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On Extreme Points of the Dual Ball of a Polyhedral Space

Roi Livni

Department of Mathematics, Ben Gurion University of the Negev,
P.O.B 653, Beer-Sheva 84105, Israel, RLivni@gmail.com

Presented by Pier L. Papini Received February 3, 2009

Abstract : We prove that every separable polyhedral Banach space X is isomorphic to a
polyhedral Banach space Y such that, the set ext BY ∗ cannot be covered by a sequence of
balls B(yi, εi) with 0 < εi < 1 and εi → 0. In particular ext BY ∗ cannot be covered by
a sequence of norm compact sets. This generalizes a result from [7] where an equivalent
polyhedral norm ||| · ||| on c0 was constructed such that ext B(c0,|||·|||)∗ is uncountable but
can be covered by a sequence of norm compact sets.
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In [8] V. Klee introduced the following definition of a polyhedral Banach
space.

Definition 1. A Banach space X is called polyhedral if the unit ball of
every finite dimensional subspace of X is a polytope.

Recall that a subset B ⊆ SX∗ of the unit sphere of the dual Banach space
X∗ is called a boundary of X if for any x ∈ X there is f ∈ B with f(x) = ‖x‖.
In [3] (see also [5] and [10]), it was proved that any separable polyhedral space
has a countable boundary. The converse is true under a suitable renorming
(see [2]).

By the Krein-Milman Theorem, the set extBX∗ is a boundary for any Ba-
nach space X. In [7], a separable polyhedral Banach space X was constructed
(actually X is isomorphic to c0) such that extBX∗ is uncountable. Of course,
being separable polyhedral, X admits a countable boundary. However, it is
easily seen from the construction in [7] that the set extBX∗ can be covered
by a sequence of norm compact sets, i.e. although extBX∗ is uncountable it
is in a sense “close” to a countable set.

Definition 2. Let L be a Banach space and C ⊂ E. We say that C has
property (A) if for each sequence εi → 0, 0 < εi < 1 and any sequence of balls
B(zi, εi) = {x ∈ L : ||x− zi|| ≤ εi}, we have C *

⋃∞
i=1 B(zi, εi).
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Clearly, if C has (A) then C cannot be covered by a sequence of norm
compact sets.

The main result of this paper is the following

Theorem 1. Let Y be a separable polyhedral Banach space. Then Y is
isomorphic to a polyhedral Banach space Z such that the set extBZ∗ has
property (A).

Remark. It follows from Theorem 3 [4], that if a Banach space Y is not
isomorphic to a polyhedral space then extBY ∗ has property (A) in any equiv-
alent norm on Y .

We prove Theorem 1 in two steps. First we prove Theorem 1 for Y = co.
Here we use some ideas from [7]. Then, by using that any polyhedral space
contains an isomorphic copy of c0 (see [3]) we finish the proof.

Theorem 2. There exists a separable polyhedral Banach space X, iso-
morphic to c0, such that the set extBX∗ has property (A).

Proof. Let {ei}∞i=1 be the natural basis of c0 and {e∗i }∞i=1 be its biorthogonal
sequence in l1 = c∗0. Fix % ∈ (0, 1

2) and denote

λi =
1
2i

, i = 1, 2, . . . , a =
1
λ1

, an =
a

∑n
i=1 λi

1− %
∑∞

i=n+1 λi
, n = 1, 2, . . . .

Let Gm be the family of all injective, non-decreasing mappings from
{1, . . . ,m} to N and G∞ be the family of all injective, non-decreasing mappings
from N to N. Next define:

Am =

{
am

(
m∑

i=1

λi

)−1 m∑

k=1

εkλke
∗
g(k) : εk = ±1, g ∈ Gm

}
.

Clearly, each Am is countable. Denote

B =
∞⋃

m=1

Am, U∗ = convw∗
B,

and define a new norm on c0 as follows

|||x||| = sup{f(x) : f ∈ U∗}, x ∈ c0.
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It is easily seen that the norm ||| · ||| on c0 is equivalent to the original one
(note that A1 = {±a1e

∗
k : k = 1, 2 . . .}). Put X = (c0, |||·|||). Also a standard

argument shows that BX∗ = U∗.
For every subset A of X∗, denote A′ the set of all w∗-limit points of the

set A.

Claim 1. Every f ∈ B′ with |||f ||| = 1 (if any) does not attain its norm
|||f ||| at an element of the unit ball of X.

Proof. Take f ∈ B′, f 6= 0. We first assume that f ∈ A′m for some m ≥ 2.
Since e∗n →w∗ 0 we get

f = am

(
m∑

i=1

λi

)−1 n∑

k=1

εkλke
∗
g(k),

for some n < m and g ∈ Gn.

|||f ||| =
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣ am

(
m∑

i=1

λi

)−1 n∑

k=1

εkλke
∗
g(k)

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

=

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
am

( ∑m
i=1 λi

)−1

an

(∑n
i=1 λi

)−1 an

(
n∑

i=1

λi

)−1 n∑

k=1

εkλke
∗
g(k)

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣< 1.

Next assume that f ∈ B′ and f /∈ A′m, m = 1, 2, . . .. It is easy to see that
either f is of the form

f = a
∞∑

k=1

εkλke
∗
g(k), εk = ±1, g ∈ G∞, (1)

or

f = a
n∑

k=1

εkλke
∗
g(k), εk = ±1, g ∈ Gn (2)

If f satisfies (2) then |||f ||| < 1. So we assume that f satisfies (1). Assume
to the contrary, that there is x ∈ c0, |||x||| = 1, such that f(x) = 1. Choose s
so large that a ·max{|xg(k)|}∞k=s+1 < %

2 . Then the definition of |||·||| implies
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1 = f(x) = a
s∑

k=1

εkλkxg(k) + a
∞∑

k=s+1

εkλkxg(k)

≤ a

as

[
as

(
s∑

i=1

λi

)−1 s∑

k=1

λk|xg(k)|
]

s∑

i=1

λi +
(
a ·max

k>s
|xg(k)|

) ∞∑

k=s+1

λk

<
a

as
·

s∑

i=1

λi +
%

2

∞∑

i=s+1

λi < 1.

The last inequality follows from the following equality:

a

as

s∑

i=1

λi + %

∞∑

i=s+1

λi = 1.

Claim 2. B is a countable boundary for X and X is polyhedral.

Proof. Since each Am is countable and B =
⋃∞

m=1 Am, it follows that B
is countable. The rest of the claim is a direct result of Claim 1 and Propo-
sition 6.11 from [6]. We give a proof for the sake of completeness. Since
U∗ = convw∗B, B

w∗ = B ∪ B′ is a boundary for X. As a result of Claim 1,
none of the elements in B′ attain their norm at BX hence B is a boundary
for X. Now let F be a finite dimensional subspace of X and assume F ∗ has
infinitely many extreme points, By Milman’s theorem, these would be restric-
tions to F of elements of B

w∗
. Since F is finite-dimensional, any w∗-cluster

point of the set of the extreme points of BF ∗ attains its norm at an element of
BF . But this contradicts Claim 1. Hence F ∗ has only finitely many extreme
points, and F is polyhedral.

Claim 3. For any g ∈ G∞ and {εi}∞i=1 a sequence of signs, we have f =
a

∑∞
k=1 εkλke

∗
g(k) ∈ extU∗.

Proof. First note that from the definition of the norm |||·||| (the supremum
over the set B) follows that

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
n∑

i=1

εieg(i)

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣≤ 2
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Next the series
∑∞

i=1 εieg(i) converges in the w∗-topology of X∗∗ ∼= `∞ and
it follows that |||∑∞

i=1 εieg(i)||| ≤ 2. Moreover, setting z∗∗ =
∑∞

i=1 εieg(i)

and b∗ = a
∑∞

i=1 εiλie
∗
g(i) we see that b∗ ∈ BX∗ and z∗∗(b∗) = 2. Therefore z∗∗

attains its norm at the element b∗ ∈ BX∗ and |||z∗∗||| = 2. By a classical result
[1], since X∗ is separable, z∗∗ attains its norm at an extreme point of BX∗ too.
The latter set of points, in view of Milman’s theorem, is contained in B

w∗ . It
is easy to check that z∗∗ does not attain its norm at a finitely supported (with
respect to (e∗i )) element of B

w∗ . Among the infinitely supported members of
B

w∗ , it is clear that only b∗ satisfies z∗∗(b∗) = 2, hence b∗ is an extreme point
of BX∗ .

Claim 4. The set extU∗ has property (A).

Proof. Denote E =
{

a
∑∞

i=1 λie
∗
g(i) : g ∈ G∞

}
. By Claim 3, E ⊆ ext U∗.

So it is enough to prove that E has property (A). Our proof relies on the
following easily verified fact.

Fact 1. For each two elements u, v ∈ E, if u = a
∑∞

i=1 λie
∗
gu(i), v =

a
∑∞

i=1 λie
∗
gv(i) and gu(j) 6= gv(j) then ‖u− v‖ > 1

2j .

Assume to the contrary that

E ⊆
∞⋃

i=1

BX∗(xi, εi), εi → 0.

Since BX∗ ⊆ 2B`1 it follows that

E ⊆
∞⋃

i=1

B`1(xi, 2εi).

Obviously, we can suppose that each B`1(xi, 2εi) intersects E. For each i
choose a representative yi ∈ B`1(xi, 2εi) ∩ E.

Choose m0 sufficiently large so that for m > m0 it holds that 2εm < 1
4 .

Choose n0 sufficiently large so that if y ∈ E and gy(1) > n0 then

max{4ε1, . . . , 4εm0} < ‖y − yj‖,

for each j ≤ m0 (this is possible since 4εi < 4 and E ⊆ 2S`1). Denote by G0

the set {1, 2, . . . , n0}. Choose m1 > m0 sufficiently large such that if m > m1
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then 2εm < 1
8 . Denote by G1 the set {gym0+1(1), . . . , gym1

(1)}. By Fact 1
if x ∈ E and gx(1) /∈ G1 then ‖x − yj‖ > 1

2 for m0 < j ≤ m1. Hence,
x /∈ ∪m1

i=m0+1B`1(xi, 2εi). Next we define inductively mn and Gn such that

1) For every m > mn, 2εm < 1
2n+2 .

2) Gn is finite.
3) If gx(n) /∈ Gn then x /∈ ∪mn

i=mn−1+1B`1(xi, 2εi).

Choose mn+1 so that for m > mn+1 it holds that 2εm < 1
2n+3 . Denote

by Gn+1 the set {gymn+1(n + 1), . . . , gymn+1
(n + 1)}. For every x ∈ E and

mn < j ≤ mn+1 if gx(n + 1) /∈ Gn+1 then by Fact 1 ‖x − yj‖ > 1
2n+1 >

4εj and x /∈ ∪mn+1

mn+1B`1(xi, 2εi). Define b1 = max (G0 ∪G1) + 1 and bn to
be max

(∪n
i=0Gn ∪ {b1, . . . , bn−1}

)
+ 1. Next define g ∈ G∞ to be g(n) =

bn, n = 1, 2, . . . , and x =
∑∞

i=1 λie
∗
g(i). From our construction follows that

x /∈ ⋃∞
i=1 B`1(xi, 2εi), a contradiction.

The proof of Theorem 2 is complete.

Proof of Theorem 1. By [3] Y contains c0 (actually Y is c0-saturated).
Since Y is separable it follows [9] that c0 is complemented in Y. Hence Y
is isomorphic to the direct sum of Y1 and c0, where Y1 is isometric to some
subspace of Y and hence polyhedral. By Theorem 2, c0 is isomorphic to a
polyhedral Banach space X with the set extBX∗ having property (A). Put
Z = (Y1 ⊕∞ X). Clearly, Z is polyhedral and Y ∼= Z. Since extBZ∗ =
extBY ∗1 ∪ extBX∗ it follows that the set extBZ∗ has property (A). The proof
is complete.
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