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Abstract : Let X be an infinite dimensional normed linear space. It is not difficult to see
that arbitrarily near (in the Hausdorff metric) to the unit ball of X there exists a nonempty
closed convex set whose diameter is not attained. We show that such sets are dense in the
metric space of all nonempty bounded closed convex subsets of X if and only if either X is
not a reflexive Banach space or X is a reflexive Banach space in which every weakly closed
set contained in the unit sphere SX has empty relative interior in SX .
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Let X be a real normed linear space and BCC(X) denote the metric space
(in the Hausdorff metric) of all nonempty bounded closed convex subsets of
X. Two elements of a set C ∈ BCC(X), whose distance realizes the diameter
of C, are called a diametral pair for C. Obviously, if X has a finite dimen-
sion, then each element of BCC(X) admits a diametral pair. For an infinite
dimensional X, it is not difficult to see that the sets admitting a diametral
pair are dense in BCC(X) (Observation 2.2), and, on the other hand, the unit
ball of X can be approximated by elements of BCC(X) having no diametral
pair (Proposition 2.1). (This latter proposition provides also an answer to a
question from [3] – see Remark 2.10.)

The aim of the present paper is to investigate the normed linear spaces X
in which the sets without diametral pairs are dense in BCC(X). It turns out
that not every infinite dimensional X has this property. In our main result,
Theorem 2.8, we show that denseness of the sets without diametral pairs is
equivalent to a certain geometric property (W) (see Definition 2.6) which is
satisfied if and only if either X is not a reflexive Banach space or X is a
reflexive Banach space whose unit sphere SX contains no weakly closed sets
with a nonempty relative interior in SX .
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1. Notations and preliminaries

Throughout the present paper, X will denote a real normed linear space
with the closed unit ball BX , the open unit ball B0

X = intBX and the unit
sphere SX = ∂BX . The closed and open ball of radius r > 0, centered at
x ∈ X, are the sets B(x, r) = x + rBX and B0

X(x, r) = x + rB0
X .

Given a nonempty set A ⊂ X, its diameter is defined as

δ(A) = diamA = sup{‖x− y‖ : x, y ∈ A}.

It is easy to see that one always has δ(A) = δ(B) whenever A ⊂ B ⊂ convA.
We say that two points x, y ∈ X form a diametral pair for A if x, y ∈ A and
‖x − y‖ = δ(A). Observe that x, y form a diametral pair for A if and only if
x− y is a farthest point from the origin for the set A−A.

By BCC(X) we mean the family of all nonempty, bounded, closed and
convex subsets of X, equipped with the Hausdorff metric

dH(A,B) = max
{

sup
a∈A

dist(a,B) , sup
b∈B

dist(b, A)
}

.

Let us start with the following easy and well known properties of convex
hulls, which we shall use several times.

Fact 1.1. (a) If C1, . . . , Cm are convex sets in X, then

conv

(
m⋃

i=1

Ci

)
=

{
m∑

i=1

λici : ci ∈ Ci , λi ≥ 0 ,
m∑

1

λi = 1

}
.

(b) conv(C ∪ F ) is closed whenever C ∈ BCC(X) and F ⊂ X is finite.

We shall also need the following two natural lemmas about diametral pairs.

Lemma 1.2. Assume that a bounded set A ⊂ X and a point z ∈ X are
such that δ(A) < δ(D) where D = conv(A∪ {z}). Then every diametral pair
for D consists of z and a point of convA.

Proof. We may assume that A is closed and convex, and z = 0. In this
case, D = conv(A∪{0}) by Fact 1.1(b). Let x, y form a diametral pair for D.
By Fact 1.1(a), we can write x = λa, y = µb where λ, µ ∈ [0, 1] and a, b ∈ A.
Let, for example, λ ≥ µ. Then
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δ(D) = ‖λa− µb‖ ≤ ‖λa− µa‖+ ‖µa− µb‖
≤ (λ− µ)δ(D) + µδ(A) ≤ λδ(D) ≤ δ(D) .

Thus all inequalities are, in fact, equalities. But this is possible only if λ = 1
and µ = 0, which implies x = a ∈ A = convA and y = 0 = z.

Lemma 1.3. Assume that bounded sets A, B ⊂ X and a point z ∈ X are
such that δ(B ∪ {z}) < δ(D) where D = conv(A ∪B ∪ {z}). If x ∈ D is such
that ‖x− z‖ = δ(D), then x ∈ convA.

Proof. We may assume that the sets A,B are closed and convex since this
leaves unchanged the set D and the involved diameters. Since x ∈ D, we can
write (by Fact 1.1(a))

x = λnan + µnbn + νnz + pn ,

where λn, µn, νn ≥ 0, λn + µn + νn = 1, an ∈ A, bn ∈ B, and pn → 0 as
n →∞. Then

δ(D) = ‖x− z‖ ≤ λn‖an − z‖+ µn‖bn − z‖+ ‖pn‖
≤ λnδ(D) + µnδ(B ∪ {z}) + ‖pn‖ .

Consequently, µn

[
δ(D) − δ(B ∪ {z})] + νnδ(D) ≤ ‖pn‖. Since ‖pn‖ → 0, we

must have µn → 0 and νn → 0, which implies that λn → 1. It follows that
x = limλnan = lim an ∈ A.

The last lemma of this section is a variant of [1, Lemma 3.5.1].

Lemma 1.4. Let A,B ⊂ X be bounded convex sets and ϕ : X → R a
continuous convex function. If x ∈ conv(A ∪B) is such that

ϕ(x) > supϕ(A) , ϕ(x) ≥ supϕ(B) ,

then x ∈ B.

Proof. Put m = supϕ(A). Let {xn} ⊂ conv(A∪B) be a sequence tending
to x. By Fact 1.1(a), we can write xn = λnan + (1 − λn)bn, where an ∈ A,
bn ∈ B and λn ∈ [0, 1]. Since ϕ is convex,

ϕ(xn) ≤ λnϕ(an) + (1− λn)ϕ(bn) ≤ λnm + (1− λn)ϕ(x) .

It follows that λn(ϕ(xn) − m) ≤ (1 − λn)(ϕ(x) − ϕ(xn)). Thus, for any
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sufficiently large n,

λn ≤ ϕ(x)− ϕ(xn)
ϕ(xn)−m

,

which implies that λn → 0. Now, x ∈ B since x− bn = (x−xn)+λn(an− bn)
→ 0.

Corollary 1.5. Let {Ck} be a sequence of convex sets in X and ϕ : X →
R a continuous convex function. Denote Dn = conv

⋃
k≥n Ck (n ≥ 1). If

D1 is bounded and x ∈ D1 is such that ϕ(x) > supϕ(Ck) (k ∈ N), then
x ∈ ⋂

n≥1 Dn.

Proof. Let n ≥ 2. We have x ∈ D1 = conv(A ∪B) where

A = conv
(⋃

1≤k<n
Ck

)
and B = conv

(⋃
k≥n

Ck

)
.

Put m = max1≤k<n {supϕ(Ck)} and observe that m < ϕ(x). Moreover, con-
vexity of ϕ easily implies supϕ(A) = m and supϕ(B) ≤ ϕ(x). By Lemma 1.4,
x ∈ B = Dn.

2. Main results

The proof of the following proposition is somewhat similar to the
one in [4].

Proposition 2.1. Let X be an infinite dimensional normed linear space
and ε ∈ (0, 1). There exists a symmetric C ∈ BCC(X) without diametral
pairs, such that (1− ε)BX ⊂ C ⊂ BX .

Proof. Since X is infinite dimensional, there exists a basic sequence
{en} ⊂ SX (see, e.g., [2, Theorem 4.1.30 and Proposition 4.3.4] applied to
the completion of X). Fix an arbitrary sequence {tn} ⊂ (0, 1) such that
tn → 1. We claim that the set

C = conv
[
(1− ε)BX ∪ {±tnen}n≥1

]

has the desired properties. Note that δ(C) = 2 since C ⊂ BX and C contains
the pairs ±tnen (n ∈ N). To show that C has no diametral pairs, it suffices
to prove that C ⊂ B0

X . If this is not the case, take x ∈ C ∩ SX and f ∈ SX∗

such that f(x) = 1. By Corollary 1.5, applied to the sets

(1− ε)BX , {t1e1} , {−t1e1} , {t2e2} , {−t2e2} , . . . ,
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we must have x ∈ ⋂
n≥1 conv{±tkek}k≥n. But the last set is contained in⋂

n≥1 span{ek}k≥n = {0}, which is a contradiction since ‖x‖ = 1.

On the other hand, the following easy result holds true.

Observation 2.2. For every normed linear space X, the elements of
BCC(X) that do admit a diametral pair are dense in BCC(X).

Proof. Let C ∈ BCC(X) have no diametral pairs. We may suppose that
δ(C) = 1. Fix an arbitrary ε > 0 and choose α > 0 so small that (1 + 2ε)(1−
α) > 1 + ε. Choose u, v ∈ C so that ‖u− v‖ > 1− α. We may suppose that
u = 0; hence 1− α < ‖v‖ < 1. Denote

D0 = C ∪ {−εv} ∪ {(1 + ε)v} , D = conv D0 .

Then D ∈ BCC(X) (Fact 1.1(b)) and dH(C,D) = dH(C, D0) ≤ ε. Since
‖(1 + ε)v + εv‖ > (1 + 2ε)(1− α) and, for each x ∈ C,

‖x + εv‖ ≤ ‖x‖+ ε < 1 + ε ,

‖x− (1 + ε)v‖ ≤ ‖x− v‖+ ε < 1 + ε ,

the points −εv and (1 + ε)v form a diametral pair for D0, and hence
also for D.

A natural question arises: In which normed spaces X the sets without
diametral pairs are dense in BCC(X)? The rest of the present paper is devoted
to a complete answer to this question.

Definition 2.3. For a sequence {xn} ⊂ X, we denote

Λ({xn}) =
⋂

n≥1
conv{xk}k≥n .

Lemma 2.4. Let {xn}, {yn} be sequences in X.

(a) Λ({xn}) = Λ({yn}) whenever xn − yn
weak−−−−→ 0.

(b) Λ({xn}) = {x} whenever xn
weak−−−−→ x.

(c) Λ({xnk
}) ⊂ Λ({xn}) whenever {xnk

} is a subsequence of {xn}.
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Proof. (a) If x /∈ Λ({xn}), then there is an index n0 such that x /∈
conv{xk}k≥n0 . By the Hahn-Banach separation theorem, there exists f ∈
X∗ \{0} such that f(x) > supk≥n0

f(xk) =: σ. Fix an arbitrary α ∈ (σ, f(x)).
There exists an index n1 ≥ n0 such that |f(xk − yk)| < α − σ whenever
k ≥ n1. Then we have f(yk) = f(xk)+f(yk−xk) < σ+(α−σ) = α whenever
k ≥ n1. Consequently, f(x) > α ≥ sup f( conv{yk}k≥n1), which implies that
x /∈ Λ({yn}). We have proved that Λ({yn}) ⊂ Λ({xn}); the other inclusion
follows by symmetry.

The proof of (b) follows from (a) with yn = x (n ∈ N), and (c) is
obvious.

Lemma 2.5. A normed linear space X is not a reflexive Banach space if
and only if there exists a sequence {xn} ⊂ B0

X with Λ({xn}) = ∅.

Proof. If X is not a reflexive Banach space, there exists a decreasing se-
quence {Cn} ⊂ BCC(X) with empty intersection. (Indeed, this is a well
known characterization of non-reflexivity for Banach spaces, and if X is in-
complete, we can put Cn =

(
ŷ + 1

nBX̂

) ∩X where X̂ is the completion of X

and ŷ ∈ X̂ \X.) We may assume that C1 ⊂ B0
X . Now, it suffices to choose

arbitrarily xn ∈ Cn (n ∈ N) to get the desired sequence. Conversely, if X is
a reflexive Banach space, every sequence {xn} ⊂ B0

X has a weakly convergent
subsequence and hence Λ({xn}) 6= ∅ by Lemma 2.4 (c)-(b).

Definition 2.6. We shall say that a normed space X has the property
(W) if for each v ∈ SX and each ε > 0 there exists a sequence {vn} ⊂ SX

such that

‖vn − v‖ < ε (n ∈ N) and Λ({vn}) ⊂ B0
X .

The following standard continuity properties are true in arbitrary normed
linear spaces, except for the fact that, in general, the set A − A need not be
closed for A ∈ BCC(X) (this is the only reason for the reflexivity assumption).

Fact 2.7. Let X be a reflexive Banach space. It is elementary to prove
that:

• the function A 7→ %(A) := supx∈A ‖x‖ is continuous on BCC(X);

• A 7→ A−A is a continuous mapping of BCC(X) into BCC(X);

• (t, A) 7→ tA is a continuous mapping of R× BCC(X) into BCC(X).
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Theorem 2.8. For a normed linear space X, the following assertions are
equivalent.

(i) The elements of BCC(X) with no diametral pairs are dense in BCC(X).

(ii) X has the property (W) (see Definition 2.6).

(iii) Either X is not a reflexive Banach space, or X is a reflexive Banach space
such that every weakly closed set contained in SX has empty relative
interior in SX .

Proof. (i) ⇒ (iii) Suppose (iii) is false, i.e., X is a reflexive Banach
space and SX contains a weakly compact set K with a nonempty relative
interior in SX . Let v ∈ K and r > 0 be such that B(v, r) ∩ SX ⊂ K. Define
C = [−v, v] and fix an arbitrary ε ∈ (0, r

3). Since the mapping Φ(D) = D−D
%(D)

(where % is as in Fact 2.7) is continuous on the set {D ∈ BCC(X) : %(D) > 0},
and Φ(C) = C, there exists δ ∈ (0, 1) such that dH(Φ(D), C) < ε whenever
dH(D, C) < δ.

Let D ∈ BCC(X) satisfy dH(D, C) < δ. Denote D̂ = Φ(D). Observe
that %(D̂) = 1 and the following equivalences hold: D has a diametral pair
iff D − D has a farthest point from 0 iff D̂ has a farthest point from 0 iff
D̂ ∩ SX 6= ∅. Let us prove that D̂ intersects SX .

Since %(D̂) = 1, there exists a sequence {xn} ⊂ D̂ such that ‖xn‖ →
1. Since dH(D̂, C) < ε, there exists a sequence {tn} ⊂ [−1, 1] such that
‖xn− tnv‖ < ε (n ∈ N). Since D̂ is symmetric, we can suppose that tn ∈ [0, 1]
for each n. Since X is a reflexive Banach space, we can suppose (by passing to
a subsequence) that {xn} weakly converges to some x ∈ D̂. Denote x̂n = xn

‖xn‖
and observe that ‖xn − x̂n‖ → 0 and

1− tn = ‖xn‖ − ‖tnv‖ ≤ ‖xn − tnv‖ < ε .

Consequently, {x̂n} weakly converges to x and, for any sufficiently large n,

‖x̂n − v‖ ≤ ‖x̂n − xn‖+ ‖xn − tnv‖+ ‖tnv − v‖
< ε + ε + (1− tn) < 3ε < r .

It follows that x̂n ∈ K for each sufficiently large n, and hence x ∈ K ⊂ SX .
This proves that D has a diametral pair whenever dH(D, C) < δ; hence (i)
is false.

(iii) ⇒ (ii) Let v ∈ SX and 0 < ε < 1. First, suppose X is not a reflexive
Banach space. By Lemma 2.5, there exists a sequence {xn} ⊂ εB0

X such that
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Λ({xn}) = ∅. Define yn = v + xn and vn = yn

‖yn‖ . Passing to a subsequence if
necessary, we can suppose that ‖yn‖ → α ∈ R. Note that 1 − ε ≤ α ≤ 1 + ε
since 1− ε < ‖yn‖ < 1 + ε (n ∈ N). Then we have

‖vn − v‖ ≤ ‖vn − yn‖+ ‖yn − v‖ ≤ ∣∣ 1− ‖yn‖
∣∣ + ‖xn‖ < 2ε

and, by Lemma 2.4,

Λ({vn}) = Λ
({yn

α

})
=

1
α

Λ({yn}) =
1
α

(
v + Λ({xn})

)
= ∅ .

Now, let X be a reflexive Banach space such that SX contains no weakly
compact set with a nonempty interior (relative to SX). The set A =
SX∩B(v, ε) is not weakly compact. Reflexivity of X and the Eberlein-Šmulyan
theorem imply that A contains a sequence {vn} that weakly converges to some
y ∈ X \A. Now, by Lemma 2.4,

Λ({vn}) = {y} ⊂ (
BX ∩B(v, ε)

) \A ⊂ B0
X .

(ii) ⇒ (i) Assume (ii). Then an elementary compactness argument and
Lemma 2.4 (c) imply that X cannot be finite dimensional. We have to prove
that arbitrarily near to any C ∈ BCC(X) there exists D ∈ BCC(X) with no
diametral pairs. If C is a singleton, we can suppose that C = {0} and obtain
the assertion easily from Proposition 2.1.

Now, let C have a positive diameter. We may assume that δ(C) = 1, and
that the origin 0 and some point v ∈ SX form a diametral pair for C. Fix
an arbitrary ε ∈ (0, 1

4). By (ii), there exists a sequence {un} ⊂ (1 + 2ε)SX

such that ‖un − (1 + 2ε)v‖ < ε
3 and Λ({un}) ⊂ (1 + 2ε)B0

X . Fix a sequence
{σn} ⊂ (1− ε

3 , 1) such that σn → 1. Define

vn = σnun − εv , D0 = C ∪ {−εv} ∪ {vn}n≥1 , D = convD0 .

Observe that D ⊃ C, dist(−εv, C) ≤ ‖ − εv − 0‖ = ε and

dist(vn, C) ≤ ‖vn − v‖ = ‖σnun − (1 + ε)v‖
≤ ‖σnun − un‖+ ‖un − (1 + 2ε)v‖+ ‖εv‖
< (1− σn) + ε

3 + ε < 5
3 ε .
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Consequently, dH(D, C) ≤ 5
3 ε. Let us compute δ(D). For x ∈ C, n, k ∈ N,

n 6= k, we have

‖x + εv‖ ≤ ‖x‖+ ‖εv‖ ≤ 1 + ε ,

‖x− vn‖ ≤ ‖x− v‖+ ‖v − vn‖ < 1 + 5
3ε ,

‖vn − vk‖ ≤ ‖vn − v‖+ ‖v − vk‖ < 5
3 ε + 5

3ε < 1 ,

‖vn + εv‖ = σn‖un‖ = σn(1 + 2ε) ↗ 1 + 2ε (as n →∞) .

Thus δ(D) = δ(D0) = 1 + 2ε. It remains to show that D has no diametral
pairs.

Suppose that x, y ∈ C are such that ‖x − y‖ = δ(C). By Lemma 1.2,
applied to z = −εv and A = C ∪{vn}n≥1, one of the two points, say y, equals
−εv. By Lemma 1.3, applied to A = {vn}n≥0, B = C and z = −εv, we must
have x ∈ conv{vn}n≥1. Hence

x− y ∈ conv{vn + εv}n≥1 = conv{σnun}n≥1 ,

‖x− y‖ = 1+2ε and ‖σnun‖ = σn(1+2ε) < 1+2ε (n ∈ N). By Corollary 1.5
(with ϕ = ‖·‖ and Cn being the singleton {σnun} for each n) and Lemma 2.4,
we have

x− y ∈ Λ({σnun}) = Λ({un}) ⊂ (1 + 2ε)B0
X

which is a contradiction that completes the proof.

Let us conclude with two simple remarks. Recall that X is said to have
the Kadets-Klee property if the topological spaces (SX , weak) and (SX , norm)
have the same convergent sequences.

Remarks 2.9. (a) Every finite dimensional normed linear space fails the
property (W).

(b) Every normed linear space that is not a reflexive Banach space has the
property (W).

(c) Every infinite dimensional reflexive Banach space with the Kadets-Klee
property has the property (W).

(To see this, fix v ∈ SX and ε > 0. Since SX ∩B(v, ε) is not norm com-
pact, it contains a sequence having no convergent subsequence. This
sequence admits a subsequence {vn} that weakly converges to some
y ∈ BX ∩B(v, ε). By the Kadets-Klee property, we must have y ∈ B0

X .
By Lemma 2.4 (b), Λ({vn}) = {y} ⊂ B0

X .)
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(d) To get an example of an infinite dimensional reflexive Banach space
without the property (W), start with an arbitrary infinite dimensional
reflexive Banach space (X, ‖·‖), fix an f ∈ SX∗ , and define an equivalent
norm by |||x||| = max

{‖x‖, 2|f(x)|}. Then (X, |||·|||) fails (W) since the cor-
responding unit sphere contains the closed convex set B(X,‖·‖) ∩ f−1(1

2)
with a nonempty relative interior.

Remark 2.10. Note that the symmetric set C constructed in Proposi-
tion 2.1 has no farthest points from the origin. It follows that a normed
linear space X is finite dimensional iff every symmetric element of BCC(X)
has a farthest point from the origin iff every element of BCC(X) is remotal.
This answers a question from [3] (see Remark 2.8 therein) where a similar re-
sult was proved under the additional assumption that X is a reflexive Banach
space.
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