

weighted Sobolev space

V :=



ṽ ∈ H̃1(ΩB) : ||ṽ||2V =

Z

ΩB

det(J)J−1J−t
grad ṽ · grad ¯̃v dV

+

Z

ΩB

det(J)|ṽ|2 dV < +∞
ff

,

where J is the matrix given by

J =

„

cos θ sin θ

− sin θ cos θ

«t„|γr| 0

0 |γ̃|

«„

cos θ sin θ

− sin θ cos θ

«

.

Matrix J is closely related to matrix H introduced in Section 4. In fact, J is obtained

by replacing the diagonal coefficients of H by their modulus.

We have proved in [19] that the solution of the weak problem (85) is equal to the

solution of the original problem (70)-(72), if function σ is not integrable and with the

unique restriction of belonging to the Holder space C1,2 locally in the PML domain.

Theorem 3 Let ω > 0 and f ∈ L2(ΩB) with compact support in ΩF. There exists

a unique solution ũ ∈ V of the weak problem (85). Moreover, ũ coincides with u, the

solution of the original Helmholtz problem (70)-(72), in ΩF.
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Let us remark that the homogeneous Dirichlet boundary condition on the outer

boundary of the PML domain ΩA is implicitly contained in the definition of the space

V. This boundary condition will be actually used in the discretization of the weak

problem associated with the coupled problem.

From the numerical point of view, we can introduce a standard finite element

discretization of the weak problem associated with (85). To evaluate the numerical

accuracy of the radial PML technique with singular absorbing functions, we use meshes

Th of curved elements corresponding to standard quadrilaterals in polar coordinates.

As usual, h denotes the mesh-size.

Each element must be completely contained either in Ω̄F or in Ω̄A. Moreover, we

take advantage of the fact that ΩA is an annular domain by using curved rectangles

in ΩA. We use isoparametric bilinear elements in polar coordinates.

As a consequence of the definition of the weighted Sobolev space V, the homoge-

neous Dirichlet boundary condition on the outer boundary of the PML domain ΩA

must be included in the definition of the finite discretization space to ensure that each

discrete test function belongs to V. For the non-integrable profile

σ(r) = σ(U)(r) =
c

R⋆ − r
, (87)

being c the sound speed in ΩF, this boundary condition is also sufficient (see [18] for

other feasible choices of σ).

In what follows we report some numerical results obtained with a computer code

implementing the PML technique with a non-integrable absorbing function σ(U).

To illustrate the performance of the PML method with the non-integrable σ(U),

we consider again a simple problem with a known analytical solution. It is well known

that the fundamental solution of the Helmholtz problem is

u(x) =
i

4
H

(1)
0

“ω

c
|x|
”

.

Therefore, if we take the appropriate Dirichlet data, then it should be expected that

the finite element solution ũh for weak problem (85) approximates u in the physical

domain ΩF.

In this numerical experiment we have taken c = 340m/s and ω = 750 rad/s. We

have considered a circular obstacle of radius R0 = 1 m (see Figure 16) and the PML

layer is placed between the circumferences of radius R = 2m and R⋆ = 2.1 m.

Because of the boundary condition ũ = 0 on the outer boundary of the PML, all

the integrals involved in the finite element method are finite (see [18] for details). To

evaluate these integrals, we have used a Simpson adaptive rule to reduce the effect of

the numerical errors arising from quadrature as much as possible. However, it is shown

in [18] that standard quadrature rules lead to numerical results essentially of the same

accuracy.

We have used uniform refinements of the mesh shown in Figure 16; the number N

of elements through the thickness of the PML is used to label each mesh. Specifically,

meshes corresponding to N = 2, 4 and 8 have 264, 1008 and 3936 degrees of freedom,

respectively.

In Figure 17 we show the real and imaginary parts of the solution computed for

the PML problem with the mesh corresponding to N = 8. The solution is plotted in

the physical domain and in the PML as well.



40

O

R0

R⋆

R

ΩP

ΩA

Fig. 16 Domains and mesh (N = 1) in the scattering problem.

Fig. 17 Solution of the PML problem with a non-integrable absorbing function. Mesh N = 8

Analogous to the discrete problem involving the Helmholtz equation in a bounded

domain, an order of convergence O(h2) is achieved for the L2-relative error. Let us

recall that this is the optimal order for the used finite elements in L2-norm.

To end this section, we compare the numerical performance of this PML technique

with that of a classical one based on the quadratic function (see for instance [13] or

[28]):

σ(Q)(s) = cσ⋆(s−R)2. (88)

As shown in [27], for a given problem and a given mesh there is an optimal value

of σ⋆ leading to minimal errors. Such optimal value depends strongly on the problem

data as well as on the particular mesh. Thus, in practice, it is necessary to tune it in

advance. No theoretical procedure for such a tuning is known to date.
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In Table 2, we compare the errors of the two PML methods with the unbounded

absorbing function (87) and with the quadratic absorbing function (88), respectively,

applied to the same test problem as above. For the quadratic absorbing function, we

have used the optimally tuned value of σ⋆, which is also reported in the table (one can

see that it changes significantly from one mesh to another).

Table 2 Comparison of PML methods with non-integrable and quadratic absorbing functions.

Non-integrable σ(U) (87) Quadratic σ(Q) (88)

Mesh Error(%) Error(%) σ⋆

N = 2 0.6377 13.7867 6156.45
N = 4 0.1558 3.7986 8484.28
N = 8 0.0386 1.1373 10712.08

Table 2 shows that the errors of the PML method with the non-integrable absorbing

function are significantly smaller than those of the classical PML technique. On the

other hand, another benefit of our proposed PML method is that there is no need of

fitting any non-physical parameter.

Notice also that in the continuous problem, before applying a discretization, the

PML technique does not produce any reflection on the interface with the physical

domain. However, after the discretization procedure, even using a singular absorbing

function, the “perfectly matched” feature of the PML model is lost and numerical

spurious reflected waves are generated on the interface boundary between the physical

and PML domains.

7 Further numerical simulations

In this section we include some numerical simulations, which are not supported by any

theoretical results ensuring the accuracy of the PML technique.

More precisely, in the next three subsections we describe, first, the classical Young’s

double-slit experiment, involving a scattering problem for the Helmholtz equation,

stated in a unbounded domain included in a half-plane; second, the reliability test of

a metallic component where one of its parts is several orders of magnitude larger than

the rest, and so it can be modeled as an elasticity problem stated in an unbounded strip

domain; and third, the computation of the scattering field generated by a semi-buried

object in underwater sediments.

7.1 Young’s double-slit experiment

This first numerical simulation resembles the well-known double-slit interference exper-

iment stated originally by Thomas Young in 1801 to infer the wave-like nature of light.

This model mimics the plane-wave excitation with two waveguides leading to slits in a

screen and computes the diffraction pattern in a domain surrounding the apertures.

To compute the approximate solution, we consider a finite element method and

a PML technique using the optimal absorbing function, as it is described in Subsec-

tion 6.2. We have used the domain shown in Figure 18 and a refinement of the mesh
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plotted in the same figure, with 51424 triangles and 6656 rectangles. We have taken as

acoustic speed c = 340 m/s and ω = 272π rad/s.

0.1 m 

0.5 m 

0.25 m 

2 m 

Fig. 18 Domain and coarse mesh for the double-slit interference test.

The left-hand side plot of Figure 19 shows the real part of the diffracted field near

the double-slit.
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Fig. 19 Real part of the diffracted field generated by the excitation of the waveguides (left)
and the interference pattern at different distances r from the waveguides apertures (right).

When the Fresnel number is small enough, classical theory of Fraunhofer diffraction

predicts a phenomenon of destructive interference which depends only on the angular

coordinate θ (see for instance [21]). The interference lines are θ = ±ka, being k = ω/c

the wavenumber and a the radius of the aperture in the slits. It can be checked, in the

left-hand side plot of Figure 19, that the numerical results achieve a good accuracy

with respect to the approximate classical theory.

In the case of this problem, which is stated in a half-plane, a modification of the

theoretical arguments shown in [24] allows us to prove that the use of a non-integrable

absorbing function implies the exactness of the PML technique. In spite of the fact that

the Green’s function associated with the Helmholtz equation in a half-plane is analytic

and known in a closed form, this theoretical modification is far from being obvious.
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7.2 Reliability test of a metallic component

Let us consider the two-dimensional vertical section of a metallic component, where

the right part continues straight with the same transverse shape, and it is some orders

of magnitude larger than the region depicted in Figure 20.

Our aim is to simulate numerically a P-wave propagating from the left side through

the rest of the device. Due to the difference of scale between the left and right parts,

we consider that the computational domain is unbounded.

In the framework of the plane strain elasticity, the linear Hooke model is described

by three physical parameters of the material: Young’s modulus E = 2.7 × 109 Pa,

Poisson’s ratio ν = 0.3 and mass density ρ = 7.86 × 103 Kg/m3.

Fig. 20 Two-dimensional vertical section of the metallic component: the right part, which is
assumed unbounded, is replaced by the PML domain (colored in green).

We assume null forces on the upper and lower boundaries and that the metallic

component is fixed on the inner circumferences. To impose a P-wave with unit ampli-

tude incoming through the left boundary, we introduce the boundary condition

(Σ(u)n)j − iω

s

ρE(1 − ν)

(1 + ν)(1 − 2ν)
uj = 2iω

s

ρE(1 − ν)

(1 + ν)(1 − 2ν)
j = 1, 2.

In order to assess how appropriate the use of the PML technique is, we compare

naively the numerical solution obtained with the PML technique with the one computed

if no special treatment is applied on the right boundary, but the computational domain

is enlarged up to x1 = 12.5.

We use a standard finite element method based on piecewise linear basis functions

on a refined triangular mesh obtained from the coarse one depicted in Figure 20. It

has been ensured that every edge element of the mesh is smaller than λ/15 being λ

the wavelength of the P-waves.

On one hand, if we use a Cartesian PML technique with absorbing functions

γ1 = exp(iπ/6) and γ2 = 1, in ΩA = (2.5, 3) × (−0.5, 0.5), and in an enlarged PML

domain ΩA = (6, 7.5)× (−0.5, 0.5), the L2-relative difference between both solutions is

6.2%, what illustrate the accuracy of the numerical approximation by using the PML

technique in the small domain (see the middle and bottom plots in Figure 21). On the

other hand, if we keep as reference solution that obtained with the PML technique in

the largest computational domain and use a clamped condition on the right bound-

ary but far from the physical region of interest, the relative difference increases up to
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Fig. 21 Real part of the second component of the displacement u computed assuming a rigid
wall termination on the right-hand side (upper), with a PML placed in (2.5, 3.0) × (−0.5, 0.5)
(middle), and with a PML placed in (6, 7) × (−0.5, 0.5) (lower).

78% even when the right boundary is imposed at the edge placed on x1 = 12.5 (see

the upper plot in Figure 21 where only the displacement has been plotted between

x1 = −2.5 and x1 = 3.5). Obviously, after the arguments described through this work

these differences between the simulations were expected.

The mathematical analysis of the PML technique in this context is related to the

study of wave propagation in elastic waveguides and it goes far from the scope of this

work. Moreover, even in the framework of linear isotropic elasticity, the numerical be-

havior of the PML technique for elastic waveguides has not been studied until recently

(see [75]).

7.3 Semi-buried rigid object in underwater sediments

Until now, we have dealt with different problems stated in unbounded domains, but

homogeneous isotropic media have been always assumed in all the numerical simula-

tions.
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Nevertheless, there exist several real-life applications, which involve stratified me-

dia, where the interfaces among layers are unbounded. Although the Green’s function is

not known in closed form, we can claim that the Cartesian PML technique is applicable

with accurate numerical results.

Let us consider a rigid obstacle placed between two homogeneous layers as depicted

in Figure 22. It is assumed that the top layer is filled with an isotropic acoustic fluid

(water) with mass density 1000 kg/m3 and sound speed c1 = 1500m/s. The bottom

layer involves a sand sediment governed by the Darcy’s like porous model (already

introduced Section 2) where the mass density is 1800 kg/m3, the sound speed c2 =

1600 m/s and the flow resistivity 10000 kg/(m3s) (see [80] for other physical data).

In this case, the goal is focused in the numerical computation of the reflected

pressure field generated by the scattering of an oblique plane wave of amplitude one

and angle of incidence 2π/3.

Fig. 22 Stratified domain composed by a fluid (water in blue) and a Darcy’s like porous
medium (sand sediment in cyan). The interface between both media continues straight through
the PML domain.

Again a standard finite element method based on triangular meshes and piece-

wise linear basis functions has been used. The Cartesian PML setting involves a PML

domain of thickness 0.2 m and constant absorbing functions, γ1 = γ2 = exp(iπ/6).

We have used a uniform refined mesh from the coarse one depicted in Figure 22.

More precisely, a refined mesh satisfying that every edge is smaller that λ/15, being

λ = ω/c1 the wavelength associated with the time-harmonic motion in the top layer.

The real part of the reflected field is shown in Figure 23 for ω = 9000π rad/s, where

two different computational domains have been used. Notice that, in both cases, the

thickness of the PML remains equal to 0.2 m.

We have compared the solutions computed using the small and large domains

and the L2-relative difference between them is 4.78%. As far as the knowledge of the

authors goes, there does not exist any theoretical result that guarantees the accuracy of

numerical approximation in problems where the interface between two different media

continues through the PML domain. Even in the simplest case where both media are

homogeneous and isotropic, the problem remains open.

However, in the literature there exists a wide range of works dealing with stratified

media, for instance, among many other areas, in geophysics (see [26]) or in underwater
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Fig. 23 Real part of the reflected field computed with a PML placed outside the box
(0.8, 0.8) × (0.8, 0.8) (left), and with a PML placed in (1.8, 1.8) × (1.8, 1.8) (right), whose
thickness is 0.2m in both cases.

acoustics (see [53]), all of them with a common assumed claim: if the interface among

the different media is perpendicular to the interface between the physical domain and

the PML and continuous straight in the PML domain, then a good numerical accuracy

is expected from the PML technique. To the best knowledge of the authors, this claims

has not theoretical support yet.

This claimed numerical feature can be checked by comparing the same numerical

simulation made in a larger domain, as we have done above. However, it is remark-

able and challenging that this kind of reasonable behavior shown by the numerical

results has not been analyzed yet for fluid-structure problems if the coupling interface

is unbounded.

8 Conclusions and further research

We have revised the construction of the PML technique from different perspectives.

First, it has been introduced from a physical point of view as a remedy for the draw-

backs found in the Darcy’s like porous model. Then, it has been illustrated one of the

fundamental lacks of the PML technique: it is not possible setting a universal absorbing

function which allows us to obtain always accurate results. In spite of this lack, it is

possible to describe generally the PML technique for second order partial differential

equations and obtain an existence and uniqueness result for elliptic problems.

Moreover, most of the contributions about this topic are related to the settling

of optimal conditions for the absorbing functions in the PML domain. In the partic-

ular case of the Helmholtz equation, the optimality of the absorbing functions with

non-integrable imaginary part has been illustrated numerically for the Cartesian PML

technique and shown theoretically its exactness in the radial PML case. Notice that the

numerical analysis of the optimal conditions, to minimize the numerical errors arising

from the discretized PML problem, has not been provided yet.

As it has been sketched in the previous section, the mathematical analysis of the

PML technique is far to be completed, even for mechanical problems where it is a

usual numerical tool. We must mention some future computational challenges such as

fluid/structure problems stated in unbounded domains, where the elastic solid and the
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coupling interfaces between fluid and solid domains are unbounded, and so they have

to be included inside the PML domain. Even if the implementation of this problem in a

computer code has not any technical difficulty, the mathematical analysis to derive ex-

istence and uniqueness, and the study of error estimates or the design of well-posedness

absorbing functions is quite incomplete.

Despite time dependent problems are not included in the scope of this work, let us

write some words. So basic problems as obtaining decay energy estimates for the time

domain PML equations (even for standard choices of bounded absorbing functions)

remain open. Obviously, the use of time-harmonic non-integrable absorbing functions

for time dependent problems as the two-dimensional wave equation could also yield to

optimal results. In fact, the extension of such optimality (as already discussed in Sec-

tion 5) to time dependent problems is as difficult as the derivation of energy estimates

in time-harmonic problems. In both cases, we need to obtain lower and upper bounds

for the norm of the solution explicitly given with respect to the angular frequency.
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