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Abstract

An important problem in statistics is the study of spatio-temporal data taking into account the
effect of explanatory variables such as latitude, longitude and time. In this paper, a new Bayesian
approach for analyzing spatial longitudinal data is proposed. It takes into account linear time
regression structures on the mean and linear regression structures on the variance-covariance
matrix of normal observations. The spatial structure is included in the time regression parameters
and also in the regression structure of the variance covariance matrix. Initially, we present a
summary of the spatial models and the Bayesian methodology used to fit the models, as a
extension of the longitudinal data analysis. Next, the general spatial temporal model is proposed.
Finally, this proposal is used to study rainfall data.
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1. Introduction

In the context of the parametric multivariate regression model for longitudinal data and

under normality, the response variable for each of the m units under study, each having

n observations over time, is denoted by Yi = (Yi1, . . . ,Yin)
′, i = 1, . . . ,m. In this case,

it is usually assumed that Yi ∼ N(µ i,Σi), with µ i = Xiβ, where Xi is a matrix of

explanatory variables. Thus, if nm = n×m, it is assumed that the nm-response vector

Y = (Y1, . . . ,Ym)
′ follows the model

Y = µ +ε, with ε∼ N(0,Σ= diag(Σi)), (1.1)

where µ = (µ 1, . . . ,µm)
′
, ε= (ε1, . . . ,εm)

′
and Σi = Var(εi).
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In these models, as it is well known, εi j and εik, j 6= k, i = 1, . . . ,m, are not

independent. Thus, Var(εi) = Σi is no longer a diagonal matrix and it would be

necessary to model and estimate the off-diagonal elements of the covariance matrix.

This modelling approach usually requires to impose some constraints on the elements of

Σi to guarantee its positive definiteness. For example, in stationary Gaussian processes,

such as the ones used in Geostatistics, the covariance between two observations is

explicitly determined by their correlation function. More specifically, it is modelled as

a function of the (Euclidean) distance between these two observations. Moreover, and

given that some of the properties of this function are imposed by its spatial structure,

only correlation functions belonging to the families where these requirements hold can

be considered (see, e.g., Diggle and Verbyla, 1998, or Stein, 1999).

Spatial data consist of several measurements taken on the space in each of the

experimental coordinates in the sample. This falls into the framework of correlated

observations and requires the specification and estimation of both the mean and the

covariance structures. A central idea to be able to efficiently estimate the covariance

matrix was first introduced by Macchiavelli and Arnold (1994) and Macchiavelli and

Moser (1997) and it is based on its Cholesky decomposition. This approach has been

used for several joint modelling proposals for the mean and covariance structures in

the context of longitudinal data (see, e.g., Pourahmadi, 1999 and 2000, or Pan and

MacKenzie, 2006).

In our work, we apply the modified Cholesky decomposition of the precision ma-

trix proposed in Macchiavelli and Arnold (1994), since it offers a simple unconstrained

and statistically meaningful reparametrization of the covariance matrix. It has a statisti-

cal interpretation in longitudinal data through consideration of antedependence models

(Gabriel, 1962; Macchiavelli and Arnold, 1994). With this reparametrization, the de-

pendence between the components of Y can be modelled as functions of explanatory

variables. In this case the covariance matrix structure does not depend on the ordering

of observations, so we can apply this models for the variance-covariance matrix in the

analysis of spatial data. The parameters do not have a practical interpretation anymore,

but estimation of the covariance matrix may lead to better estimates of the parameters

of the mean model. When there are many observational units, this parametrization can

be useful to alleviate problems associated with the high dimensionality of the variance-

covariance matrix. In this case, other variables beyond distance between observational

units may be included in the model for the correlations. A simulation study is presented

in section 5.

In this paper, we apply the Bayesian methodology proposed by Cepeda and Gamer-

man (2004) for the analysis of spatial data. In the regression models of joint regressions

for the mean and covariance matrix, we include a spatial structure in the regression

mean parameters through the spatial dependence of them and in the regression models

of the variance covariance matrix, including spatial variables. We also extend the longi-

tudinal models proposed by Pouramadi (1999) and the Bayesian methodology proposed

by Cepeda and Gamerman (2004) for modelling spatio-temporal data sets. A spatio-
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temporal structure is included in the mean, that now is a function of the temporal and

spatial variables. The spatial-temporal association is captured through T in the triangu-

lar decomposition Σ
−1 = T

′
D−1T, that now it is not defined as in equation (1.1), since

in the spatio-temporal analysis Σ is not a block-diagonal matrix. Initially, it can have

all entries different from zero and, thus, T is a nm×nm triangular matrix with 1’s in the

diagonal.

After this introduction, in section 2, a general spatial model is presented. In section 3

a general Bayesian methodology proposed to fit spatial and spatial temporal models is

presented. In section 4 the results of a spatial simulation study are presented. In section 5

a general spatial temporal model is proposed. Finally, in section 6, the results of the

analysis of rainfall data are presented.

2. The spatial data analysis

In this section, a single observation of each of the n observational units is assumed. Ob-

servations are correspondingly arranged in a n dimensional vector Y = (Y1,Y2, . . . ,Yn),

assumed to follow a multivariate normal distribution, so that Y ∼ (µ ,Σ), where Σ is a

non-negative definite matrix. A crucial requirement for the analysis is that the inverse

of the covariance matrix can be efficiently computed and that, in addition, it should

also be allowed to have a very general and flexible specification, so that its functional

specification is not too restrictive. For this reasons, we adopt the models suggested by

Pourahmadi (1999) following the general model setting presented in Cepeda (2001)

and Cepeda and Gamerman (2004) and considering the general ante-dependence model

(Gabriel, 1962, Zimmerman and Núñez-Antón, 1997), where for a given individual hav-

ing n observations we have that

Yi −µi =
i−1

∑
j=1

φi j(Yj −µ j)+νi,νi ∼ N(0,σ2
i ), i = 1, ...,n, (2.1)

where E(Yi) = µi, with µi = f (xi,β) a linear (or nonlinear) function of the vector of

parameter β, νi ∼ N(0,σ2
i ) are assumed as mutually independent and by convection

∑0
j=1φi j(yi−µ j) = 0. Although i is typically indexed over time (Gabriel, 1962), when a

single series of observations is assumed, the covariance matrix structure does not depend

on the ordering of observations, and thus, we can apply this model for the variance-

covariance matrix in the analysis of spatial data.

Writing (2.1) in matrix form we obtain

ν= T(Y−µ), ν∼ N(0,D) and D = diag(σ2
i ) (2.2)
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where ν′ = (ν1, . . . ,νn), µ
′ = (µ1, . . . ,µn) and T = (τi j), with

τi j =







1 if j = i

−φi j if j < i

0 elsewhere

and

Var(ν) = D = TVar(Y−µ)T
′
= TΣT

′
(2.3)

Thus, as a consequence of (2.3), Σ is obtained indirectly by obtaining D and T. In

addition, we should point out that the triangular decomposition in equation (4) is unique.

Moreover, given that Σ is a symmetric matrix if and only if there exists a unique lower

triangular matrix T, with ones in the diagonal, and a unique diagonal matrix D with

positive diagonal entries such that TΣT
′
= D, we also have that Σ is positive definite

(Pourahmadi, 1999).

From (2.2),

Ỹ = (In −T)Ỹ+ν, (2.4)

where Ỹ = Y−µ and In is the n×n identity matrix. Assuming now that there is a vector

of (covariance) explanatory variables wi j = (wi j,1, . . . ,wi j,r)
′
, we can write

φi j = w′
i jλ,1 ≤ j < i ≤ n (2.5)

where λ is a vector of parameters λ = (λ1, . . . ,λr)
′
. Since φi j =

r

∑
l=1

wi j,l λl , the matrix

In −T can be expressed as the linear combination

In −T = λ1W1 + · · ·+λrWr (2.6)

where Wl = (wi j,l), l = 1, . . . ,r are n × n matrices such that wi j,l = 0, if i ≤ j, and

wi j,l = 1, if i > j and l = 1 to allow for a constant intercept in the covariance model.

Note that, given the unrestricted and flexible specification of the φi j’s, there are no

particular restrictions imposed on Σ, indirectly specified in T. Therefore, the covariance

matrix is allowed to have any dependence form. Particular structures may be imposed

on T, for example by setting some of the non-zero φi j’s to 0. This can be handled by

choosing the matrices Wl , l = 1, . . . ,r appropriately. In general, in longitudinal data set

analysis the explanatory variables, wi j,k = (ti − t j)
k are associated with differences in

time measurements. In the case of the spatial data analysis wi j,k can be defined as a

function of the spatial variables such as longitude and latitude.
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As a consequence of (2.4) and (2.6), model (2.1) can be expressed in the form

Ỹ = λ1W1Ỹ+ · · ·+λrWrỸ+ν

= λ1V1 + · · ·+λrVr +ν

= Vλ+ν (2.7)

where ν∼ N(0,D) and V = (V1, . . . ,Vr) with Vl = WlỸ, for l = 1, . . . ,r. Note that for

a fixed value of β, the model Ỹ ∼ N(Vλ,D) is obtained.

Given thatφi j can be modelled as in (2.5) and thatσ2
i , i= 1,2, . . . ,n, can be modelled

in terms of covariates as g(σ2
i ) = z′iγ, where g is a real positive function, we summarize

the full model for the mean µ and for the matrices T and D by

µi = x′iβ, g(σ2
i ) = z′iγ, h(φi j) = w′

i jλ (2.8)

for some appropriate functions g and h. In (2.8), xi, zi, wi j are k×1, s×1 and r×1 vec-

tors of explanatory variables. β = (β1, . . . ,βk)
′
, γ = (γ1, . . . ,γs)

′
and λ = (λ1, . . . ,λr)

′

are the parameters vectors corresponding to the mean, variance and covariance, respec-

tively.

We can apply these models for the variance-covariance matrix in spatial data analy-

sis. We suppose that there are many observational units with a spatial distribution and

that we have a variable of interest and the explanatory variables for each observational

unit. Then we can propose the mean and covariance models in (2.8) to analyze spatial

data. In this situation, we have a random vector, where each component is associated

with an observational unit. We consider random vectors Y = (Y1, . . . ,YN)
′
∼ N(µ ,Σ),

with mean µ = (µ1, . . . ,µN)
′
and concentration matrix Σ

−1 = T
′
D−1T, since the obser-

vations Yi’s are not independent.

3. General spatio-temporal model

In section (2) a single observation of each of the n observational units is assumed

but, in general, we have several short series, each one associated with one of the

observational units, for example, with a meteorological station, where the variable of

interest is measured m times through time. This is, we are considering n nonindependent

random vectors Yi = (Yi1, . . . ,Yim)
′
, i = 1,2, . . . ,n, with mean µ i = (µi1, . . . ,µim)

′
and

variance covariance matrix Σ
−1
i =T

′

iD
−1
i Ti. Thus, if we assume normal distribution and

if Y = (Y1, . . . ,Yn) = (Y11, . . . ,Y1m, . . . ,Yn1, . . . ,Ynm)
′
, Y ∼ N(µ ,Σ), where the variance-

covariance matrix Σ is not a block diagonal matrix. In this case, the variance-covariance

matrix Σ is (nm)× (nm) and there is an (nm)× (nm) triangular matrix T and an

(nm)× (nm) diagonal matrix D, such that Σ−1 = T
′
D−1T. Thus, rewriting the vector

Y as Y = (Y1,Y2, . . . ,Ynm)
′
, we can consider the model given by
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Yi −µi =
i−1

∑
j=1

φi j(Yj −µ j)+νi,νi ∼ N(0,σ2
i ), i = 1, . . . ,nm. (3.1)

where E(Y) = (µ1,µ2, . . . ,µnm)
′
, φi js are the entries of T, defined as in (2.2), and

ν = (ν1,ν2, . . . ,νnm) is the vector of independent random innovation variables. In this

case, the entries φi j of T can be modelled as a function of the time intervals and spatial

differences between the n observational units, as for example, differences between their

coordinates or mean temperature, among others. The mean can also be modelled as a

spatial temporal function.

In a second approximation, the observation of the interest variable is rearranged as

Y = (Y11,Y12, . . . ,Y1m, . . . ,Yk1,Yk2, . . . ,Ykm, . . . ,Yn1,Yn2, . . . ,Ynm)
′

and the spatial-temporal

dependence through the models is assumed

Yki −µki =
n

∑
k=1

i−1

∑
j=1

φi j
(k)(Yk j −µk j)+νki,νki ∼ N(0,σ2

i ), i = 1, . . . ,m, k = 1, . . . ,n,

(3.2)

where E(Yki) = µki, with µki = x′kiβ, a linear function of parameter β, νki ∼ N(0,σ2
ki)

are mutually independent and ∑0
j=1φi j

(k)(Yk j−µk j) = 0 is used, and i indexes over time.

Writing (2.1) in matrix form, we obtain

ν= T(Y−µ), ν∼ N(0,D) and D = diag(σ2
ki) (3.3)

where µ = (µ11,µ12, . . . ,µ1m, . . . ,µk1,µk2, . . . ,µkm, . . . ,µn1,µ11, . . . ,µnm)
′
and T = (τi j),

is an nm lower triangular matrix, with

τi j =







1 if i = j, i = nk1 + l, j = nk1 + r

−φ
(k)
i j if r < l, i = nk1 + l, j = nk2 + r

0 elsewhere

(3.4)

where 1 ≤ l,r ≤ m, k1,k2 = 0,1,2 . . . ,n − 1, and k1 ≤ k2. Finally, specifying the

mean and the variance-covariance models µi = f (xi,β), σ
2
i = g(zi,γ), φi j = h(wi j,λ),

respectively, for some appropriately selected functions h, g, and f , the spatial temporal

model is completely defined. These functions can be the same as in equation (2.8),

however they can be appropriate nonlinear functions. In the last case it is necessary to

build a kernel transition function that can be obtained by defining a normal working

variable as proposed in Cepeda and Gamerman (2005). Finally, to fit these spatio-

temporal models we propose the Bayesian methodology defined in section (4).
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4. Bayesian methodology

In this section we present the Bayesian methodology used to fit spatial and spatial tem-

poral models, following the Bayesian methodology proposed by Cepeda and Gamerman

(2004) to fit longitudinal data. Assuming the observational model Y = (Y1, . . . ,Yn)
′
∼

N(µ ,Σ), where µ depends on β through µ = Xβ, where X is the matrix of explanatory

variables, and Σ depends on γ and λ through (2.8), the likelihood function is given by

L(β, γ, λ|Y) ∝ |D|−1/2 exp

{

−
1

2
(Y−µ)

′
Σ

−1(Y−µ)

}

,

since |Σ|= |T
′
| |D| |T|= |D|.

Now, a prior distribution p(θ) for θ = (β,γ,λ)
′

must be assigned to obtain the

posterior distribution. For simplicity we assume θ ∼ N(θ0,Σ0) where θ0 = (b0,g0, l0)
′

as prior distribution. One possible model for Σ0 is the diagonal form, implying prior

independence between β,γ and λ. In this case, the full conditional prior distributions for

β, γ and λ are given by normal distributions, denoted by N(b,B), N(g,G) and N(l,L),

respectively. The values of (b,g, l) and (B,G,L) are easily evaluated from θ0 and Σ0.

From the Bayes theorem, the posterior distribution for θ is given by

π(β,γ,λ|Y) ∝ |D|−1/2 exp

{

−
1

2
(Y−Xβ)′Σ−1(Y−Xβ)−

1

2
(θ−θ0)

′
Σ−1

0 (θ−θ0)

}

(4.1)

The posterior distribution (4.1) is intractable analytically and not easily generated

from. However, the posterior full conditional distribution πβ = π(β |γ,λ) is given by

π(β |γ,λ,Y) ∝ exp

{

−
1

2
(β−b∗)

′
B∗−1(β−b∗)

}

,

where b∗ = B∗(B−1b+X
′
Σ

−1Y) and B∗ = (B−1 +X
′
Σ−1X)−1. Therefore,

(β |γ,λ,Y)∼ N(b∗,B∗). (4.2)

Thus, it is possible to sample β directly from πβ. Values of β can be proposed directly

from πβ and accepted with probability 1. This is the Gibbs sampler (Geman and Geman,

1984).

From (2.4) and (2.7), the quadratic form Q(Y) = (Y−µ)
′
Σ

−1(Y−µ) appearing in

the likelihood can be rewritten as

Q(Y) = Ỹ
′
T′D−1TỸ = (Ỹ−Vλ)′D−1(Ỹ−Vλ)
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Therefore, the full conditional distribution πλ is given by

π(λ|β,γ) ∝ exp

{

−
1

2
(Ỹ−Vλ)

′
D−1(Ỹ−Vλ)−

1

2
(λ− l)

′
L−1(λ− l)

}

,

∝ exp

{

−
1

2
(λ− l∗)

′
L∗−1(λ− l∗)

}

where l∗ = L∗(L−1l+V
′
D−1Ỹ) and L∗ = (L−1 +V

′
D−1V)−1. This is,

(λ|β,γ,Y)∼ N(l∗,L∗). (4.3)

Thus, values of λ can be proposed directly from πλ and accepted with probability 1.

Unless full conditional distributions of β and λ are known, the full conditional

distribution of γ, given by

π(γ |β,λ) ∝ |D|−1/2 exp

{

−
1

2
(Ỹ−Vλ)

′
D−1(Ỹ−Vλ)−

1

2
(γ−g)

′
G−1(γ−g)

}

,

(4.4)

is intractable analytically and not easily generated from. In this case we have to construct

suitable proposals for a Metropolis-Hastings step (Hastings, 1970; Gamerman, 1997a).

We used the methodology proposed by Gamerman (1997b) as applied in Cepeda

and Gamerman (2001) for modelling heterogeneity in independent normal regression

models. The algorithm requires working variables to approximate transformation of the

observations around the current parameter estimates. At the γ iteration, β and λ are

fixed at their current values β(c) and λ(c) and, given (2.7), the working observation

variables are obtained by Fisher scoring process or by Taylor approximation (Cepeda

and Gamerman, 2005).

When g = log, the working observation obtained using Fisher scoring process is

t̃i = z′iγ
(c)+

(Ỹ
(c)
i −v

(c)′

i λ
(c))2

exp(z′iγ
(c))

−1, i = 1, . . . ,n.

It has E(t̃i) = z′iγ
(c) and associated working variances equal to 2. With the process

given in Cepeda and Gamerman (2004), the normal transition kernel qγ based on Fisher

scoring methods is obtained as

qγ(γ(c),γ(n)) = N(g∗,G∗) (4.5)

where
g∗ = G∗(G−1g+2−1Z′Ỹ)

G∗ = (G−1 +2−1Z′Z)−1.
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Given the characteristic of the conditional distributions we will not sample all the

components of vector θ = (β,γ,λ)
′

simultaneously. Explicitly, we sample β and λ

directly from their full conditionals and γ from the proposal given in (4.5), appling

Metropolis Hastings algorithm.

5. Spatial data analysis: a simulation study

A simulation study was performed to compare parameter estimates and true values,

in a spatial model, assuming that the interest variable Y has normal distribution.

Initially, n = 50 values of 5 explanatory variables Xi, i = 1,2,3, and Wi, i = 1,2,

were simulated. Values of X1, X2 and X3 were generated from uniform distributions

U [0,50], U [5,15] and U [0,20], respectively, and values of Wi, i = 1,2, were generated

from uniform distributions U [0,20] and U [5,15], respectively. The values of Y were

simulated from a multivariate normal distribution with mean µi = β0 + β1x1i + β2x2i

and variance-covariance matrix Σ = T−1D(T
′
)−1, where D = diag(σ2

i ), T = (−φi j),

σ2
i = exp(γ0 +γ1x1i +γ2x3i) and φi j = λ0 +λ1wi j,1 +λ2wi j,2, with β = (20,3,−1.5)′,
γ = (−6,0.05,−0.25)′ and λ = (−0.5,0.04,−0.02)′. To apply Bayesian methodology,

for simplicity, independent normal prior distributions, θ ∼ N(0,103I9) were considered

for all the parameters.

The posterior parameter estimates and their respective standard deviation are: β̂0 =

20.003(6.722× 10−3), β̂1 = 2.999(1.841× 10−4), β̂2 = −1.500(6.228× 10−4), λ̂0 =

−0.501(0.004), λ̂1 = 0.040(0.001), λ̂2 =−0.020(4.231×10−5), γ̂0 =−5.166(0.619),

γ̂1 = 0.025(0.014) and γ̂2 =−0.254(0.041). From the comparisons between true values

and the corresponding estimates, we conclude that the proposed methodology has

excellent performance. The estimates are very close to the true values and, in all cases,

they have small standard deviation.
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Figure 1: Posterior chains for the mean parameters: β0, β1, β2.
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Figure 2: Posterior samples of the antedependence parameters: λ0, λ1, λ2.
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Figure 3: Posterior samples of the covariance parameters. γ1, γ1, γ2.

Figures 1, 2 and 3 show the behavior of the chain for the sample simulated for each

parameter, where each one has a small transient stage, indicating the speed convergence

of simulation for the algorithm. The chain samples are given for the first 4800 iterations.

The other results reported in this section are based on a sample of 4000 draws after a

burn-in of 800 draws to eliminate the effect of initial values.

The posterior marginal distributions for all the parameters are approximately normal.

The p-values of the Kolmogorov-Smirnov test are all larger than 0.05. The posterior

sample shows large correlation between parameters of mean models, large correlations

between parameters of variance-covariance models, and small but non-negligible corre-

lation between parameters of mean models and parameters of variance models.
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6. Application

In this application we consider the precipitation index in the Guajira, a department

of Colombia. This department is located in the northeast region of Colombia in a

peninsula bounded on the west and north by the Caribbean Sea, on the east by the

Gulf of Venezuela and on the south by the Sierra Nevada de Santa Marta. There are six

measurement centers distributed along the region. Although it is a flat region, there are

differences between the levels of precipitation in each of its points and between seasons

and years. For example, in January, February, March and July the level of precipitation is

small but in April and May or in October and November all measurements centers report

the highest levels of precipitation. In this application we analyze the mean sample of the

cumulative monthly precipitation level for 10 years, from 1995 to 2005. The general

behavior of the cumulative mean precipitation can be seen in figure 4. From the figure

we can infer that the hydrological stations are located in regions with two different

regimes of rainfall, characterized by very low levels of precipitation in the first three

months of the year. As of April, it is clear that there are three stations located in a region

whith high rates of precipitation and three stations where precipitation levels are much

lower.
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Figure 4: Annual mean of precipitation.

In the first analysis of this data we consider the spatio-temporal time model given by

µtrs = β0 +β1t +β2t2 +β3t3 +β4(st)
3 +β5(rt)3

log
(

σ2
t

)

= γ0 +γ1t +γ2t2 +γ3t3

φi j = λ0 +λ1(i− j)+λ2(i− j)2 +λ3(i− j)3 +λ4(si − s j)
3 +λ5(ri − r j)

3
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where t is the time, s is the latitude with respect to the mean value of the latitude

of the observational units, r is the longitude with respect to the mean value of the

longitude of the observational units, st is the random variable given by the product

of the time by spatial latitude, and rt is the explanatory variable given by the product

of the time and spatial longitude. Thus, assuming normal flat prior distribution for

the mean, innovation variance and covariance parameters, the posterior estimates and

the correspondent standard deviation for the parameters of the model are given by the

following values.
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Figure 5: Posterior samples of the covariance parameters.

1. For the mean parameters:

β̂0 =−32.635(3.877), β̂1 = 26.213(2.788), β̂2 =−0.548(0.094),

β̂3 = 0.434(0.001), β̂4 =−17.461(0.330), β̂5 = 0.184(0.000).
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2. For the innovation variance:

γ̂0 =−9.722(0.357), γ̂1 = 0.566(0.000),

γ̂2 =−0.185(0.000), γ̂3 = 0.013(0.000).

3. For the covariance parameters:

λ̂0 = 0.004(0.000), λ̂1 = 1.031(0.000), λ̂2 = 53.379(6.611),

λ̂3 =−45.967(4.604), λ̂4 = 9.723(0.201), λ̂5 =−0.573(0.001).

In all cases, for all the parameters in the model, the chains have a small transient

period showing the performance of the proposed algorithm. To illustrate this behavior

the chain of the posterior samples for the covariance parameters are included in figure 5.

As in the simulation study, in this case, the histograms show that the posterior marginal

distributions for all the parameters are approximately normal. The p-values of the

Kolmogorov-Smirnov test are all larger than 0.05.

7. Conclusions

In this paper, a new Bayesian flexible and unrestricted approach for analyzing spatial

longitudinal data is proposed. We illustrate the usefulness of our proposed methodology

by including a Monte Carlo analysis, a simulation study and an application to a real

data set. Our proposal puts forward a new way to explore the QR decomposition of the

covariance matrix in a longitudinal data setting, by generalizing its application within

this context.

Natural extensions of the research presented in this paper are also possible. Classical

methodologies applying the Newton Raphson or the Fisher scoring algorithms to fit the

proposed models can be easily introduced in the same way as in Pourahmadi (1999) or

Cepeda and Gamerman (2004). Nonlinear spatio-temporal models also can be defined

by assuming a nonlinear regression models in the mean and covariance models, so that

it would be a generalization of the nonlinear longitudinal models proposed in Cepeda-

Cuervo and Núñez-Antón (2009), which included a classic and Bayesian generalization

that allowed to fit these new models.

Acknowledgements

Cepeda’s work was supported by a grant from The Research Division of the National

University of Colombia (Universidad Nacional de Colombia). The author wishes to

thank the anonymous referees for their careful reading of this manuscript and also for

their suggestions that led to very important improvements.



178 Generalized spatio-temporal models

References

Cepeda, E. C. (2001). Variability modelling in generalized linear models. Unpublished Ph.D. thesis, Math-

ematics Institute, Universidade Federal do Rio de Janeiro.

Cepeda, E. C. and Gamerman D. (2004). Bayesian modelling of joint regression for the mean and covari-

ance matrix. Biometrical Journal, 14, 430–440.
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