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Abstract : Let X and Y be two infinite dimensional real or complex Banach spaces. In
this note we determine the forms of surjective additive maps φ : L(X) → L(Y ) preserving
the kernel’s dimension or the range’s codimension. As consequence, we establish that φ :
L(X) → L(X) preserves the kernel (respectively, the range) if and only if there exists an
invertible operator A ∈ L(X) such that φ(T ) = AT (respectively, φ(T ) = TA) for all
T ∈ L(X).
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Introduction and statement of main results

Let X be a Banach space, and let L(X) be the Banach algebra of all
bounded linear operators on X. For T ∈ L(X), write T ∗ for its adjoint, N(T )
for its kernel and R(T ) for its range. Recall that an operator T ∈ L(X) is
called semi-Fredholm if R(T ) is closed and either dimN(T ) or codim R(T ) is
finite. The index of such operator is defined by

ind(T ) = dim N(T )− codim R(T ) ,

and if ind(T ) is finite then T is said to be Fredholm.
In [9] it is shown that a surjective linear map φ : L(X) → L(X), where

X is an infinite-dimensional complex Banach space, is unital, i.e., φ(I) = I,
and preserves injective operators in both direction if and only if there is an
invertible operator A ∈ L(X) such that φ(T ) = ATA−1 for every T ∈ L(X).
Moreover, if X is assumed to be a Hilbert space, then it is proved that the
surjective unital linear maps φ preserving surjective operators take the above
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mentioned form. These results are extended to the case of unital surjective
additive maps φ : L(X) → L(Y ) where X and Y are a complex Banach spaces,
see [1].

Let X and Y be an infinite-dimensional Banach space over K = R or C.
The purpose of this note is to determine the forms of all surjective additive
maps, non-necessary unital, φ : L(X) → L(Y ) preserving the kernel’s dimen-
sion or the range’s codimension. We establish also that φ : L(X) → L(X)
preserves the kernel (respectively, the range) if and only if there exists an in-
vertible operator A ∈ L(X) such that φ(T ) = AT (respectively, φ(T ) = TA)
for all T ∈ L(X).

Theorem 1. Let φ : L(X) → L(Y ) be an additive surjective mapping.
The following assertions are equivalent.

(i) dimN(φ(T )) = dim N(T ) for all T ∈ L(X);

(ii) there is two bijective bounded linear, or conjugate linear, mappings
U : X → Y and V : Y → X such that φ(T ) = UTV for all T ∈ L(X).

Theorem 2. Let φ : L(X) → L(Y ) be an additive surjective mapping
such that codimR(φ(T )) = codimR(T ) for all T ∈ L(X). Then one of the
following assertions holds:

(i) There exist a bijective linear or conjugate linear mappings U : X → Y
and V : Y → X such that φ(T ) = UTV for all T ∈ L(X).

(ii) There exist a bijective linear or conjugate linear mappings U ′ : X∗ → Y
and V ′ : Y → X∗ such that φ(T ) = U ′T ∗V ′ for all T ∈ L(X). In this
case, X and Y are reflexive.

Notice that the case (ii) in the above theorem can occur in some spe-
cial Banach spaces. More precisely, it is shown in [2, 3, 4] that there exists
an infinite-dimensional complex reflexive Banach space X such that every
bounded operator T ∈ L(X) is of the form T = λI + S where λ ∈ C and S is
strictly singular; the essential spectrum of such operator is σe(T ) = {λ}. Con-
sider the linear map φ(T ) = T ∗ for all T ∈ L(X). Then φ preserves the range’s
codimension. In fact, for Fredholm operators T , we have ind(T ) = 0 and so
codim R(T ) = codim R(φ(T )). If T is not Fredholm, then it is strictly singular
and σe(T ) = {0}. Hence, the continuity of the index implies that T and T ∗

are not semi-Fredholm, and consequently codimR(T ) = codim R(φ(T ) = ∞.
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Let x ∈ X and let f be in the dual space X∗ of X, we denote, as usual,
by x ⊗ f the rank one operator given by (x ⊗ f)z = f(z)x for z ∈ X. The
spectrum of such operator is σ(x⊗ f) = {0, f(x)}.

As consequence of Theorem 1 and Theorem 2, we derive the following two
results.

Theorem 3. Let φ : L(X) → L(X) be a surjective additive map. Then
the following assertions are equivalent:

(i) N(φ(T )) = N(T ) for all T ∈ L(X);

(ii) there is an invertible operator A ∈ L(X) such that φ(T ) = AT for all
T ∈ L(X).

Proof. Assume that φ preserves the kernel, then, obviously, it preserves
the kernel’s dimension, and by Theorem 1, it takes the form φ(T ) = UTV for
all T ∈ L(X). Let us show that V = λI. Suppose, on the contrary, that there
exists x ∈ X such that x and V x are linearly independent, and let f ∈ X∗

satisfy f(x) = 1 and f(V x) = 0. It follows that

x ∈ N(I − x⊗ f) = N(U(I − x⊗ f)V ) = N(V − x⊗ fV ) ,

and hence V x = 0, a contradiction. Thus φ(T ) = AT for all T ∈ L(X), where
A = λU = φ(I) ∈ L(Y ). This completes the proof.

Theorem 4. Let φ : L(X) → L(X) be a surjective additive map. Then
the following assertions are equivalent:

(i) R(φ(T )) = R(T ) for all T ∈ L(X);

(ii) there exists an invertible operator B ∈ L(X) such that φ(T ) = TB for
all T ∈ L(X).

Proof. Assume that φ preserves the range. Then φ preserves the range’s
dimension. Observe that φ can not take the second form in Theorem 1, be-
cause otherwise, for T = x⊗f such that U ′(f) and x are linearly independent,
we will get

Vect{x} = R(T ) = R(φ(T )) = Vect{U ′(f)} ,

a contradiction. Hence, φ takes the form φ(T ) = UTV for all T ∈ L(X).
Now, for an arbitrary a ∈ X and g ∈ X∗ such that g(a) 6= 0, we have

R(a⊗ g) = R(U(a⊗ g)V ) = R(Ua⊗ g) ,
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and so {a, Ua} is linearly dependent. This shows that φ(T ) = TB for all
T ∈ L(X), where B = λV = φ(I) ∈ L(X), as desired.

Before giving the proof of Theorem 1 and Theorem 2, some lemmas are to
be established first.

It is well known that the set of semi-Fredholm operators remains invariant
under perturbation by finite rank operators.

Lemma 5. Let T be a non-zero operator in L(X). Then the following
assertions are equivalent:

(i) rg(T ) = 1;

(ii) If S ∈ L(X), then the map λ → dimN(S + λT ) is constant on Q minus
at most one point;

(iii) If S ∈ L(X), then the map λ → codimR(S + λT ) is constant on Q
minus at most one point.

Proof. (i)⇒ (ii) : Let x ∈ X and f ∈ X∗ be such that T = x ⊗ f , and
S ∈ L(X). Suppose that there exists a scalar µ such that N(S+µT )\N(S) 6= ∅.
Then we get easily that x = Sa for some a ∈ X, and so S+λT = S(I+λa⊗f)
for all λ. Therefore, if dimN(S +λT ) 6= dim N(S), I +λa⊗f is not invertible,
and consequently λf(a) = −1. This shows that the map λ → dimN(S + λT )
is constant on Q \ {− f(a)−1

}
.

Now, if N(S+λT ) ⊆ N(S) for all λ, then N(S+λT ) ⊆ N(S)∩N(f) for λ 6=
0. But, since N(S)∩N(f) ⊆ N(S +λT ), we get that N(S +λT ) = N(S)∩N(f)
for all λ 6= 0, as desired.

(i)⇒ (iii) : Let S ∈ L(X). Without loss of generality we can suppose the
existence of some µ ∈ Q for which codim R(S + µT ) is finite, and it follows in
this case that S + µT is semi-Fredholm. Hence S + λT is semi-Fredholm for
all λ. Consequently, S∗ + λT ∗ is semi-Fredholm and so codim R(S + λT ) =
dimN(S∗ + λT ∗) for all λ. Finally, since T ∗ is rank one, the first implication
implies that the map λ → dimN(S∗ + λT ∗) = codim R(S + λT ) is constant
on Q minus at most one point.[

(ii) or (iii)
]⇒ (i) : Let δ denote the kernel’s dimension or the range’s

codimension. Assume, on the contrary, that R(T ) contains two linearly inde-
pendent vectors u = Tx and v = Ty, and let N be a closed subspace such
that X = Vect{u, v} ⊕ N . Then it follows easily that X = Vect{x, y} ⊕ M
where M = T−1N . Now, let S be a bounded operator satisfying Sx = Tx,
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Sy = −Ty and S : M 7→ N is invertible. Then S is invertible, and

δ(S − λT ) = δ
(
I − λS−1T

)
= 0 for λ−1 /∈ σ

(
S−1T

)
.

Hence, δ(S−λT ) = 0 for all λ in Q minus at most one point. This contradicts
the fact that S − T and S + T are neither injective nor surjective because
(S − T )x = (S + T )y = 0, u /∈ R(S − T ) and v /∈ R(S + T ). Thus, T is rank
one operator.

Lemma 6. Let φ : L(X) → L(Y ) be a surjective additive map preserving
the kernel’s dimension or the range’s codimension. Then φ is injective.

Proof. Let T ∈ L(X) be such that φ(T ) = 0. Then, by Lemma 5, T is of
rank less than one. Assume that Tx = y 6= 0 for some x, y ∈ X, and let S
be an invertible operator such that Sx = y. It follows that φ(S − T ) = φ(S)
is either injective or surjective. But, since x ∈ N(S − T ) and y /∈ R(S − T ),
dimN(S − T ) and codim R(T − S) are non-zero, a contradiction.

Let τ be a ring automorphism of K. An additive map A : X → Y will
be called τ -quasilinear if A(λx) = τ(λ)Ax holds for all numbers λ ∈ C and
x ∈ X. Notice that in the real case all the quasilinear maps are linear because
the identity is the only ring automorphism of R, while in the complex case the
ring continuous automorphisms are the identity and the complex conjugation.

From Lemmas 5 and 6 it follows that φ preserves in both direction the set
of operators of rank one, and consequently it takes one of the following forms:

φ(x⊗ f) = Gx⊗Hf for all x ∈ X and f ∈ X∗, (1)

or

φ(x⊗ f) = Kf ⊗ Lx for all x ∈ X and f ∈ X∗, (2)

where G : X → Y , H : X∗ → Y ∗, K : X∗ → Y and L : X → Y ∗ are
τ -quasilinear bijective maps, and τ : K→ K is a ring automorphism, see [8].

Lemma 7. Let φ : L(X) → L(Y ) be a surjective additive map preserving
the kernel’s dimension or the range’s codimension. Then φ(I) is invertible.

Proof. Let S = φ(I). Suppose that φ preserves the kernel’s dimension,
then in particular S is injective. To show that S is surjective, let y be a non-
zero vector in Y . By (1) and (2) we obtain the existence of x ∈ X, f ∈ X∗

and g ∈ Y ∗ such that f(x) = 1 and φ(x⊗ f) = y ⊗ g. Since

dimN(S − y ⊗ g) = dim N(I − x⊗ f) = 1 ,
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S − y ⊗ g is not injective, and hence y ∈ R(S) because S is injective.
Now assume that φ preserves the range’s codimension, then S is surjective.

Suppose that N(S) contains a non-zero vector y, and using (1) or (2) one
can find x ∈ X, f ∈ X∗ and y ∈ Y such that f(x) = 1, g(y) 6= 0 and
φ(x⊗f) = y⊗g. Hence, codim(S−y⊗g) = codim(I−x⊗f) = 1. But, since

S = (S − y ⊗ g)
(
I − g(y)−1y ⊗ g

)
,

S − y ⊗ g is surjective, a contradiction.

Lemma 8. Let S, T be two bounded invertible operators on X, and denote
by δ and δ∗ the dimension of the kernel or the codimension of the range. If
δ(T + F ) = δ∗(S + F ) for all rank one operator F , then S = T .

Proof. Let x ∈ X, and consider an arbitrary f ∈ X∗ such that f
(
T−1x

)
=

1. It follows that δ
(
I − T−1x⊗ f

)
= 1, and

δ∗
(
I − S−1x⊗ f

)
= δ∗(S − x⊗ f) = δ(T − x⊗ f)

= δ
(
I − T−1x⊗ f

)
= 1 .

Therefore, I − S−1x ⊗ f is not invertible, and so f
(
S−1x

)
= 1. This shows

that T−1x = S−1x for all x. Consequently, T = S.

Proof of Theorem 1 and Theorem 2. Let δ denote the kernel’s dimension
or the range’s codimension, and suppose that φ preserves δ. Then, by Lemma
7, φ(I) is invertible, and the unital map φ̃ = φ(I)−1φ preserves δ.

We first treat the case when φ̃ takes the form (1), i.e., φ̃(x⊗f) = Gx⊗Hf
for all x ∈ X and f ∈ X∗. Observe that for every non-zero scalar λ, x ∈ X
and f ∈ X∗, we have δ(I − λx⊗ f) = δ(I − τ(λ)Gx⊗Hf), and so I − λx⊗ f
is invertible if and only if I − τ(λ)Gx ⊗ Hf is invertible. This shows that
H(f)(Gx) = τ(f(x)) =

(
τ ◦ f ◦ G−1

)
(Gx) for all x and f . Hence H(f) =

τ ◦f ◦G−1, and consequently φ̃(x⊗f) = G(x⊗f)G−1 for all x and f . Arguing
as in [1, 8] we get that τ and G are bounded, and so τ is either an identity or
the complex conjugation.

Let T ∈ L(X) and λ ∈ R \ (
σ(T ) ∪ σ

(
φ̃(T )

))
. For an arbitrary rank one

operator F we have

δ(T − λI + F ) = δ
(
φ̃(T )− λI + GFG−1

)

= δ
(
G−1

(
φ̃(T )− λI

)
G + F

)
.
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Hence, according to Lemma 8, φ̃(T ) = GTG−1. Therefore φ(T ) = UTV for
all T ∈ L(X) where U = φ(I)G and V = G−1.

Now assume that φ̃ is of the second form φ̃(x ⊗ f) = Kf ⊗ Lx. By an
argument similar to the previous case one can establish that K and L are a
bounded linear, or conjugate linear, operators and that φ̃(F ) = KF ∗K−1 for
every rank one operator F . Moreover, in this case, the spaces X and Y are
reflexive, see [1]. Let T ∈ L(X) and λ ∈ R \ (

σ(T ) ∪ σ
(
φ̃(T )

))
. Consider an

arbitrary rank one operator F , then it follows that

δ(T − λI + F ) = δ
(
φ̃(T )− λI + KF ∗K−1

)

= δ
(
K−1

(
φ̃(T )− λI

)
K + F ∗) .

But, since K−1
(
φ̃(T ) − λI

)
K is invertible, K−1

(
φ̃(T ) − λI

)
K + F ∗ is semi-

Fredholm and hence it has a closed range. Then, using Lemma 8 we get
that T = K−1φ̃(T )K. Therefore, φ(T ) = U ′T ∗V ′ for all T ∈ L(X) where
U ′ = φ(I)K and V ′ = K−1.

To complete the proof it remains to show that φ cannot take the second
form when φ preserves the kernel’s dimension. Assume on the contrary that
φ(T ) = U ′T ∗V ′ for all T ∈ L(X). Since Y is reflexive, there exists a non-
invertible injective operator S ∈ L(Y ), see [9, 1]. As φ is surjective, S = φ(T )
where T ∈ L(X) is injective. Consider a nonzero vector y ∈ Y , and let
f = U ′−1y and x ∈ X be such that f(x) = 1. It follows that

dimN
(
S − U ′(Tx⊗ f)∗V ′) = dim N(T − Tx⊗ f) = 1 .

Consequently, S −U ′(Tx⊗ f)∗V ′ is not injective, and since S is injective, we
obtain that

Vect{U ′f} = R
(
U ′(Tx⊗ f)∗V ′) ⊆ R(S) .

Thus, y ∈ R(S) and so S is surjective, a contradiction.
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