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1. Introduction

Let X be an infinite-dimensional Banach space. We denote by C(X) (resp.
L(X)) be the set of all closed densely defined linear operators on X (resp.
the set of all bounded linear operators on X). The subspace of all compact
operators of L(X) is designed by K(X). For T ∈ C(X), we write D(T ) ⊂ X
for the domain, N (T ) = {x ∈ D(T ) : Tx = 0} ⊂ X for the null space
and R(T ) ⊂ X for the range of T . The nullity, α(T ), of T is defined as the
dimension ofN (T ) and the deficiency, β(T ), of T is defined as the codimension
of R(T ) in X. The spectrum of T will be denoted by σ(T ). The resolvent
set of T , ρ(T ), is the complement of σ(T ) in the complex plane. For a linear
subspace M of X we denote by iM the canonical injection of M into X and
qM the quotient map from X onto X/M . We write TiM for the restriction of
T to M ; by the usual convention TiM = Ti(M∩D(T )). The families of infinite
dimensional, closed infinite codimensional subspaces of X are respectively
denoted by I(X) and Ic(X).

An operator T ∈ C(X) is semi-Fredholm if R(T ) is closed and at least one
of α(T ) and β(T ) is finite. For such an operator we define an index i(T ) by
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i(T ) = α(T )−β(T ). Let Φ+(X) (resp. Φ−(X)) denote the set of upper (resp.
lower) semi-Fredholm operators, i.e., the set of semi-Fredholm operators with
α(T ) < ∞ (resp. β(T ) < ∞). An operator T is Fredholm if it is both upper
semi-Fredholm and lower semi-Fredholm. Let Φ(X) = Φ+(X)∩Φ−(X) denote
the set of Fredholm operators on X.

To define ascent and descent we consider the case in which D(T ) and R(T )
are in the same linear space X. We can then define the iterates T 2, T 3, . . .
of T . If n > 1, D (Tn) is the set

{
x : x, Tx, . . . , Tn−1x ∈ D(T )

}
, and

Tnx = T
(
Tn−1x

)
. We can then consider N (Tn) and R (Tn). It is well

known that N (Tn) ⊂ N (
Tn+1

)
and R (

Tn+1
) ⊂ R (Tn) for n ≥ 0. We

follow the convention that T 0 = I (the identity operator on X, with D(I) =
X). Thus N (

T 0
)

= {0} and R (
T 0

)
= X. It is also well known that if

N (
T k

)
= N (

T k+1
)
, then N (Tn) = N (

T k
)

when n ≥ k. In this case the
smallest nonnegative integer k such that N (

T k
)

= N (
T k+1

)
is called the

ascent of T ; it is denoted by a(T ). If no such k exists we define a(T ) = ∞.
Similarly, if R (

T k
)

= R (
T k+1

)
, then R (Tn) = R (

T k
)

when n ≥ k. If there
is such a k, the smallest such k is called the descent of T , and denoted by
d(T ). If no such integer exists, we shall say that T has infinite descent. For
T ∈ C(X) we define the generalized kernel of T by

N∞(T ) =
∞⋃

n=1

N (Tn)

and the generalized range of T by

R∞(T ) =
∞⋂

n=1

R (Tn) .

If N∞(T ) = N (
T k

)
for some k, then a(T ) < ∞ and the ascending sequence

N (Tn) terminates. If R∞(T ) = R (
T k

)
for some k, then d(T ) < ∞ and the

descending sequence R (Tn) terminates.
An operator T ∈ C(X) is called upper semi-Browder if T ∈ Φ+(X),

i(T ) ≤ 0 and a(T ) < ∞. T is called lower semi-Browder if T ∈ Φ−(X),
i(T ) ≥ 0 and d(T ) < ∞. Let B+(X) (resp. B−(X)) denote the set of upper
(resp. lower) semi-Browder operators. An operator T ∈ C(X) is called Brow-
der if it is both upper semi-Browder and lower semi-Browder, i.e., T ∈ Φ(X),
i(T ) = 0, a(T ) < ∞ and d(T ) < ∞. Let B(X) the set of Browder operators,
i.e., B(X) = B+(X) ∩ B−(X).
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The set of lower (upper) semi-Browder operators and Browder operators
define, respectively, the corresponding spectra, i.e., for T ∈ C(X) set

σdb(T ) = {λ ∈ C : T − λI 6∈ B−(X)} ,

σab(T ) = {λ ∈ C : T − λI 6∈ B+(X)} ,

σeb(T ) = {λ ∈ C : T − λI 6∈ B(X)} .

It is clear that σeb(T ) = σab(T ) ∪ σdb(T ). The sets σeb(T ), σdb(T ) and
σab(T ) are called Browder’s essential spectrum of T , Browder’s essential de-
fect spectrum of T and Browder’s essential approximate point spectrum of T ,
respectively.

We denote by Φb
+(X) = Φ+(X)∩L(X) (resp. Φb−(X) = Φ−(X)∩L(X)) the

set of upper (resp. lower) bounded semi-Fredholm operators and by Bb
+(X) =

B+(X)∩L(X) (resp. Bb−(X) = B−(X)∩L(X)) the set of upper (resp. lower)
bounded semi-Browder operators. Let Φb(X) = Φb

+(X) ∩ Φb−(X) the set of
bounded Fredholm operators on X and Bb(X) = Bb

+(X) ∩ Bb−(X) the set of
bounded Browder operators.

Remark 1.1. From [16, Chapter 3, Section 20, Corollary 11], we have

(i) if T ∈ Φb
+(X) and a(T ) < ∞, then i(T ) ≤ 0;

(ii) if T ∈ Φb−(X) and d(T ) < ∞, then i(T ) ≥ 0;

(iii) if T ∈ Φb(X), a(T ) < ∞ and d(T ) < ∞, then i(T ) = 0.

The study of the problem of the stability of bounded semi-Browder op-
erators under commuting operator perturbations was done by different au-
thors [9, 17, 18]. In [9, Theorem 2], S. Grabiner proved that if T ∈ Φb−(X)
(resp. Φb

+(X)) then d(V ) < ∞ (resp. a(V ) < ∞) if and only if d(T ) < ∞
(resp. a(T ) < ∞), where T − V = K ∈ K(X) and TV = V T . The result
of stability of bounded semi-Browder operators under commuting compact
operator perturbations was improved by V. Rakoc̆ević in [18] for K ∈ R(X),
where R(X) designates the set of Riesz operators. Indeed, in [18, Corollary 2],
V. Rakoc̆ević showed that if T ∈ Φb

+(X) and a(T ) < ∞ (resp. T ∈ Φb−(X) and
d(T ) < ∞), then T + K ∈ Φb

+(X) and a(T + K) < ∞ (resp. T + K ∈ Φb−(X)
and d(T + K) < ∞), where K satisfies TK = KT .

One of the main problems in studying the semi-Browder and Browder op-
erators is the stability of the Browder’s essential approximate point spectrum,
Browder’s essential defect spectrum and Browder’s essential spectrum. In this
way, V. Rakoc̆ević proved in [18, Theorem 7, Corollary 8] that:
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(i) an operator K ∈ L(X) satisfies

σab(T + K) = σab(T )

for all T ∈ L(X) which commutes with K if and only if K ∈ R(X);

(ii) an operator K ∈ L(X) satisfies

σdb(T + K) = σdb(T )

for all T ∈ L(X) which commutes with K if and only if K ∈ R(X);

(iii) an operator K ∈ L(X) satisfies

σeb(T + K) = σeb(T )

for all T ∈ L(X) which commutes with K if and only if K ∈ R(X).

The analysis of the stability of semi-Browder operators under compact
operator perturbation, described above, was extented by F. Fakhfakh and
M. Mnif in [6] to the case of closed densely defined linear operators. More
precisely, F. Fakhfakh and M. Mnif proved in [6] under some assumptions
that T ∈ B+(X) if and only if T + K ∈ B+(X) for all K ∈ K(X) On the
other hand, in reflexive Banach space, we show that T ∈ B−(X) if and only if
T + K ∈ B−(X) for all K ∈ K(X) satisfying some hypotheses. Furthermore,
as an application we infer σab(T ) = σab(T + K) and σdb(T ) = σdb(T + K) for
all K ∈ K(X) satisfying some hypotheses.

The purpose of this work is to pursue the investigation started in [6] and
to extend it to general Banach spaces under less hypotheses. The study uses
the concept of measure of non strict-singularity ∆ψ (see Definition 3.5) and
non strict-cosingularity ∆′

ϕ (see Definition 4.3) in order to deduce the stability
under perturbations belonging to SS(X) and SC(X) (see Definition 3.1 and
Definition 4.1).

By means of a perturbation function (see Definition 3.4) we show in The-
orem 3.1 and Theorem 3.2 (see Section 3) under the hypotheses:

(i) K commutes with T (see Definition 3.6),

(ii) either ρ(T ) or ρ(T + K) 6= ∅,
(iii) ∆ψ(K) < Γψ(T ) that

T ∈ B+(X) if and only if T + K ∈ B+(X)

and
T ∈ B(X) if and only if T + K ∈ B(X) .
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After that, using the properties of the functions ∆ψ and Γψ, we derive the
stability of upper semi-Browder operators under the class of strictly singular
operator perturbations. This result generalizes Corollary 3.2 in [6]. Con-
cerning the stability of lower semi-Browder operators, the analysis uses the
concept of a coperturbation function. More precisely, let X be a Banach space,
T ∈ C(X) and K ∈ L(X). Under the hypotheses:

(i) K commutes with T ,

(ii) ρ(T ) 6= ∅ and ρ(T + K) 6= ∅,
(iii) ∆′

ϕ(K) < Γ′ϕ(T ),

we prove in Theorem 4.1 (see Section 4) that

T ∈ B−(X) if and only if T + K ∈ B−(X) .

Next, using the properties of the functions ∆′
ϕ and Γ′ϕ, we derive the

stability of lower semi-Browder operators by strictly cosingular operator per-
turbations.

In the last section of the paper we shall apply the results described above
to study the invariance of the Browder’s essential approximate point spec-
trum, Browder’s essential spectrum and Browder’s essential defect spectrum
on Banach spaces.

The structure of this work is as follows. In Section 2, we establish some
auxiliary results concerning the properties of lower semi-Fredholm operators
and the relation between a(T ) (resp. d(T )) and d (T ∗) (resp. a (T ∗)) for closed
densely defined linear operators. In Section 3, we introduce the notion of
a perturbation function to study the stability of Browder and upper semi-
Browder operators. The main results of this section are Theorem 3.1 and
Theorem 3.2. In Section 4, we use the concept of a coperturbation function
to deduce the stability of lower semi-Browder operators under strictly cosin-
gular operator perturbations. The main result of this section is Theorem 4.1.
Finally, in Section 5 we apply the results of Section 3 and Section 4 to investi-
gate the Browder’s essential approximate point spectrum, Browder’s essential
spectrum and Browder’s essential defect spectrum.

2. Preliminaries results

Throughout this section our interest concentrates to gather some auxiliary
results that we will need in the sequel.
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We begin with the following result given in [19, Theorem 7.29] for closed
densely defined linear operators. We remark that the hypothesis D(T ) = X
is unnecessary in [19, Theorem 7.29].

Lemma 2.1. Let X be a Banach space and T : D(T ) ⊂ X → X a closed
operator. If there is a seminorm |·| defined on D(T ), which is compact relative
to the graph norm of T such that ‖x‖ ≤ C‖Tx‖+ |x| for all x ∈ D(T ), then
α(T ) < ∞ and R(T ) is a closed subspace of X.

Proof. Proceeding as the proof of [19, Theorem 7.29].

The results of the two next lemmas were established in [19, Chapter 9,
Theorem 9.41, Theorem 9.53 ] for bounded linear operators. Similars state-
ments can be made for closed linear operators.

Lemma 2.2. Let X be a Banach space and T : D(T ) ⊂ X → X a closed
operator. Then, α(T ) < ∞ and R(T ) is closed if and only if there are a
projection P ∈ L (X, XT ) with dimR(P ) < ∞, R(P ) ⊂ D(T ) and a constant
C > 0 such that

d (x,R(P )) ≤ C‖Tx‖ ∀x ∈ N (P ) ∩ D(T ) . (2.1)

Proof. Assume that α(T ) < ∞ and R(T ) is closed. From [19, Chapter 5,
Lemma 5.1, Lemma 5.2], there is a projection P ∈ L(X) such that R(P ) =
N (T ). It is clear that P ∈ L (X,XT ), where XT denotes the linear space D(T )
normed by ‖x‖T = ‖x‖ + ‖Tx‖ (x ∈ D(T )). Since R(T ) is closed, then by
[19, Chapter 3, Theorem 3.14] there is a constant C such that d (x,N (T )) ≤
C‖Tx‖ for all x ∈ D(T ). Hence,

d (x,R(P )) = d (x,N (T )) ≤ C‖Tx‖ ∀x ∈ N (P ) ∩ D(T ) .

Conversely, if (2.1) holds for some P ∈ L (X, XT ), then from [19, Chap-
ter 9, Lemma 9.40] it follows that ‖(I − P )x‖ ≤ c d ((I − P )x,R(P )) where
c is a constant. Let x ∈ D(T ). It follows from the hypothesis that
d ((I − P )x,R(P )) ≤ C‖T (I − P )x‖. So,

‖x‖ ≤ C‖Tx‖+ |x| ∀x ∈ D(T )

where |x| = ‖Px‖+C‖TPx‖ ≤ C‖Px‖T . Since P ∈ K (X,XT ), we can verify
that | · | is a seminorm defined on D(T ) compact relative to the graph norm
of T . This implies by the use of Lemma 2.1 that α(T ) < ∞ and R(T ) is a
closed subspace of X.
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Lemma 2.3. Let X be a Banach space and T ∈ C(X). If R(T ) is not
closed, then there are sequences {xk} ⊂ X, {x∗k} ⊂ D (T ∗), such that

x∗j (xk) = δjk , ‖x∗k‖ = 1 , ‖xk‖ ≤ ak , ‖xk‖ ‖T ∗x∗k‖ <
1
2k

, (2.2)

where the ak are given by

a1 = 2 , an = 2

(
1 +

n−1∑

k=1

ak

)
n = 2, 3, . . . .

Proof. We proceed by induction. Since R(T ) is not closed, also R (T ∗) is
not closed. Hence by [19, Chapter 3, Theorem 3.14], there exists x∗ ∈ D (T ∗)
such that

‖T ∗x∗‖ <
1
4

d (x∗,N (T ∗)) <
1
4
‖x∗ − x∗0‖

where x∗0 ∈ N (T ∗). Let x∗1 = x∗−x∗0
‖x∗−x∗0‖ ∈ D (T ∗). It is easy to see that ‖x∗1‖ = 1

and ‖T ∗x∗1‖ < 1
4 . It remains to find x1 such that x∗1(x1) = 1 and ‖x1‖ ≤ 2.

Suppose that for all x ∈ X such that x∗1(x) = 1 we have ‖x‖ > 2. Let x ∈ X
such that x∗1(x) 6= 0 and let x0 = x

x∗1(x) . It is clear that ‖x0‖ > 2 since

x∗1(x0) = 1. So |x∗1(x)| ≤ 1
2‖x‖. This contradicts the fact that ‖x∗1‖ = 1. Now

assume that x1, x2, . . . , xn−1 and x∗1, x
∗
2, . . . , x

∗
n−1 have been found satisfying

equation (2.2). Define an operator Pn on X∗ by

Pnx∗ =
n−1∑

k=1

x∗(xk)x∗k .

Due to equation (2.2), it is easy to verify that Pn ∈ L (X∗, X∗
T ∗). Since R (T ∗)

is not closed, then by Lemma 2.2 there is x∗n ∈ N (Pn) ∩ D (T ∗) such that

‖T ∗x∗n‖ <
d (x∗n,R(Pn))

2nanCn
,

where Cn is such that d (x∗,R(Pn)) ≤ ‖x∗ − Pnx∗‖ ≤ Cn‖x∗‖. Consequently,
‖T ∗x∗n‖ < ‖x∗n‖

2nan
. We can take ‖x∗n‖ = 1. Let x ∈ X such that x∗n(x) = 1 and

‖x‖ ≤ 2. Set

xn = x−
n−1∑

k=1

x∗k(x)xk .

Therefore equation (2.2) holds for all n.
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The following proposition is well known for bounded lower semi-Fredholm
operators in [2, Theorem 4.4.10]. We will improve it for closed densely defined
linear operators.

Proposition 2.1. Let X be a Banach space and T ∈ C(X). Then we
have, T ∈ Φ−(X) if and only if β(T −K) < ∞ for all K ∈ K(X), where β(T )
denotes the codimension of R(T ) in X.

Proof. If T ∈ Φ−(X) and K ∈ K(X), then T − K ∈ Φ−(X) by [13,
Chapter 4, Theorem 5.26]. In particular, β(T−K) = β(T−K) < ∞. Suppose
T 6∈ Φ−(X). Then either R(T ) is closed and β(T ) = β(T ) = ∞ or R(T ) is not
closed. In the first case taking K = 0 we obtain β(T−K) = β(T−K) = ∞ and
we are finished. So assume that R(T ) is not closed. Therefore, by Lemma 2.3
there are sequences {xk} and {x∗k} satisfying (2.2). We now define the finite
rank operators

Kn(x) =
n∑

k=1

T ∗x∗k(x)xk , n = 1, 2, . . . .

For n > m we obtain

‖Kn(x)−Km(x)‖ ≤
n∑

k=m+1

‖T ∗x∗k‖‖x‖‖xk‖ ≤ ‖x‖
n∑

k=m+1

2−k.

Therefore Kn converges to the compact operator

K(x) =
∞∑

k=1

T ∗x∗k(x)xk .

Now for each x ∈ D(T ) and each k we have x∗k(K(x)) = T ∗x∗k(x) = x∗k(Tx).
Consequently each of the x∗k annihilates R(T −K). Since the x∗k are linearly
independent, it follows that β(T −K) = ∞.

It is well known for bounded semi-Fredholm operators that the ascent
(resp. descent) of T equals the descent (resp. ascent) of T ∗. The result holds
true for closed densely defined lower semi-Fredholm operators.

We begin with the following useful result.

Lemma 2.4. Let X be a Banach space and T ∈ C(X) such that ρ(T ) 6= ∅.
If T ∈ Φ−(X), then T k ∈ Φ−(X) for every k ∈ N.
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Proof. Since ρ(T ) 6= ∅, then by [5, Proposition 20, p. 1181] T k is a closed
operator for every k ∈ N. On the other hand, from [19, Chapter 7, Lemma
7.36], it follows that D (T k) = X for all k ∈ N. By [12, Lemma 544], we infer
that R (

T k
)

is a closed subspace of X and β
(
T k

)
< ∞ for all k ∈ N. This

completes the proof.

Proposition 2.2. Let X be a Banach space and T ∈ C(X) such that
ρ(T ) 6= ∅. If T ∈ Φ−(X), then

(i) a (T ∗) = d(T ),

(ii) a(T ) = d (T ∗).

Proof. (i) It is well known that

a (T ∗) = inf
{

k : N (
T ∗k

)
= N (

T ∗k+1)} .

The use of Lemma 2.4 and [19, Chapter 7, Theorem 7.35] leads to

a (T ∗) = inf
{

k : N ((
T k

)∗) = N ((
T k+1

)∗)}
. (2.3)

Using the fact that T k ∈ Φ−(X), we deduce that

R(
T k

)⊥ = N ((
T k

)∗)
. (2.4)

Let p = a (T ∗). Due to equations (2.3) and (2.4), we obtain R (T p)⊥ =
R (

T p+1
)⊥. So d(T ) ≤ a (T ∗). On the other hand, for k = d(T ) we have

R (
T k

)⊥ = R (
T k+1

)⊥. Equations (2.3) and (2.4) allowed us to write a (T ∗) ≤
d(T ). This ends the proof of (i).

(ii) Applying Lemma 2.4 together with [19, Chapter 7, Theorem 7.15,
Theorem 7.35], we get

R(
T ∗k

)
= R((

T k
)∗) = N (

T k
)⊥

. (2.5)

For p = a(T ) we have N (T p)⊥ = N (
T p+1

)⊥. Equation (2.5) gives d (T ∗) ≤
a(T ). On the other hand, from equation (2.5) we have N (

T k
)⊥ = N (

T k+1
)⊥

where k = d (T ∗). So a(T ) ≤ d (T ∗). This completes the proof of (ii).

As a consequence of Proposition 2.2, we obtain the following results.

Corollary 2.1. Let X be a Banach space and T ∈ C(X).
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(i) If T ∈ Φ+(X) and a(T ) < ∞, then i(T ) ≤ 0.

(ii) Suppose moreover ρ(T ) 6= ∅. If T ∈ Φ−(X) and d(T ) < ∞, then
i(T ) ≥ 0.

(iii) Suppose moreover ρ(T ) 6= ∅. If T ∈ Φ(X), a(T ) < ∞ and d(T ) < ∞,
then we have i(T ) = 0.

Proof. (i) The statement follows from [20, Theorem 4.2].
(ii) From [13, Chapter 4, Theorem 5.13] we have α (T ∗) = β(T ) < ∞.

On the other hand, by Proposition 2.2 we infer a (T ∗) = d(T ) < ∞. Hence
applying [20, Theorem 4.2], we get α (T ∗) ≤ β (T ∗). So i(T ) = −i (T ∗) ≥ 0.

(iii) This assertion is obvious from (i) and (ii).

Remark 2.1. Corollary 2.1 allows us to write:

(i) T ∈ B+(X) if and only if T ∈ Φ+(X) and a(T ) < ∞.

(ii) If ρ(T ) 6= ∅, then T ∈ B−(X) if and only if T ∈ Φ−(X) and d(T ) < ∞.

(iii) If ρ(T ) 6= ∅, then T ∈ B(X) if and only if T ∈ Φ(X), a(T ) < ∞ and
d(T ) < ∞.

3. Stability of upper semi-Browder and Browder operators

The purpose of this section is to introduce the concept of a perturbation
function in order to deduce the stability of upper semi-Browder and Browder
operators under strictly singular operator perturbations.

At the beginning of this section let us recall some useful definitions.

Definition 3.1. ([19]) Let X be a Banach space and T ∈ L(X). We
say that T is strictly singular if there is no M ∈ I(X) such that TiM has a
continuous inverse.

Let SS(X) denote the set of strictly singular operators on X. It forms a
closed two-sided ideal of L(X) containing K(X).

Definition 3.2. ([13]) Let X be a Banach space and T : D(T ) ⊂ X →
X a linear operator. We define the minimum modulus of T by

γ(T ) = sup {α : α d(x,N (T )) ≤ ‖Tx‖ ∀x ∈ D(T )} ,

where d(x,N (T )) is the distance of x from N (T ).
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Definition 3.3. ([3]) Let X be a Banach space and T : D(T ) ⊂ X → X
a linear operator. We say that T is somewhere continuous if TiM is contin-
uous for some infinite dimensional subspace M of D(T ); otherwise we call T
nowhere continuous.

Example 3.1. Let X be a Banach space, A ∈ L(X) and B ∈ C(X) such
that α(B) = ∞. It is clear that the closed densely defined linear operator
T = A + B is somewhere continuous.

Definition 3.4. ([1]) We define a perturbation function to be a function
ψ assigning to each pair of normed spaces X, Y and a linear operator T :
D(T ) ⊂ X → Y a number ψ(T ) ∈ [0,∞], verifying the following properties:

(i) ψ(λT ) = |λ|ψ(T ), where λ ∈ C;

(ii) ψ(T + S) = ψ(T ), for all S ∈ PK(X,Y ), where PK(X,Y ) designates
the set of precompact operators;

(iii) ψ(T ) ≤ ‖T‖ whenever T is a bounded operator. Otherwise ‖T‖ = ∞;

(iv) γ(T ) ≤ ψ(T ) whenever dimD(T ) = ∞ and α(T ) < ∞;

(v) ψ (TiM ) ≤ ψ(T ), M ∈ I(D(T )).

Definition 3.5. ([1]) Given a perturbation function ψ. We define the
functions Γψ and ∆ψ as follows: for a linear operator T : D(T ) ⊂ X → Y
where X and Y denote two normed spaces, if dimD(T ) < ∞, then Γψ(T ) = 0.
If dimD(T ) = ∞, then

Γψ(T ) = inf {ψ (TiM ) : M ∈ I(D(T ))}

and
∆ψ(T ) = sup {Γψ (TiM ) : M ∈ I(D(T ))} .

∆ψ is said measure of non strict-singularity.

Remark 3.1. From the definitions given above, we see that there is an un-
bounded operator T satisfying Γψ(T ) < ∞. More precisely, if T is somewhere
continuous, then Γψ(T ) < ∞. Then by Example 3.1, it is easy to conclude
that the condition T ∈ C(X) and Γψ(T ) < ∞ does not imply that T ∈ L(X).

We start our analysis by the following lemmas needed in the proof of the
main result of this section.
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Lemma 3.1. Let X be a Banach space, T ∈ C(X) and K ∈ L(X). If
∆ψ(K) < Γψ(T ), then T + K ∈ Φ+(X), T ∈ Φ+(X) and i(T + K) = i(T ).

Proof. First we will prove that T + K ∈ Φ+(X). Suppose this is not
so. Then, by [4, Proposition 6] and [3, Corollary 3.7] there is S ∈ K(X)
such that α(T + K − S) = ∞. Take M = N (T + K − S) ⊂ D(T ). Thus,
(T + K)iM = SiM . Let N be a subspace ⊂ M such that dimN = ∞.
So (TiM )iN = −(KiM )iN + (SiM )iN . Using the properties of ψ, we get
ψ(TiN ) = ψ(KiN ). Hence, Γψ(TiM ) = Γψ(KiM ). On the other hand, it is
easy to show that Γψ(T ) ≤ Γψ (TiM ). Therefore,

Γψ(T ) ≤ Γψ (TiM ) = Γψ (KiM ) ≤ ∆ψ(K) .

This contradiction shows that T + K ∈ Φ+(X). Let 0 ≤ t0 ≤ 1. Then
∆ψ (t0K) = t0∆ψ(K) < Γψ(T ) and so, by what we have just proved, T+t0K ∈
Φ+(X). Therefore, T ∈ Φ+(X). In order to complete the proof we will check
that the index is constant. Let t0 ∈ [0, 1]. There is an α > 0 such that for all
t ∈ [0, 1] satisfying |t− t0| < α we have by [13, Chapter 4, Theorem 5.22]

i (T + t0K) = i (T + t0K + (t− t0)K) = i (T + tK) .

From the Heine-Borel theorem, there is a finite number of sets which cover
[0, 1]. Since each of theses sets overlaps with at least one other and the index
is constant on each one, we see that i(T + K) = i(T ).

Definition 3.6. ([11]) Let X be a Banach space, T : D(T ) ⊂ X → X
and K : D(K) ⊂ X → X two linear operators. We say that K commutes
with T if

(i) D(T ) ⊂ D(K),

(ii) Kx ∈ D(T ) whenever x ∈ D(T ),

(iii) KTx = TKx for x ∈ D (
T 2

)
.

Lemma 3.2. ([11, Lemma 1.1]) Let X be a Banach space, T ∈ C(X)
and K ∈ L(X). If K commutes with T , then K commutes with T + K.

Remark 3.2. Let X be a Banach space, T ∈ C(X) and K ∈ L(X). If K
commutes with T , then K commutes with T − λ for every λ ∈ C.



browder and semi-browder operators 231

Lemma 3.3. Let X be a Banach space, T ∈ C(X) and K ∈ L(X).
If K commutes with T and either ρ(T ) or ρ(T + K) 6= ∅, then KTx = TKx
for all x ∈ D(T ).

Proof. First, we suppose ρ(T ) 6= ∅. Let x ∈ D(T ) and λ ∈ ρ(T ). Since
K : D(T ) → D(T ), then K(λ− T )−1x ∈ D(T ). Take y = (λ− T )−1x. Thus,
(λ − T )y = (λ − T )(λ − T )−1x ∈ D(T ). So y ∈ D (

T 2
)
. Using Remark 3.2,

we get K(λ − T )y = (λ − T )Ky. Therefore, (λ − T )−1Kx = K(λ − T )−1x.
By continuity, we infer that K(λ− T )−1x = (λ− T )−1Kx for all x ∈ X. Let
u = (λ− T )−1x ∈ D(T ). So that,

(λ− T )Ku = (λ− T )K(λ− T )−1x

= (λ− T )(λ− T )−1Kx = Kx = K(λ− T )u

which implies that KTu = TKu for all u ∈ D(T ). Now, we assume ρ(T+K) 6=
∅. Hence, applying the reasoning above together with Lemma 3.2, we get
K(T + K)x = (T + K)Kx for all x ∈ D(T ) = D(T + K). Thus, KTx = TKx
for all x ∈ D(T ).

We recall the following result owing to T.T. West.

Lemma 3.4. ([21, Proposition 1.6]) Let X be a linear space and
T : D(T ) ⊂ X → X a linear operator. If α(T ) < ∞, then a(T ) < ∞ if
and only if N∞(T ) ∩R∞(T ) = {0}.

Now we are ready to state our first main result.

Theorem 3.1. Let X be a Banach space, T ∈ C(X) and K ∈ L(X) such
that either ρ(T ) or ρ(T + K) 6= ∅. Assume that

(i) K commutes with T ,

(ii) ∆ψ(K) < Γψ(T ), where ψ is a perturbation function.

Then

T ∈ B+(X) if and only if T + K ∈ B+(X) .

Proof. We first claim that if T ∈ B+(X), then T +K ∈ B+(X). Indeed, let
T ∈ B+(X) thus T ∈ Φ+(X) and a(T ) < ∞. From Lemma 3.1 we conclude
that T + K ∈ Φ+(X). Since T is a closed operator such that α(T ) < ∞ and
R(T ) is a closed subspace of X, then we can deduce from [7, Chapter 17,
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Proposition 3.2], that T p is a closed operator for all p ∈ N. Therefore, by
[13, Chapter 3, Problem 5.9] N (T p) is a closed subspace. Thus, N∞(T ) =
N∞(T ) since a(T ) = p < ∞. Using Lemma 3.4 we infer that

N∞(T ) ∩R∞(T ) = N∞(T ) ∩R∞(T ) = {0} .

Set Tλ = T + λK, where λ ∈ [0, 1]. It is clear that Tλ ∈ Φ+(X) for each
λ ∈ [0, 1], since ∆ψ(λK) = λ∆ψ(K) < Γψ(T ). Therefore, by Lemma 3.3 and
[8, Theorem 3], there exists ε = ε(λ) such that

N∞(Tλ) ∩R∞(Tλ) = N∞(Tµ) ∩R∞(Tµ) (3.1)

for all µ in the open disc S(λ) with center λ and radius ε. Equation (3.1)
proves that N∞(Tλ) ∩ R∞(Tλ) is a locally constant function of λ on the
interval [0, 1]. Or every locally constant function on a connected set like [0, 1]
is constant, then we conclude that N∞(T + K) ∩ R∞(T + K) = {0}. Thus,
N∞(T + K) ∩ R∞(T + K) = {0} and again by Lemma 3.4 it follows that
a(T + K) < ∞. Conversely, let T + K ∈ B+(X). Lemma 3.1 proves that
T ∈ Φ+(X). It remains to show that a(T ) < ∞. To do this, we consider

(T + K)λ = T + K + λK = T + (λ + 1)K ,

where λ ∈ [−1, 0] and we reasone in the same way as above.

As a consequence of Theorem 3.1, we obtain the stability of upper semi-
Browder operators under strictly singular operator perturbations.

Corollary 3.1. Let X be a Banach space and T ∈ C(X) such that
ρ(T ) 6= ∅. Let K ∈ SS(X) such that K commutes with T . Then,

T ∈ B+(X) if and only if T + K ∈ B+(X) .

Proof. We first claim that if T ∈ B+(X), then T + K ∈ B+(X). If
dimD(T ) < ∞, then T ∈ SS(X). This contradicts the hypothesis T ∈
Φ+(X). So, we may assume dimD(T ) = ∞ throughout. From [1, Theorem
2.7 (i)-(ii)], it follows that Γψ(T ) > 0 = ∆ψ(K). This implies by the use of
Theorem 3.1 that T +K ∈ B+(X). Conversely, by [1, Theorem 2.7 (i)-(ii)] we
infer that

Γψ(T + K) > 0 = ∆ψ(−K) = ∆ψ(K) .

From Lemma 3.2 together with Theorem 3.1, we deduce that T + K −K =
T ∈ B+(X).
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Now as a corollary, we get the following result which represents an im-
provement of [6, Corollary 3.2].

Corollary 3.2. Let X be a Banach space and T ∈ C(X) such that
ρ(T ) 6= ∅. Let K ∈ K(X) such that K commutes with T . Then

T ∈ B+(X) if and only if T + K ∈ B+(X) .

Proof. Since K(X) ⊂ SS(X), the assertion follows from Corollary 3.1.

The second main result of this section concerns the stability of Browder
operators.

Theorem 3.2. Let X be a Banach space, T ∈ C(X) and K ∈ L(X) such
that either ρ(T ) or ρ(T + K) 6= ∅. Assume that

(i) K commutes with T ,

(ii) ∆ψ(K) < Γψ(T ), where ψ is a perturbation function.

Then,
T ∈ B(X) if and only if T + K ∈ B(X) .

Proof. We first claim that if T ∈ B(X), then T + K ∈ B(X). Indeed,
let T ∈ B(X) thus T ∈ Φ(X), i(T ) = 0, a(T ) < ∞ and d(T ) < ∞. The
use of Lemma 3.1 shows that T + K ∈ Φ+(X) and i(T + K) = i(T ) = 0.
So T + K ∈ Φ(X) and i(T + K) = 0. By Theorem 3.1, we deduce that
a(T +K) < ∞. From [10, Theorem 4.3], we have d(T +K) = a(T +K) < ∞.
Conversely, the proof is very similar as above.

As an immediate consequence of Theorem 3.2 we have:

Corollary 3.3. Let X be a Banach space and T ∈ C(X) such that
ρ(T ) 6= ∅. Let K ∈ SS(X) such that K commutes with T . Then

T ∈ B(X) if and only if T + K ∈ B(X) .

4. Stability of lower semi-Browder operators

This section is devoted to introduce the notion of a coperturbation function
in order to deduce the stability of lower semi-Browder operators by strictly
cosingular operator perturbations.

Let us recall the following definitions.
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Definition 4.1. ([1]) Let X be a Banach space and T ∈ L(X). We say
that T is strictly cosingular if there is no M ∈ Ic(X) such that (qMT )∗ has a
continuous inverse.

Let SC(X) denote the set of strictly cosingular operators on X. It forms
a closed two-sided ideal of L(X) containing K(X).

Definition 4.2. ([1]) A coperturbation function will be a function ϕ
which determines, for each pair of normed spaces X, Y and a linear operator
T : D(T ) ⊂ X → Y, a number ϕ(T ) ∈ [0,∞] with the following properties:

(i) ϕ(λT ) = |λ|ϕ(T ), where λ ∈ C;

(ii) ϕ(T + S) = ϕ(T ), for all S ∈ PK(X,Y );

(iii) ϕ(T ) ≤ ‖T‖ whenever T is a bounded operator; otherwise ‖T‖ = ∞;

(iv) γ (T ∗) ≤ ϕ(T ) whenever dimD (T ∗) = ∞ and α (T ∗) < ∞;

(v) ϕ (qMT ) ≤ ϕ(T ), M ∈ Ic(Y ).

Definition 4.3. ([1]) Given a coperturbation function ϕ. We define the
functions Γ′ϕ and ∆′

ϕ as follows: for a linear operator T : D(T ) ⊂ X → Y
where X and Y denote two Banach spaces,

Γ′ϕ(T ) = inf {ϕ (qMT ) : M ∈ Ic(Y )}

and
∆′

ϕ(T ) = sup
{
Γ′ϕ (qMT ) : M ∈ Ic(Y )

}
.

∆′
ϕ is said measure of non strict-cosingularity.

Remark 4.1. We give two examples of an unbounded operator T satisfying
Γ′ϕ(T ) < ∞ :

(i) Let X, Y be two Banach spaces and a linear operator T : D(T ) ⊂
X → Y . By [14, Theorem 4.1], if D (T ∗) contains an infinite dimensional
σ (Y ∗, Y ) closed subspaces, then Γ′(T ) := infM∈Ic(Y ) ‖qMT‖ < ∞. And so,
Γ′ϕ(T ) ≤ Γ′(T ) < ∞ whenever ϕ is a coperturbation function.

(ii) Let X be a Banach space, A ∈ L(X) and B ∈ C(X) such that R(B)
is a closed subspace of X and dimX/R(B) = ∞. Clearly, T = A + B ∈ C(X)
and Γ′ϕ(T ) = Γ′ϕ(A + B) < ∞. So the condition T ∈ C(X) and Γ′ϕ(T ) < ∞
does not imply that T ∈ L(X).

We start our study with the following useful lemmas.
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Lemma 4.1. Let X be a Banach space, T ∈ C(X) and K ∈ L(X). If
∆′

ϕ(K) < Γ′ϕ(T ), then T + K ∈ Φ−(X), T ∈ Φ−(X) and i(T + K) = i(T ).

Proof. Assume that T + K 6∈ Φ−(X). By Proposition 2.1, it follows
that there is S ∈ K(X) such that β(T +K−S) = ∞. Set M = R(T + K − S).
Thus qM (T + K − S) = 0. Let N ∈ Ic (X/M). From qNqMT = −qNqMK +
qNqMS and the properties of ϕ, we get ϕ (qNqMT ) = ϕ (qNqMK). So
Γ′ϕ (qMT ) = Γ′ϕ (qMK). On the other hand, [1, Lemma 3.5] gives Γ′ϕ(T ) ≤
Γ′ϕ (qMT ). Hence

Γ′ϕ(T ) ≤ Γ′ϕ (qMT ) = Γ′ϕ (qMK) ≤ ∆′
ϕ(K) ,

this contradicts the hypothesis. Let 0 ≤ t0 ≤ 1. Then ∆′
ϕ (t0K) < Γ′ϕ(T ) and

so, by what we have just proved, T + t0K ∈ Φ−(X). Thus T ∈ Φ−(X). For
the remainder of the proof it is very similar to the proof of Lemma 3.1.

Lemma 4.2. Let X be a Banach space, T ∈ C(X) such that ρ(T ) 6= ∅ and
K ∈ L(X). If K commutes with T , then

(i) K∗ : D (T ∗) → D (T ∗),

(ii) K∗T ∗f = T ∗K∗f for all f ∈ D (T ∗),

(iii) K∗ commutes with T ∗.

Proof. (i) Let f ∈ D (T ∗) ⊂ D (K∗) and u ∈ D(T ). So K∗f ◦ T (u) =
f ◦K(T (u)) = f ◦K ◦ T (u). By Lemma 3.3 it follows that

K∗f ◦ T (u) = f ◦ T ◦K(u) = f ◦ T (K(u)) = g ◦K(u)

where g = T ∗f . From the fact that g = T ∗f ∈ D (K∗) = X∗, we infer that
there exists h ∈ X∗ such that K∗f ◦T (u) = g ◦K(u) = h(u) for all u ∈ D(T ).

(ii) Let f ∈ D (T ∗) ⊂ D (K∗) and u ∈ D(T ). We denote by g = T ∗f ,
h = K∗(g), g̃ = K∗f and h̃ = T ∗ (g̃). Hence, h(u) = K∗(g)(u) = g ◦K(u) =
f ◦ T ◦K(u). On the other hand,

h̃(u) = T ∗ (g̃) (u) = g̃ ◦ T (u) = f ◦K ◦ T (u) = f ◦ T ◦K(u) .

Thus h = h̃.
(iii) This assertion is a consequence from (i) and (ii).

Now we are in the position to give the fundamental result of this section.
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Theorem 4.1. Let X be a Banach space, T ∈ C(X) and K ∈ L(X).
Assume that

(i) K commutes with T ,

(ii) ρ(T ) 6= ∅ and ρ(T + K) 6= ∅,
(iii) ∆′

ϕ(K) < Γ′ϕ(T ), where ϕ is a coperturbation function.

Then,

T ∈ B−(X) if and only if T + K ∈ B−(X) .

Proof. We first claim that if T ∈ B−(X), then T +K ∈ B−(X). Indeed, let
T ∈ B−(X) thus T ∈ Φ−(X) and d(T ) = p < ∞. By Lemma 4.1, we deduce
that T +K ∈ Φ−(X). From [13, Chapter 4, Theorem 5.13] it is easy to see that
R (T ∗) is a closed subspace of X∗ and α (T ∗) = β(T ) < ∞. This together
with [7, Chapter 17, Proposition 3.2] proves that T ∗p is a closed operator.
Thus, N∞ (T ∗) = N∞ (T ∗) since by Proposition 2.2 a (T ∗) = d(T ) = p < ∞.
On the other hand, Lemma 3.4 shows

N∞ (T ∗) ∩R∞ (T ∗) = N∞ (T ∗) ∩R∞ (T ∗) = {0} .

Set Tλ
∗ = (T + λK)∗ = T ∗ + λK∗, where λ ∈ [0, 1]. Since ∆′

ϕ(λK) < Γ′ϕ(T ),
Tλ = T + λK ∈ Φ−(X) for each λ ∈ [0, 1]. By [13, Chapter 4, Theorem
5.13],R (Tλ

∗) is a closed subspace of X∗ and α (Tλ
∗) = β (Tλ) < ∞. Now,

using Lemma 4.2 (i)-(ii) together with [8, Theorem 3] and proceeding as in
the proof of Theorem 3.1, we get a (T ∗ + K∗) = a ((T + K)∗) < ∞ since
α ((T + K)∗) = β(T +K) < ∞. Then by Proposition 2.2 we infer d(T +K) <
∞. Conversely, let T+K ∈ B−(X). By Lemma 4.1, it follows that T ∈ Φ−(X).
Now, from Proposition 2.2 it suffices to prove a (T ∗) < ∞. To do this, we
consider

(T + K)∗λ = T ∗ + K∗ + λK∗ = T ∗ + (λ + 1)K∗ ,

where λ ∈ [−1, 0] and we reasone in the same way as above.

As a consequence we infer the stability of lower semi-Browder operators
under strictly cosingular operator perturbations.

Corollary 4.1. Let X be a Banach space, T ∈ C(X) and K ∈ SC(X).
Assume that K commutes with T , ρ(T ) 6= ∅ and ρ(T + K) 6= ∅. Then,

T ∈ B−(X) if and only if T + K ∈ B−(X) .
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Proof. Let T ∈ B−(X). From [1, Theorem 3.7 (i)-(ii)], we deduce that
Γ′ϕ(T ) > 0 = ∆′

ϕ(K). Hence applying Theorem 4.1, we get T + K ∈ B−(X).
Conversely, let T + K ∈ B−(X). By [1, Theorem 3.7 (i)-(ii)], we obtain that

Γ′ϕ(T + K) > 0 = ∆′
ϕ(−K) = ∆′

ϕ(K) .

This implies by the use of Theorem 4.1 together with Lemma 3.2 that T +
K −K = T ∈ B−(X).

Further, as an application of Corollary 4.1, we have:

Corollary 4.2. Let X be a Banach space, T ∈ C(X) and K ∈ K(X).
Assume that K commutes with T , ρ(T ) 6= ∅ and ρ(T + K) 6= ∅. Then,

T ∈ B−(X) if and only if T + K ∈ B−(X) .

This result represents an improvement of [6, Corollary 3.1] on Banach
spaces.

Remark 4.2. The result of Theorem 3.2 remains valid if we replace the
hypotheses either ρ(T ) or ρ(T +K) 6= ∅ by ρ(T ) and ρ(T +K) 6= ∅, ∆ψ(K) by
∆′

ϕ(K) and Γψ(T ) by Γ′ϕ(T ). We just replace in the proof [10, Theorem 4.3]
by [10, Theorem 4.6] and [15, Lemma 1.1]). Therefore, Corollary 3.3 holds
true if we replace SS(X) by SC(X).

5. Stability of Browder’s spectrum

In this section, we apply the results obtained in Section 3 and Section 4 to
investigate the invariance of the Browder’s essential approximate point spec-
trum, Browder’s essential spectrum and Browder’s essential defect spectrum.

Theorem 5.1. Let X be a Banach space, T ∈ C(X), ψ a perturbation
function and K ∈ L(X). Assume that K commutes with T and either ρ(T )
or ρ(T + K) 6= ∅.

(i) If there exists ε ≥ 0 such that ∆ψ(K) < Γψ(T−µ) for all µ ∈ ρab(T ),
with dist(µ, σab(T )) > ε, then

σab(T + K) ⊂ σab(T ) ∪ {µ : dist (µ, σab(T )) ≤ ε} .

(ii) If there exists ε ≥ 0 such that ∆ψ(K) < Γψ(T − µ) for all µ ∈
ρab(T + K), with dist (µ, σab(T + K)) > ε, then

σab(T ) ⊂ σab(T + K) ∪ {µ : dist (µ, σab(T + K)) ≤ ε} .
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Proof. (i) If λ 6∈ σab(T )∪{µ : dist (µ, σab(T )) ≤ ε}, then T−λ ∈ B+(X).
Hence, applying Theorem 3.1 and Remark 3.2, we get T + K − λ ∈ B+(X).
Thus λ 6∈ σab(T + K).

(ii) The proof of this assertion may be checked in the same way as the
proof of (i).

As a consequence we obtain

Corollary 5.1. Let X be a Banach space and T ∈ C(X) such that
ρ(T ) 6= ∅. Let K ∈ SS(X) such that K commutes with T . Then,

σab(T ) = σab(T + K) .

Proof. By [1, Theorem 2.7 (i)-(ii)], it follows that for all µ ∈ ρab(T ),
Γψ(T − µ) > ∆ψ(K) = 0. The use of Theorem 5.1 (i) gives σab(T + K) ⊂
σab(T ). Similarly, by [1, Theorem 2.7 (i)-(ii)] we conclude that for all µ ∈
ρab(T + K), Γψ(T + K − µ) > ∆ψ(K) = ∆ψ(−K) = 0. Hence, applying
Lemma 3.2 together with Theorem 5.1 (i), we get σab(T +K−K) = σab(T ) ⊂
σab(T + K).

For the stability of Browder’s essential spectrum, as for Browder’s essential
approximate point spectrum, by the use of Theorem 3.2 and Remark 3.2,
we get

Theorem 5.2. Let X be a Banach space, T ∈ C(X), ψ a perturbation
function and K ∈ L(X). Assume that K commutes with T and either ρ(T )
or ρ(T + K) 6= ∅.

(i) If there exists ε ≥ 0 such that ∆ψ(K) < Γψ(T −µ) for all µ ∈ ρeb(T ),
with dist (µ, σeb(T )) > ε, then

σeb(T + K) ⊂ σeb(T ) ∪ {µ : dist (µ, σeb(T )) ≤ ε} .

(ii) If there exists ε ≥ 0 such that ∆ψ(K) < Γψ(T − µ) for all µ ∈
ρeb(T + K), with dist (µ, σeb(T + K)) > ε, then

σeb(T ) ⊂ σeb(T + K) ∪ {µ : dist (µ, σeb(T + K)) ≤ ε} .

Corollary 5.2. Let X be a Banach space and T ∈ C(X) such that
ρ(T ) 6= ∅. Let K ∈ SS(X) such that K commutes with T . Then,

σeb(T ) = σeb(T + K) .
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Remark 5.1. The results of Theorem 5.2 remains valid if we replace the
hypotheses either ρ(T ) or ρ(T + K) 6= ∅ by ρ(T ) and ρ(T + K) 6= ∅, ∆ψ by
∆′

ϕ and Γψ by Γ′ϕ. Therefore, Corollary 5.2 holds true if we replace SS(X)
by SC(X).

Finally, we close this section by the stability of Browder’s essential defect
spectrum.

Theorem 5.3. Let X be a Banach space and T ∈ C(X) such that
ρ(T ) 6= ∅. Let ϕ be a coperturbation function and K ∈ L(X) such that
K commutes with T and ρ(T + K) 6= ∅.

(i) If there exists ε ≥ 0 such that ∆′
ϕ(K) < Γ′ϕ(T −µ) for all µ ∈ ρdb(T ),

with dist (µ, σdb(T )) > ε, then

σdb(T + K) ⊂ σdb(T ) ∪ {µ : dist (µ, σdb(T )) ≤ ε} .

(ii) If there exists ε ≥ 0 such that ∆′
ϕ(K) < Γ′ϕ(T − µ) for all µ ∈

ρdb(T + K), with dist (µ, σdb(T + K)) > ε, then

σdb(T ) ⊂ σdb(T + K) ∪ {µ : dist (µ, σdb(T + K)) ≤ ε} .

Proof. The proof is as the proof of Theorem 5.1. We just replace Theorem
3.1 by Theorem 4.1.

Corollary 5.3. Let X be a Banach space and T ∈ C(X) such that
ρ(T ) 6= ∅. Let K ∈ SC(X) such that K commutes with T and ρ(T + K) 6= ∅.
Then,

σdb(T ) = σdb(T + K) .

Proof. From [1, Theorem 3.7 (i)-(ii)], we deduce that for all µ ∈ ρdb(T ),
Γ′ϕ(T−µ) > ∆′

ϕ(K) = 0. Hence applying Theorem 5.3 (i), we get σdb(T+K) ⊂
σdb(T ). Similarly, by [1, Theorem 3.7 (i)-(ii)] we have

Γ′ϕ(T + K − µ) > ∆′
ϕ(K) = ∆′

ϕ(−K) = 0

for all µ ∈ ρdb(T + K). The use, again, of Theorem 5.3 (i) and Lemma 3.2
allowed us to conclude that σdb(T + K −K) = σdb(T ) ⊂ σdb(T + K).
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