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Qualitative properties and approximation of solutions of
Bingham flows: on the stabilization for large time and the
geometry of the support

J. |. Diaz, R. Glowinski, G. Guidoboni and T. Kim

Abstract We study the transient flow of an isothermal and incomprésdingham fluid. Similar
models arise in completely different contexts as, for ins¢a in material science, image processing and
differential geometry. For the two-dimensional flow in a hdad domain we show the extinction in a
finite time even under suitable nonzero external forces. M eonsider the special case of a three-
dimensional domain given as an infinitely long cylinder oubded cross section. We give sufficient
conditions leading to a scalar formulation on the crossi@eciWe prove the stabilization of solutions,
whent goes to infinity, to the solution.. of the associated stationary problem, once we assume alsuita
convergence on the right hand forcing term. We give somecgerifi conditions for the extinction in a
finite time of solutions of the scalar problem. We show thaleast under radially symmetric conditions,
when the stationary state is not trivial,, # 0, there are cases in which the stabilization to the statjonar
solution needs an infinite time to take place. We end the pajtersome numerical experiences on the
scalar formulation. In particular, some of those expemsnexhibit an instantaneous change of topology
of the support of the solution: when the support of the ihidiatum is formed by two disjoint balls,
but closed enough, then, instantaneously, for@any 0, the support of the solution( -, ¢) becomes a
connected set. Some other numerical experiences are daoedtee study of the “profile” of the solution
and its extinction time.

Propiedades cualitativas y aproximaci  6n de las soluciones de problemas de
fluidos de Bingham: sobre la estabilizaci  6n para tiempos grandes y la
geometria del soporte de las soluciones

Resumen. Consideramos el flujo transitorio de un fluido de Binghamé&suico e incompresible. Mo-
delos similares se plantean en contextos completamemenies como, por ejemplo, en ciencias de los
materiales, tratamiento de imagenes y geometria difekriPara el flujo en un dominio bidimensional
mostramos la extincion en tiempo finito, incluso bajo adelas fuerzas externas no nulas. Considera-
mos tambien el caso especial del dominio tridimensionabdaat un cilindro infinitamente largo de
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seccion transversal acotada. Damos condiciones sufisigie conducen a una formulacion escalar so-
bre el dominio transversal. Probamos la estabilizaciolasisoluciones, cuandotiende a infinito, a la
solucionu., del problema estacionario asociado, una vez que se supartenta convergencia sobre los
téerminos del lado derecho. Damos algunas condicionesentfis para la extincion en tiempo finito de
las soluciones del problema escalar. Se demuestra, asopgsi®, al menos bajo condiciones de simetria
radial, cuando el estado estacionario no es trivial,# 0, hay casos en los que la estabilizacion de la so-
lucion estacionaria requiere un tiempo infinito. Para team se ofrecen algunas experiencias numeéricas
para la formulacion escalar. En particular, algunas ds esperiencias muestran un cambio instantaneo
de la topologia del soporte de la solucion: cuando el $emt®l dato inicial esta formado por dos bolas
disjuntas, pero suficiente cercanas, entonces, inseanrt@énte, para cualquier> 0, el soporte de la
solucionu( -, t) se convierte en un conjunto conexo. Algunas otras expésientmeéricas se dedican al
estudio del “perfil” de la solucion en su momento de extinci”

1 Introduction

Bingham fluids are materials which behave as rigid bodieswatshear stress but flow as viscous fluids
at high shear stress. The name is associated to Eugene GaBin@.878—1945) who, for the first time,
in 1916, proposed a mathematical description for this v{@astic behavior]1]. Common examples of
Bingham fluids are tooth paste and paint. The Bingham modehls® been used to describe the blood
flow in small vessels, such as arterioles and capillariegrevthe size of the vessel diameter is comparable
to the size of blood cells, see e.§7].

The isothermal and unsteady flow of an incompressible Bing¥hiaco-plastic medium, during the time
interval (0, T'), is modeled by the following system of equations (clearlyhefNavier-Stokes systetype):

o(Ou+ (u-Viu) =V-o+f(t,x) in(0,7T)xQ, (1)
V-u=0 in(0,7)xQ, (2)
o=—pl+ \/ig& + 2uD(u), (3)
D (u)|
u(0) =uy  (With V-ugy = 0). (4)

Hereu andp represent velocity and pressure, respectively. The pesitbnstantg, 1 and g represent
density, viscosity and plasticity yield of the Bingham medi respectively. Moreovefyt, x) is a given

density of external force®) (v) = [Vv + (Vv)']/2 (= Dy;(v)i<i j<d), Vv € (H'(€))%, and|D(v)| is
the Frobenius norm of tens@y(v), i.e.,
1/2

DW= > DywP

1<i,5<d
The domai@ is an open and connected subseRdf(d = 2 or 3 in most of the applicationsf is the
boundary of2 andT" > 0 is arbitrary fixed (and possibly = +0).
For simplicity, we shall consider only homogeneous Dirgthloundary conditions, namely:

u=0 on(0,7) x . (5)

We point out that some of our results remain true, underisi@itzonditions, for the case of nonhomogeneous
boundary conditions

u=up onlx(0,7), with /yuB(t) .ndl' =0, a.e.on0,7). (6)
I
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wheren is the outward unit normal vector &t We have denoted (and will denote later on)y) the
functionz — ¢(t, ).

We observe that iff = 0, system {)—(6) reduces to the Navier-Stokes equations modeling isothlerm
incompressible Newtonian viscous fluid flow. We refer to tlveks [L8] and [L9] for the modeling argu-
ments showing the equivalence with the unilateral probleted in terms of the plasticity yielg> 0. The
mathematical treatment of this system was carried outdhdnd [L9] (see alsoT, 15, 21, 22, 24] and their
references). B

We shall devote sectiod of this paper to the study of problert)£(6) for a bounded domaif2 of R?
(i.e.d = 2) and for zero Dirichlet boundary conditions, iieg = 0. One of our main goals is to prove the
existence of a finite extinction tinfg., i.e. a timeT, such that(t) = 0 for anyt > T, for a suitable force
termf(¢,x). We shall prove it by means of an energy method based on theglleal, Nirenberg-Strauss
inequality

Wl gy < 7/@|D(v)|dx, for anyv e(H2 (), )

(see BO)) as well as Poincaré’s inequality

1 ~
Mhgsqe < 5 [IFPdx,  foranyv € (H(@)* ®

where~ and )\, are positive constants. A curious fact is that fbr= 2 and for scalar functions, the
constanty is, in fact, independent @2 and its smallest value is = /7 /2 (see B1]).

Here the positive constanisand\, depend only on the bounded doma&inWe shall start the section
by considering the associated stationary problem

0(Use - VU = V-0 + £ (x)  inQ, 9)

Veue=0 in®, (10)

o= —pl+v2g2Ux) | 9n). (11)
D (us)|

Us =0 onl. (12)

Our first results shows that the force must be big enough asottupe some movement. Indeed, we shall
prove that if

Hfoo ”(Lz(ﬁ))z < 9'7_1

then, necessarily,, = 0. After that we shall prove that, in fact, the trivial statéog stateu,, = 0 is
attained in a finite time assumed

Hf(t)||(L2(§))2 < F(t) a.e.t >0,

with F'(¢) > 0 such that

L[ (g RN
”U-O”(Lz(ﬁ))z = 5/0 (; — F(S)) e 90 ds (13)
for somet, > 0 and
1 ["(g wia,
ol r2 @y < 5 5 F(s))e = ®ds  foranyt € (t.,+o0). (14)
0

So, in that case, there existdimite extinction timel, i.e.u(t) = 0 for anyt > T.. This result improves
some previous extinction time results for the c8¢ = 0 obtained in , 23, 24]. The assumptionsl@)

and (L4) are relevant even for the limit cage= 0 and have a quite different nature with respect to some
conditions arising in the study of the finite extinction tifioe other non-Newtonian flows (seg, 6, 7]).
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The rest of the paper is devoted to the study of the aboveragdte a special three-dimensional domain:
the unidirectional flow of an isothermal and incompressitdeo-plastic Bingham fluid in an infinitely long
cylinderQ) = Q x (—o0, +00) of (bounded) cross sectidh C R?. We start, in Subsectiod.1by showing
that if we assume

f(t,x) = (0,0, f(t,x1,22)), fora.e.t € (0,7), andx = (z1, 22, 3) € Q X (—00, +00),

then the axial flow velocity.(¢, z), i.e.,u = {0,0,u}, z = (21, z2) (When we assume that the fluid flows
in the Ox3-direction) satisfies the following nonlinear parabolization

v .
00w — pAu — gV - (ﬁ) =C{t)+ f(t,x) InQx(0,7),
u=0 onT x (0,7), (19)
u(0) = up,
whereT is the boundary of2 andC(t) = —%(t,x@ is the pressure drop per unit length. Due to the

peculiar geometry of the three-dimensional domain thezeveany ways to estimate the pressure drop (for
instance by prescribing a given flux flow in each transvermsetien and by solving then the corresponding
inverse problem). So, in the rest of the paper we shall assbat€’'(¢) is a given datum of the problem.

The existence and uniqueness of solutions to problésngre today well-known results (see, e.dJ|[
and [L9, 21, 22, 24], and also [ 7], among other references). We assume now that

f(t) = foo inL3(R), ast — +oo,
C(t) - Cx InR, ast — o0,

and prove, in Subsectidh2, thatu(t) — u. in H}(2), ast — +oo, whereu () is the (unique) solution
of the associated stationary problem

—pAUs — gV - (%) =Cox + fool(z) InQ,

Uso = 0 onI.

(16)

We use here some ideas developedlifi [n the study of the stabilization properties for a genetass of
quasilinear parabolic problems.
As in the vectorial system, we prove, in SubsecBodthat if
29
1Co0 + foollp2() < —=

N

then, necessarily., = 0. We also prove the finite extinction time assumed that
1C(E) + fO)ll 2y < F(?)

with F(t) > 0 satisfying .3) and (L4) with v = /7/2.

In SubsectiorB.4 we consider the case in whiéh = B(0, R), the open ball of radiu® centered at
the origin, and assume th#t, (x) is a radially symmetric function. We find sufficient condit®on f.,
R andg in order to get a nontrivial (radially symmetric) solutien,(z) > 0 for anyxz € Q. We end
this subsection by proving that, under symmetric and aaluéticonditions, the convergenef) — uo in
H}(Q) ast — +oo takes an infinite time in the sense thdt) # u., for anyt > 0.

The last section, Sectiah is devoted to some numerical experiences on problén (We study several
qualitative properties of solutions: mainly, the geometfyhe support of the solutions and their profile
when there is extinction in a finite time. We start by conditlgthe question of the initial propagation
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of the support of the solution by means of several numerigpegences. In particular, some of those
experiences exhibit an instantaneous change of topologfyeasupport of the solution: when the support
of the initial datum is formed by two disjoint balls, but cmkenough, then, instantaneously, for any 0,
the support of the solution( - , t) becomes a connected set. Some numerical experiences atedien a
second part of this Section, to the study of the “profile” a¢f Holution and its extinction time.

We end this Introduction by pointing out that probletb)y can be seen as a “viscous” perturbation of
the Dirichlet problem for the total variation flow

ou Du .

D aqiv (22 inax(0,7),

ot (|Du|) (0.7) (17)
u=0 onT x (0,7),

u(0, z) = up(z) forz € Q,

by setting fluid viscosity, pressure drop and external ferequal to zero, namely = 0 andC(t) =
f(t,x) = 0, and by setting the ratio between fluid density and plagtidéld equal to one, namely/g = 1.

In that case the spatial gradient of the solution is only anded variation measure which justifies the use
of the symbolDw instead ofVu. Problems related to total variation flows arise not only amtmuum
mechanics, but also in material sciené@s][and image processing?§]. Existence and uniqueness of
solutions to problem1(7) have been obtained irl[ 2, 25]. Solutions to systemi({7) also enjoy some
interesting properties, such as finite extinction time (nieg thatu(¢) = 0 after a finite time) and no
propagation of the support of the initial datum (meaning tha support of the solution(t, - ) is equal to
the support of the initial datum), see e.g].[The connected support of the solution of problel) (when
the support of the initial datum is formed by two separateltsbeas studied in 0. We point out that
their fine analysis techniques can not be applied to the dgse-00 in problem (5) and so the numerical
experiences presented in this paper look relevant comggpmoblem 15).

2 On two-dimensional Bingham flows with a nonzero external
force

We assumé = 2, N
fe L?0,T: (L*(NQ))?)
foranyT > 0 and
ug € H,

H being the closure of in (L*(Q))? with V = {w € (D(Q2))?, divw = 0}.

There are several equivalent notions of weak solution ofesyql), (2), (3), (4), (5) which can be
applied according different purposes. On one hand, thesysan be formulated in terms of the following
variational inequality

we L20,T7:V), pelL?0,T:L%Q), withdue L*0,T: V"),

such that

o(owu(t),v —u(t)),, + Q/ﬁ (u(t) - V)u(t) - (v—-u(t)) dz
+ u/ﬁ Vu(t) : V(v - u(t)) do — /~p(t)V . (v - u(t)) da + g(j(v) - j(u(t))

Q

> /(f(t) (v —u(t)) daz, Vv € Vanda.et € (0,7),
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and
u(0) = uy,

where the spac¥ is defined as the closure dfin (H(Q))? (with V = {w € D(Q)?,V - w = 0}) and

j(v) = /§|D(v)|d:1: for anyv e(H'(Q))2.

Note that this variational inequality can be formulatedafsterms of the multivalued subdifferential of the
convex functiory as

0(Oru+ (u-V)u) — pAu + gdj(a) 3 —Vp + £(t, z),

in a weak form, on the space?(0,7 : H). Moreover, another equivalent formulation can be given by
rewriting the variational inequality in terms of the equoati

Q(Btu + (u- V)u) — pAu+ gV - A= -Vp+f(t,x),
(in a weak sense) for some tensor-valued function
X € (L%(0,T) x )2%2,
A=) (18)

[A]<1 and A:D(u)=|D(u)] a.e.in(0,7) x ,

(see [L8, 19, 22)).
Our study starts by analyzing the associated stationayi@m The above notions of solution can be
adapted to this stationary case with obvious modifications.

Proposition 1 Let f., € (L*(9))? be such that

”foo H(Lz(ﬁ))z < 9'7_17

where~ is the best constant i¥). Then, necessarily, the solutien, € V of the stationary probler(®),
(10), (11 and(12) satisfies thati,, = 0. In particular the pressure., satisfies

Vpoo () = gV - Aso (@) + Fuo(z) i Q2
for some tensor-valued function,, € (L>(€2))2*2, Ay = AL, |Ax| < 1 a.e.inQ.

PROOF We take as test function = 0 andv = 2u., in the associated stationary variational inequality.
By adding the resulting inequalities, we get that

Q/~(uoo.V)uoo ~uood:1:+u/~|Vuoo|2d:1:—|—gj(uoo)—/
Q Q

pooV~uooda::/~foo-uoodx.
Q

Q

But, sinceV - u,, = 0 we deduce, as usual, that
u/ [Vus|? daz + gj(us) = / fro - us da.
Q Q
Now, as in Proposition 6.4 oP[l], we use Holder and Nirenberg-Strauss inequalijyt¢ conclude that2

[ Pl e+ (77 = ) e <0,

which implies the conclusion. B

Concerning the evolution system we have the following teeor
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Theorem 1 Letf € L2(0,T : (L%(Q))?) for anyT > 0 and letu, € H. Assume that
IE@) @y < F(H) @t € (0,+00)

with F'(t) > 0 satisfying(13) and (14). Then, there exists a finite tinff¢ > 0 such that the solutiom of
the evolution problen(l), (2), (3), (4), (5) satisfies thata(t) = 0 for anyt > T,. In particular, fort > T,
the pressure(¢, ) satisfies that

Vp(t,z) = gV - A(t,z) +£(t,2)  in (T, +o0) x Q,
for some tensor-valued functionsatisfyng(18).
PROOFE We take as test function = 0 andv = 2u in the variational inequality. Then, by using that

V -u = 0 and by applying Holder, Poincaré inequaliB) @nd Nirenberg-Strauss inequality) (ve get,
thanks to the assumptions 6ft, x), that

d 2 2 -
at Hu(t)H(H(ﬁ))? + 1o ||U-(t)H(L2(§))2 +ov7! Hu(t)H(L2(§))2 < F() Hu(t)||(L2(§))2 :

[N

But, if Hu(t)“(m(ﬁ))z > 0 we have

d d

T Hu(t)”?m(ﬁ))z =2 ||u(t)||(L2(§))2 a ||u(t)H(L2(ﬁ))2 )
and so

d UAo 1 g

— |u(t oz + —2 [u(t o < —F(t) — =+

dt [[a( )||(L2(Q))2 + 0 [[u( )H(L2(Q))2 =73 (t) oy

Let z(¢) be the solution of the Cauchy problem for the linear ordirdiffgrential equation

0 Y (19)

{z’(t) + N—)\Oz(t) = lF(t) -9 fort > 0,
0
2(0) = HUOH(Lz(ﬁ))z .

Then we deduce easily that

0 < lu®)ll(z2@ye < 2(t)  foranyt € [0,Ty), (20)

with T = sup {T > 0 such thaﬂ|u(t)|\(L2(g~l)2) > (0 foranyt € [0, 7—)}. But the (unique) solution oflQ)
is given by the formula

2(t) = e~ <z(0) + % /Ot (F(s) - %) e“2°8d5> .

Thus, from the assumption dn(t) we know thatz(t) > 0 for anyt € [0,¢.), z(t.) = 0 with ¢, > 0 such

that
1/tz(g )ms
z(0) = — = —F(s)|e e °ds
(0) o5 (s)

andz(t) < 0 foranyt € [t,,+o0). Then, from the comparison with inequalit2Q) we deduce that
necessarily there exisfs € [0,t.] such thalﬂu(t)H(Lz(ﬁ))2 =0foranyt € [T.,+o00). W
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Remark 1 Assumption§13) and(14) hold trivially if
9
Hf(t)||(L2(g~z))2 < ;7

which includes the cas&(t) = 0 for which the finite extinction time was proved[it?, Remark 50.4]
Nevertheless it is not difficult to construct examples offiems F'(¢) satisfying(13) and (14) but such that
F(t) > g/~ for many values of > 0. Take, for instance,

sin(t + 7/2)
) =S+

with 0 < I < g/~. We also point out that assumptiofis) and (14) establish a balance, between the initial
datumu, and the forcing ternf(¢) leading to the finite extinction time phenomenon.

Remark 2 The assumptiond.3) and(14) show a monotone dependence.ofvith respect to the plasticity
yield constanyy: the timet, decreases if and only i increases. Moreover the above assumptions are
relevant even for the limit cage= 0 in which the conditions become

) (2ro)
u Sy = — Z - F(s)|ds
Mollay: =5 [ (L7

for somet, > 0 and

1 t
Moll z2@y)e < 5/ (% - F(S)) ds  foranyt € (t.,+o0).
0

Remark 3 The assumption@l3) and (14) have a quite different nature with respect to some condition
arising in the study of the finite extinction time for othemradewtonian flows in which the constitutive
law (3) is replaced by

o =—pl+FD(u)) +2uD(u)

with
d[D(u)|* < F(D(u)) : D(u)

for somes > 0 and some; > 1. The extinction in finite time was proved [i, 6] and [7] under the

assumption
e (2 o
¢ d+2’

. +\ /(29
fOI?7 .~ <Cp(1l——=
e G

and when

for somer*, ¢*, C'y andty. Note that the result does not applydo= 2.

3 The Bingham flow in and in an infinitely long cylinder

3.1 Reduction to the scalar formulation

The rest of this paper will be devoted to the study of the sgeeise of an unidirectional flow of an isother-
mal and incompressible visco-plastic Bingham fluid in a éhdémensional domain given by an infinitely
long cylinderQ = Q x (—oo, +00) of bounded cross sectidd ¢ R2. It is clear that the assumption of
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unidirectional flow needs some appropriate conditions énstinucture of the applied force. So, in our case
we shall assume that

f(t,x) = (0,0, f(t,x1,22)), fora.et € (0,7), andx = (x1,z2,23) € Q X (—00, +00).

Then it is well known (see any classical textbook in fluid meedhs as, for instanceg]) that the axial
component flow velocity:(¢, z), with = = (21, x2), characterizes the vectorial velocity, i.a.= (0,0, u).
In that case, the two first components of the conservationeoftomenta imply that

dp

axl (t,x) = 8—:172(t,x) =0
and the third component is reduced to the nonlinear pa@bqliation given inX5) with
__ 9
C(t) - _8—:173(1571'3)

(the pressure drop per unit length). In the rest of the papeshvall assume that(¢) is a given datum of
the problem.

3.2 On the stabilization of solutions
We assume given
ferL*0,7:1%Q), CelL*0,T) foranyT >0,
and
Ug € LQ(Q)

As in the precedent section, there are several equivaléioinsmf weak solution of problenip) which
can be applied according different purposes. On one haadyrsblem can be formulated in terms of the
following variational inequality

u € C([0,+00) : L*(Q)) N L*(0,T : H}(Q)),  with dyu € L*(0,T : H 1 (Q)) foranyT > 0,

such that

e(Oru).0 = )y + 1 | V() Vo = ) da+ g3 (0) —su(t)

> / (C() + £(1) (v —u(®) dz, Vo e HHQ)andaet € (0,T),
Q

and
u(0) = ug, in L2(Q),

where
j(v) = /|Vv| dz,  foranyv € H}(Q).
Q

Note that this variational inequality can be formulatedaifsterms of the multivalued subdifferential of the

convex functionp as
d
o7 +00(w) 3 CW) + 1) (21)

in the Hilbert spacél = L?(Q), with

r |Vv|2da:—|—g/|Vv|dx if v e HY(Q),
2 Q Q

p(v) = (22)

+o00 otherwise,
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(see, e.g.,17]). Moreover, another equivalent formulation can be givgrrdnriting the variational in-
equality in terms of the equation

00w — pAu+ gV -X=C(t) + f(t, z),
(in a weak sense) for some vector-valued funcfioa (L>°((0,T) x Q))2,
Al <1 and A-Vu=|Vul a.e.in(0,7) x Q, (23)

(see [L8, 19, 22)).
We also consider the associate stationary problih (

—pAugy — gV - (%) =Coo + fool(z) N,
Uso = 0 onI.

Concerning the stabilization of solutions,tas> +oo, we have

Theorem 2 Assume
FeWEH(0,+00: L)), C € WL (0, +00), (24)

with .
| U0+ 10 (o) ds < M. foranyt >0,
for some positive constaif and let
ug € HY () N H?(Q).
Then the weak solutiom of (15) satisfies that
u € L0, +00: Hy(R)) and du € L*(0,+o00: L*()).

Moreover, if there exist€',, € R and f., € L?(Q2) such that

t+1
/t (|C(S) — COO|2 +If(s) — fOOHi2(Q)) ds — 0, ast — +oo, (25)

thenu(t) — us in H () ast — 400, Whereu, is the unique solution of proble(d6).

PROOFE We shall apply several results obtainedifi][for the stabilization properties for a general class
of quasilinear parabolic problems. Accordin’] we know thatu, € D(9¢). Then, by Theorem 3.6
and Lemma 3.3. of1[3] we get thatu(t) € Hi(Q) N H*(Q) fora.e.t € (0,T), ¢(u) € WH(0,T) and
Oyu € L?(0,T : L?(2)) foranyT > 0. To prove thatu € L>(0, +o0 : HZ(£2)) we start by proving that
the norm ofu in the spacd.?(t,t + 1 : H}(Q)) is bounded independently 6f We multiply (21) by « and
integrate in(t, ¢ + 1) x . Then, by Young’s inequality

t+1 t+1
lu(t +1)* do — 2 |u( )|2d:c+u/ |Vu(s)|2d:cds+g/ |Vu(s)| dzds
t Q t Q

/Hl/ Ju(s)dads

41 t+1
< C. / / s)+ f(s dxds—i—s/ lu(s)|* dz ds
Q ¢ Ja

Q
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for anye > 0 and some&”. > 0. Then, by Poincaré’s inquality and assumpti@g)(we conclude that
HUHL2 tt+1:HE(Q)) < Ko

with K, independent ori. In a second step, we multiply the equatid@t)( by d,u and integrate in
(t,t+ 1) x Q. Then, by Lemma 3.3 ofl[3]

t+1
p/ /|8tu(s)|2dxds+ﬁ/ |Vu(t+1)|2d:v+g/ |Vu(t +1)|dz
t

b1 (26)
/ /Q s))Ovu(s )dxds—i— 5 |Vu( )| dx—i—g/ [Vu(t)| de

But, thanks to the regularity assumpti@4), a simple integration by parts shows that

t+1
/ / s))Opu(s )ddeZ/ (Ct+1)+ f(t+1)u(t+1)da
Q

Q
- [ cw+spuwar [ [ @6+ ase)us aras
and so, from Young's inequality and the precedent step, welade that
||atu||L2(t,t+1:L2(sz)) < Ku,
for somek; independent on. Now we recall an useful technical lemma
Lemma 1 ([ 28]) Let®(¢) > 0 be alocally bounded function such that
O(t+1) < K[®(t) — ®(t+ 1)] + 0(1),

whereK is a positive constantari{t) > 0 whent is large enough. Assume th&tt) = O(1) ast — +oo.
Then®(t) = O(1) ast — +oo.

By applying Lemmadl to
D(t) =§ |Vu(t+1)|2dx+g/ [Vu(t +1)|dz
Q Q

andd(t) a suitable positive constant we get thag L>°(0, +oco : Hi(Q)). As a consequence, frora6)
we get that,u € L?(0, +oo : L2(£2)). Now we are in conditions to apply Theorem 1 ©7] which implies
that theomega limit set

u) = {ue € Hy () : It, — +oo such thatu(t,) — us in L*(Q)}

is not empty and that, in fact, it is formed by solutions of gtationary problemi(6). Moreover, since
this problems only admits a unique solution we deduce theergence inL?(Q2) of any ¢, — +oo,
i.e.u(t) — uoo in L*(Q) ast — +oo. Finally, since the operatar — dp(u) is coercive inHg (), in
the sense that

= u —v 2 i u —v X u —v 2 i
/Q(BsD(U)—&p(v))(u—v)dw—u/ﬂlv( )2d +g/9|v< )d m/ﬂm )2 de,

we deduce that the convergendg) — u.., ast — +oo, takes place, in fact, i} () (see Theorem 2
of [17]). W
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3.3 On the finite extinction time for the scalar formulation

The results of Sectiof for the vectorial formulation admit an automatic replica floe case of the scalar
problem (L5), where now the role o¥p is replaced by the spatially constant functidt) and~ takes the
valuey = /7 /2. So, concerning the stationary probleb®lwe have:

Proposition 2 Let fo, € L*(2) be such that

29
[Co + foollp2(a) < NG

Then, necessarily, the solution,, € H{ () of the stationary problengl6) satisfies thati., = 0. In
particular N
—gV - Ao () = Coo + foo() inQ,

for some vector-valued function,, € (L>(Q))?, |Ax| < 1 a.e.inQ.
With respect to the finite extinction time we have
Theorem 3 Letf € L2(0,T : L*(Q)), C € L*(0,T) foranyT > 0 and letuy € L?(©2). Assume that
1C() + (D)l 2y < F(t)  aete(0,400)

with F'(t) > 0 satisfying(13) and(14) with v = /7 /2. Then, there exists a finite tinfié¢ > 0 such that the
solutionu of the evolution probler(il5) satisfies that.(¢) = 0 for anyt > T.. In particular, fort > T, we
have B

—gV - X(t,z) =C(t) + f(t,x) in (Te, +00) x Q,

for some tensor-valued functionsatisfying(23).

The proof is an obvious adaptation of the of the proof of Tkeot. We emphasize that Remarks2
and3 have some interest also for the scalar case. We point outhtadimit case, = 0 corresponds to the
non-homogeneous problem associated to the total varitiian(17).

3.4 On the stationary symmetric formulation and the stabili zation of solu-
tions in an infinite time

In this Subsection we shall consider only the radially syrmrimease in whicl2 = B(0, R), the open ball
of radius R centered at the origin, and the data of the problem are asbtoriee radially symmetric and
nonnegative functions.

We start by studying the stationary probleb®). The uniqueness of solutions implies that the problem
can be formulated in the following terms: given

R
Coo >0, foo >0 with / foo(r)?rdr < +oo0, (27)
0

find uo, € H}(B(0, R)) such that

_#d < oo m) L (A1) = Coe + foclr), Torr € (0,R)

rdr " dr dr
Uso(R) =0 and (28)
dus

dT (0) - 07
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for some scalar-valued function, € L>° (0, R) satisfying

dus duse

[Aoo(r)| <1 and /\OO(T)?(T) —‘ i (r)

a.e.in(0, R). (29)

Note that, by the regularity proved inj], we know thatu,, € H%(B(0, R)). In fact, this implies that
s € C1(]0, R)) and thatr A (r) is an element of/! (B(0, R)) and, that, in particulat,, € C°(0, R).
We also mention that conditio29) can be equivalently written as

A (1) € sign (d;‘:O (r)) ae.in(0, R),

wheresign denotes the maximal monotone grapiR3fgiven bysign(s) = +1 if s > 0, sign(s) = —1if
s < 0 andsign(0) = [—1, +1].

We are interested in finding some sufficient condition§an f., R, x andg in order to get a nontrivial
(radially symmetric) solutiom. () > 0 for anyr € (0, R). To simplify the exposition we shall consider

only the case in which theolid regiongenerated by the solutioS(u~.) = {r € [0, R) : ‘ﬁ‘—;’"(r) = 0},
is a connected set. As we shall see, in our case it is relatdek tmonotonicity of the function. (r). In

order to get this property we shall assume a slightly teci@idditional condition orf (r):
T(COO + foo(r)) > / S(COO + foo(s)) ds foranyr € (0, R). (30)
0

It is easy to check that conditioBQ) is trivially satisfied if, for instancef..(r) = 0 and that it also holds
for some concave profiles ¢t (r) as, for instancef.(r) = w(R — r?) under suitable conditions an
andR in terms of a giverC,.

We have

Proposition 3  Assume&’,, and f, satisfying(27) and(30). Then:

a) if
1 R
— $(Coo + fool(s))ds < 1 31
o7 ), 3(Co + () (31)
the solutionu. () of (28) is the trivial solutionu..(r) = 0 and A (r) is the decreasing function
given by

1 T
Aso(r) = o $(Coo + foo(s)) ds, foranyr € (0, R},
0
b) if we assume that there existfg € (0, R) such that

1 R
ok |, 5(Coo + foo(s)) ds =1, (32)

thenu, (1) is given by

/R < 1 /OUS(COO + foo(s)) ds — %) do ifr € (0,Ry),

o

() = Ro
/TR (o [ slOnt su)as=2)da itre (o)

and . (r) is given by the nondecrasing function

Aoo(T) = maX{—i /TS(COO + f(s)) ds, —1} for anyr € (0, R].
ar Jo
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ProoFE We introduce the function

1 T
P(r) = —/ S(COO + foo(s)) ds.
gr Jo
Then, by differentiation we see that conditi®d) implies thaty(r) is a strictly increasing function. More-
over, by I'Hopital rule,s>(0) = 0, so(r) > 0 for anyr € (0, R]. On any positively measured subset of
the solid regionS(u..) the equation reduces to the condition

rdr

But, as%(o) = 0, if we denote byR, (with Ry € (0, R]) to the boundary of the first connected

component ofS(u. ), we get that necessarily

Ao (1) = —2h(r) = —% /OT $(Coo + fo(s))ds  foranyr € [0, Ro). (33)

Now, to provea) it suffices to use the fact that(r) is a strictly increasing function and that conditic@1)
implies that\o« (R) = —¢(R) € (—1,0). Thus,A\ (r) € sign(0) a.e. in(0, R) and the choice..(r) =0
satisfies all the requirements as to be a solution of prob&8n Moreover, by the uniqueness of solutions,
U () = 0 is the unique choice satisfying all the conditions of wedkitson of (28).

In the caseb) the expression3d) and the facts thap(r) is a strictly increasing function and that we must
have|\(r)] < 1 foranyr € [0, R] imply that, necessarily\.(r) = —1 for anyr € [Ro, R]. Note
that the continuity of function\.,(r) is assured thanks to the conditic32|. Finally, once that we have
determined function\ . (r) on [0, R] the (unique) expression far,, () can be found by integrating twice

in the equation
d duse T g d
dr <T dr (T)) ﬁ (_;E(T/\OO(T)) ~Ceot fm(r)) ’

and using the fact that..(R) = 0 anddg—;”(r) =0foranyr € [0,Ro]. W

Remark 4 The above result gives a necessary and sufficient conditiondier to have a trivial solution
Uso(r) = 0 of problem(28), once we assume the technical additional condi(@®®). Obviously, this is
sharper than the general sufficient condition given in Pipion 2 for a general class of functions (not
necessarily radially symmetric). Note also that condit{8f) is stated in terms of th&! norm of function
f(r) and thatit is independent gf. In fact the above characterization remains true for thatitase; = 0

but in this case, as in the papdi(), the solutionu., must be searched in the class of bounded variation
functions. We also point out that the technical condit{d6) is equivalent to the monotonicity of function
Ao (7). FOr instance, a solution with a solid regid#(u...) with more than one connected components can
not be associated, in general, to a monotone funciQrir).

Remark 5 If f,, = 0itis a routine matter to check that the above statement léadise explicit solution
mentioned in the referencg®l, 22, 24],

() (Sany-s) 4rcmm

() (Gowena) - wernn

Uoo (1) =

Other properties of the solid regiofi(u..) (and its complementaryQ* = Q — S(u.)) can be found
in [27]. For the application of rearrangement techniques (leadmgome estimates on the measure of the
solid region in non symmetric domains) see the expositiotenma(16]).
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We consider now the parabolic probletrd) for radially symmetric data ard = B(0, R). Our purpose
is to find some sulfficient conditions ensuring that when thetem ., of the associate stationary problem
is not trivial then convergencg(t) — u. in H} (), ast — +oo, takes an infinite time in the sense that
u(t) # uo foranyt > 0. To simplify the exposition we consider an autonomous rigirid side term. So,
givenC, and f., satisfying 7) and 30), and given

ug € Hy(B(0, R)) N H?*(B(0, R)) with ug(r) > 0,7 € (0, R), (34)

our problem is to find: € L>(0, +oc : Hj(B(0, R)) such that

g%(t,r) - Hﬁ (r%(t,r)) _9 9 (r)\(t,r)) =Cwx + foo(r), forte (0,+00), r € (0,R),

r or ror
ou
u(t,R) =0 and E(t’ 0) =0, fort € (0, 4+00),
u(0,7) = uo(r) r € (0,R),
(39)
for some scalar-valued functiore L>°((0, +o0) x B(0, R)) satisfying
[A(t,7)| <1 and )\(t,r)%(t,r) = ?(t,r) a.e.r € (0,R), fora.eit € (0,+00).
r T

Thanks to the stabilization result of Subsect®8 we know that the weak solutianof (35) satisfies
that
u € L>®(0,+00: HY(B(0,R))) and dwu € L*(0, 400 : L*(B(0, R))).

and thatu(t) — ue in Hi(B(0,R)) ast — +oo, whereu is the unique solution of problen2®).
Moreover, by applying the abstract theory for subdiffei@riperators ([3]) and the fact thaD(d¢) =
HY(B(0, R)) N H*(B(0, R)) we also know that

u € L*(0,+00 : Hy(B(0, R)) N H*(B(0, R))).

As in the stationary case, this implies thdt) € C([0, R)) and that'A(¢, r) is an element ofi* (B(0, R))
and, that, in particulan\(t) € C°(0, R), for a.e.t > 0.
By Proposition3 we know thatu.. is not trivial (u~, # 0) if we assume conditior3Q).

Theorem 4 LetCy, fo andug satisfying(27), (30), (34) and(32). Then, there exits & € (0, R) such
that
[[u(t) = toollco(re, gy > 0 for anyt > 0.

PROOF  The convergence(t) — u in H}(B(0, R)) ast — +oo proved in Theoren? and the sym-
metry of the functions imply that(t) — u. in C°([0, R]) ast — +oo and that\(¢,7) — Aso(7)
in L2(B(0,R)) ast — +oo. By using the additional regularity € L?(0,+oc0 : H}(B(0,R)) N
H?(B(0, R))) and the abstract result Theorem 3.10 5| [we get that

ou

lim ’
L2(B(0,R))

t——+oo

which, implies that

(g% (r%@,r)) ; %m(t,m) - (ﬁdi (rd;‘f <r>) +20 ra <r>>>

Then, by the regularity shown irif], we have thati(t) — u.., in H%(B(0, R)), and by the symmetry
of u(t,r) andu., () we get that, in facty(t) — us in W, (B(0, R)) ast — +oo. This implies that

= 0.
L2(B(0,R))

lim
t——+oo
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A(t, 1) — Aoo(r) in L>=(B(0, R)), and so inC°(B(0, R)), ast — +oo. In particular, sincé\.(r) = —1
for anyr € [Ro, R|, we deduce that there exists a tirfié, large enough, an®* € (R, R) such that
u(t,r) satisfies

ou JTe) ou _ 9 . .
QE(t’r)_?E (rE(t,r)> = T—i—Coo-i-foo(r), fort e (T, +o00), r € (R*, R),
u(t,R) =0 and wu(t, R*) = h(t) fort € (T, +o0), (36)
u(T™,r) = Uo(r) r € (R*, R),
where

h(t) — hoe @St — +00,  With Aoy = use(RY),

and
Uy € Hy(B(0,R)) N H*(B(0, R)).

Analogously, we have that

_g% (szl‘:o (T)) = _g + Coo + foo(r), forre (R*, R),
(R) = 0

Uso 0
Uoo (R*) = heo.

But, problems 86) and @7) are now linear problems and so, by the strong maximum gpiedr by using
the integral representations of solutions (see, €d),[we know thatl|u(t) — tc||co(g+ 5y > 0 for any
t > 0, which ends the proof. &

Remark 6 Note that the convergencet,r) — A (r) ast — +oo, in different functional spaces, is
equivalent to the convergence of the free boundali®g:(¢)) to the stationary free boundaf)S(u.. ), as
t — 400, in different weak senses.

4 On the numerical approach of solutions of Bingham type
flows in cylinders

As mentioned in Subsectid®?, it follows from referencesl[d] and [19] that a mechanically and mathemat-
ically correct formulation of problemil6) is provided by the followingariational inequality typgroblem
in which, for simplicity, we assum¢ = 0 andC'(¢) = C :
Findu € L?(0,T : H}(Q)) such that
o0, (v =)+ 4 [ Fu- V(o= w)de +g(50) - j(u)
Q
> CfQ(v —wu)dz, Yo € H}(Q),

(38)

with
j(v):/|VU|d:C.
Q

Note that, in factu € C([0,7] : L*(Q)). The backward Euler scheme, described below, is a good
iterative algorithm preserving the asymptotic behaviothef solution of the continuous problem (namely,
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problem @8)), including the finite extinction time, seé . This scheme reads as follows (witht a
positive time discretization step that we suppose condi@ansimplicity): we start assuming

UO:UO

and then, fon > 1, computeu™ from v™ ! via the solution of the stationary problem
Findu™ € H}(Q),
Q/ (u" —u" 1) (v —u™) : dx + ,uAt/ Vu"™ - V(v —u")dz + gAt(j(v) — j(u")) (39)
> XtC" Jo(v—u™) : da, Yo € H&?Q),

with C™ = C'(nAt). It follows from, e.g., 1, Chapter 1], that39) is an elliptic variational inequality (of
the so called “second kind”) problem, which has a uniquetgmu Problem 89) can be rewritten as

Findu € H}(Q),

a /u< —u)de -+ | Vue Vo= de +gi(0) ) (40)
> [ f(v—u)de, Vv € Hy (),
Q

with o > 0 andf € L?(Q).

A classical method to solve probledq) is the one introduced in referencef; it reduces the solution
of the above problem to the solution of a sequence of lineectéet problems for the operatarl — A
and some simple projection operations. The method religk@maquivalence betweedd) and

ou — pAu—gV-A=f inQ,
u=0 onT, (41)
A Vu = |Vul, A€EA,

the last two relations implying that
A= PaA(A+rgVu), Vr >0, (42)

with the operatoPs defined by

q(z) 2 N
P, r)=——"—"""r, a.e.on,vq € (L°(Q))".
HereA = {w € L*(Q)V : |w(z)| < la.e.x € Q}andN = d x d.
In order to solve40), via relation 41) and @2), we advocate (followingl4]) the fixed point algorithm
below:

AU is given inA (43)
then, forn > 0, assuming thak” is known, we compute™ and them\"*! as follows: solve
oau™ — pAu" = f4+ gV - A" inQ, u*=0 onl, (44)
and
AL = Py (A" + rgVau™). (45)

Suppose that the systedlj has a solutioqu, \} € H(2) x A (which is indeed the case); it can be
shown (see, e.g., refL2]] and [24]) that the above pair is necessarily a saddle-point ¢#&2) x A of
the Lagrangian functional

L:HY(Q) x (L2(Q))Y =R
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defined by

1
Llv,p) =5 [O‘HUHQLZ(Q) +MHV'UH%L2(Q))2} +9/QH -Vudaz — ., fodz (46)

i.e., the paifu, A} verifies (from the definition of a saddle-point; see, e 22, Chapter 4])

{u, A} € H}(Q) x A, )
Lu,p) < L(u,N) < L(v,A), Vv, u} € HY(Q) x A.

Conversely, any solution ofi{) is solution of system4). It follows from the above reference that algo-
rithm (43)—(45) is nothing but an Uzawa algorithm applied to the solutiothefsaddle-point problend ()
with L defined by 46); for a systematic study of Uzawa algorithms, see, ed, Chapter 4], and the
references therein.

4.1 Some numerical experiments

In this section we present some numerical results relatguidblem (L5), most of them for” = 0 and
f =0, with the goal of investigating the qualitative propertes. finite extinction time and propagation of
support of initial data) of solutions to the Bingham flow inydieder.

In all our simulations, the spatial domain is chosen to bauttiesquare ilk?, namely2 = (0, 1) x (0, 1)
[mxm]. The fluid density and plasticity yield are chosen topbe 1 [Kg m—3] andg = 2 [Pa]. For what
concerns the fluid viscosity, we run simulations witk= 0.25 andp = 0.0025 [Pa s], in order to investigate
how the fluid viscosity affects the dynamics of the flow. Moregwe assume the pressure drop to be equal
to zero, namely’ = 0 [Pa n1 '], so that the flow is driven only by the initial conditions. e choices are
summarized in Tablé.

Fluid domain | ©=(0,1) x (0,1) [mxm]
Fluid density p=1[Kgm3]
Plasticity yield g=2 [Pa]

Fluid viscosity | © = 0.25,0.0025 [Pa s]
Pressure drop C=0[Pant]

Table 1. Values of the parameters used in the numerical simulations.

We are going to consider a set of five different initial corudis:

Case | - Characteristic function of a disk. The initial velocityu is given by:

1 in B(Io, Rl)
ung =
0 0 elsewhere
with zp = (0.5,0.5) andR; = 0.3.

Case Il - Superposition of two characteristic functions. The initial velocityu is given by:

2 in B(xo, RQ)
up =<1 in B(Io,Rl)\B(xo,RQ)
0 elsewhere

with zo = (0.5,0.5), Ry = 0.3, andRy = 0.2.
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Case lll - Characteristic function of two (distant) disjoint disks. The initial velocityu is given by:

1 in B(xl,Rl)UB(xg,Rg)
ung =
0 0 elsewhere

with z; = (0.2750,0.2750), z2 = (0.7250,0.7250), andR; = Ry = 0.1.

Case IV - Characteristic function of two (close) disjoint dsks. The initial velocityu is given by:

ug =

1 in B(Il, Rl) U B(IQ, RQ)
0 elsewhere

with z; = (0.4242,0.4242), zo = (0.5758,0.5758), andRy = Ry = 0.1.

Case V - Characteristic function of a square. The initial velocityu is given by:

Uy =

{1 in S = (a,b) x (a,b)

0 elsewhere

with a = 0.25 andb = 0.75.

Case VI - Non zero value of C.The initial velocityu, is given by:

1 in B(SCQ, Rl)
un =
0 0 elsewhere

with zy = (0.5,0.5) andR; = 0.3. The value oiC is varied in a range fron to 8

4.2 Numerical results

Problem {5) was solved using the iterative method a la Uzad@+{(45). We validated our results by
repeating the simulations using different time stepsed#it mesh sizes and different tolerances for the
convergence of the Uzawa algorithm. More precisely, we usee- 1074, 5 x 10~%, 10~° as time steps;
we usedl /70, 1/100, 1/120, 1/150 as mesh sizes; we useéd = 1076, 5 x 1075, 10~7 as tolerances
for the convergence of the Uzawa algorithm. Excellent agese was found between results obtained with
different combinations of these parameters.

Finite extinction time. Our results show a finite extinction time of the solution, asdicted by the
theory (see Theore®). Figuresl, 6, 11, 16, 21 show the time evolution of th&2-norm of the solution,
namely||ul| .2 (t), for each of the five different initial conditions. The piots show that the extinction
time increases as the fluid viscosity decreases, see Zablas is due to the fact that a less viscous system
has a less efficient dissipative mechanism and therefaakeastlonger for the solution to decay to zero.

Casel| Casell| Case lll | Case IV | Case V
nw=0.25 [Pas]| 0.0505 | 0.071 0.012 0.019 0.0465
u=0.0025[Pas]| 0.0705 | 0.1025 | 0.0215 0.028 0.064

Table 2. Numerically computed values of extinction times corresponding to different initial condi-
tions (Cases | to V) and to different fluid viscosities (¢ = 0.25 and p = 0.0025 [Pa s].)
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In particular, in Case | probleni®) (formally corresponding to probleni%) with ;. = 0) admits the
following exact solution

, d(klr  \7"
u(t,z) = mgn(k); (lg_li - L‘) XB(0,r)(T)-

It is easy to see that(t, ) vanishes for = (|k|r)/(gd), and this represents the extinction time in the
case ofu = 0. For the values in Tabl&, we find that(|k|r)(gd) = 0.075 [s]. The agreement with the
extinction time obtained with our simulations is very goa gett = 0.0705 for u = 0.0025 [Pa s], see
Table2. We emphasize that the theoretical value of the extinciioe is obtained for the total variation
flow problem, which corresponds to a Bingham fluid with no g&ty. On the other hand, our simulations
include a non-zero fluid viscosity and, as a consequencesdiuion extinction time is smaller than the
theoretical value. As expected though, as the fluid visgagtreases, the extinction time increases.

Solution and normalized solution. We have visualized the time evolution of the solutigm, =) and

of the normalized solution(t, z)/||u||L2(o) (t). The solutionu(t, z) progressively decreases to zero, while
the normalized solution reaches a non-zero and non-smiadtfiri a finite time. In order to better visualize
the comparison between the solution and the normalizedisnuwe show their time-evolution restricted
to the domain diagonal, see Figui@and4 for Case |, Figure$ and9 for Case Il, Figured3 and14 for
Case lll, Figured8and19for Case IV, Figure23and24for Case V. The fact that the normalized solution
reaches a non-zero and non-smooth limit at the extinctioa 8hould not be a surprise. Solutions to total
variation flow problems do not gain any spatial differentigl in contrast with what happens for the linear
heat equation and many other quasilinear parabolic prab)lsee J].

No propagation of the support. The theory for total variation flow predicts no propagatibaupport

of the initial datum, if the supportis regular enough. Weatkthat the total variation flow corresponds to the
case of fluid viscosity equal to zero, therefore it is reabtmto expect that the propagation of the support
depends on the value of the fluid viscosity, see Figaré$, 15, 20, and25. Our simulations indeed reflect
these mathematical properties. In Cases I, Il and Ill, thmpett of the initial datum is very regular (either
a ball or two disjoint balls). The results obtained in theases for the smaller viscosity value, namely
© = 0.0025, show almost no propagation of support of the initial datasshown in Figure® and4 for
Case I; Figuregd, and9 for Case Il; Figured2, and14 for Case Ill. In Cases IV and V we see a change
in topology of the support. More precisely, the support @& thitial datum in Case IV is made of two
disjoint disks whose boundaries are quite close to each.cthe time evolution of the normalized solution
u(t, z)/||ul| 2 (o) (t) shows that the two disks progressively merge, see Figlfesd19 and, finally, the
support of the normalized solution at the extinction time b# shape of an hour-glass. In Case V, the
support of the initial datum is a square while, at the exiorctime, the support of the normalized solution
is a disk, see Figurez2 and25.

4.3 Conclusions on the numerical experiences

In this section we have presented some numerical resudieceto Bingham flow in a cylinder. In the
limiting case of fluid viscosity equal to zero, the problenduees to a total variation flow problem, in
which solutions go to zero in a finite (extinction) time anériis no propagation of the support of the
initial datum (if the support is regular enough).

Our simulations, for the special case pf= 0 andC = 0, show that similar qualitative properties
hold also in the case of non-zero viscosity. We have consitiavo different viscosity valueg, = 0.25
[Pa s] andu = 0.0025 [Pa s], and five different initial conditions, see Sectibth, and we have solved the
corresponding Bingham flow problem using a backward Eulees® in combination with an algorithm a
la Uzawa.

Our results showed existence of a finite extinction time,raslipted by the theory. We also found that
the extinction time increases as the fluid viscosity de@gass expected. This is due to the fact that a less
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Figure 1. Case | - Time evolution of [[u|| .2 (g, (¢) for = 0.25 and p = 0.0025 [Pa s].

viscous system has a less efficient dissipative mechanishthanefore it takes longer for the solution to
decay to zero.

The theory for total variation flow also predicts no propawabf support of the initial datum, if the
supportis regular enough. In order to study this propengyisualized the time evolution of the normalized
velocity u(t, z)/||ul| L2(o) (t), for the different initial conditions and viscosity valué&hen the support of
the initial datum is very regular (either a ball or two distdisjoint balls), the results corresponding to the
smaller viscosity value, namely= 0.0025, show almost no propagation of support of the initial datam,
predicted by the theory. When the support of the initial datsi not very regular (two close disjoint balls
or a square), our results show a change in topology of theastipp

Our simulations, for the special case@flarge enough illustrate, numerically, the content of Tieeor
4: if C'is large enough the stabilization, as t goes to infinity, falleee through a nontrivial solution of the
stationary problem and the dynamics does not stop in an fiinite.
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Figure 2. Case | - On the left: Snapshots of the normalized solution u(t, x)/||ul| >(o) () obtained
with 4 = 0.25 at ¢ = 0, 0.005, 0.02, 0.035, 0.0505 seconds; On the right: Snapshots of the nor-
malized solution u(t, z)/||lullz2o)(t) obtained with . = 0.0025 at ¢t = 0, 0.005, 0.03, 0.05, 0.0705
seconds.
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1.414

Figure 3. Case | - On the top: Snapshots of the solution w(t, z) restricted to the domain diagonal
obtained with p = 0.25 at ¢ = 0, t; = 0.005, to = 0.0135, t3 = 0.025, t4 = 0.0375, t5 = 0.045,
t* = 0.0505 seconds; On the bottom: Snapshots of the solution (¢, z) restricted to the domain
diagonal obtained with . = 0.0025 atty = 0, t; = 0.005, to = 0.015, t3 = 0.025, t4 = 0.04, t5 = 0.06,
ts = 0.068, t* = 0.0705 seconds.
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L
0.707 1.414

Figure 4. Case | - On the top: Snapshots of the normalized solution w(t, x)/||ul| 2(q) (t) restricted
to the domain diagonal obtained with © = 0.25 at to = 0, t; = 0.005, to = 0.0135, t3 = 0.025,
ty = 0.0375, t5 = 0.045, t* = 0.0505 seconds; On the bottom: Snapshots of the normalized
solution u(t, z)/||ul|2(o)(t) restricted to the domain diagonal obtained with x = 0.0025 at ¢, = 0,
t1 = 0.005, ta = 0.015, t3 = 0.025, t4, = 0.04, t5 = 0.06, t¢ = 0.068, t* = 0.0705 seconds.
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=025, 0.0025

Figure 5. Case | - Comparison between the supports of the normalized solutions at extinction
time obtained with ;. = 0.25 (outer circle) and with . = 0.0025 (inner circle).
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Figure 6. Case Il - Time evolution of |[u|[;»(q) (t) for p = 0.25 and p = 0.0025 [Pa s].
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Figure 7. Case Il - On the left: Snapshots of the normalized solution w(t, z)/||u| 2o (t) obtained
with 4 = 0.25 at ¢t = 0, 0.005, 0.03, 0.05, 0.071 seconds; On the right: Snapshots of the normalized
solution u(t, z)/|u £>(o) () obtained with 1 = 0.0025 at t = 0, 0.005, 0.004, 0.075, 0.1025 seconds.
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0.707 1.414

1.414

Figure 8. Case Il - On the top: Snapshots of the solution u(t, z) restricted to the domain diagonal
obtained with . = 0.25 at ty = 0, t; = 0.0055, to = 0.015, t3 = 0.003, t4 = 0.0425, t5 = 0.0575,
t* = 0.071 seconds; On the bottom: Snapshots of the solution w(t, z) restricted to the domain
diagonal obtained with ; = 0.0025 at ¢ = 0, t; = 0.0045, to = 0.0245, t3 = 0.0445, t4 = 0.0595,
ts = 0.0745, tg = 0.095, t* = 0.1025 seconds.
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05

0.707 1.414

Figure 9. Case Il - On the top: Snapshots of the normalized solution w(t, x)/||ul| 2(q)(t) restricted
to the domain diagonal obtained with © = 0.25 at to = 0, t; = 0.0055, to = 0.015, t3 = 0.003,
ty = 0.0425, t5 = 0.0575, t. = 0.071 seconds; On the bottom: Snapshots of the normalized
solution u(t, =) /||ul|L2(o)(t) restricted to the domain diagonal obtained with x = 0.0025 at t, = 0,
t1 = 0.0045, t2 = 0.0245, t3 = 0.0445, t4 = 0.0595, t5 = 0.0745, ts = 0.095, ¢, = 0.1025 seconds.
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06

=025, 0.0025

Figure 10. Case Il - Comparison between the supports of the normalized solutions at extinction
time obtained with ;. = 0.25 (outer circle) and with . = 0.0025 (inner circle).
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Figure 11. Case IIl - Time evolution of ||ul| ;2 g, (t) for 4 = 0.25 and p = 0.0025 [Pa s].
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Figure 12. Case Il - On the left: Snapshots of the normalized solution u(t, z)/||u||12(q) (t) obtained
with 4 = 0.25 at ¢ = 0, 0.0025, 0.0065, 0.01, 0.012 seconds; On the right: Snapshots of the
normalized solution wu(t, z)/|ul 12 (t) obtained with = 0.0025 at ¢ = 0, 0.0025, 0.01, 0.0175,
0.0215 seconds.
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0.707 1.414

Figure 13. Case lll - On the top: Snapshots of the solution u (¢, ) restricted to the domain diagonal
obtained with ;. = 0.25 at ¢y = 0, t; = 0.002, to = 0.004, t3 = 0.0065, t4 = 0.009, t; = 0.0115,
t. = 0.012 seconds; On the bottom: Snapshots of the solution w(t, ) restricted to the domain
diagonal obtained with ;4 = 0.0025 at tc = 0, t; = 0.0025, t2 = 0.005, t3 = 0.01, t4 = 0.015,
ts = 0.0175, tg = 0.02, t, = 0.0215 seconds.
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Figure 14. Case Il - On the top: Snapshots of the normalized solution wu(t, z)/|u z>(o)(t) re-
stricted to the domain diagonal obtained with x = 0.25 at t5 = 0, t; = 0.002, to = 0.004,
t3 = 0.0065, t4 = 0.009, t5 = 0.0115, t. = 0.012 seconds; On the bottom: Snapshots of the
normalized solution w(t, ) /||ul| 2() (t) restricted to the domain diagonal obtained with 1 = 0.0025
attyp = 0, t1 = 0.0025, to = 0.005, t3 = 0.01, t4 = 0.015, t5 = 0.0175, t¢ = 0.02, t. = 0.0215
seconds.
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=025, 0.0025

Figure 15. Case lIl - Comparison between the supports of the normalized solutions at extinction
time obtained with ¢ = 0.25 (outer circles) and with x = 0.0025 (inner circles).
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Figure 16. Case IV - Time evolution of [[u]| ;2 g, (t) for u = 0.25 and . = 0.0025 [Pa s].
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utiAlu(y] &t £ =1.900000-02 uth][ut]] at t = 2.800000e-02

Figure 17. Case IV - On the left: Snapshots of the normalized solution u(t, z)/||u||z2(q)(t) ob-
tained with ¢ = 0.25 at ¢ = 0, 0.0025, 0.01, 0.015, 0.019 seconds; On the right: Snapshots of the
normalized solution u(t, ) /||ul| 12(q) (t) obtained with 1 = 0.0025 at ¢ = 0, 0.0025, 0.015, 0.02, 0.028
seconds.
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10=0.000000, t1=0.002500, 12=0.005500, 13=0.008500, 14=0.012000, t5=0.017000, t6=0.019000

1.414

Figure 18. Case IV - On the top: Snapshots of the solution u(¢, «) restricted to the domain diagonal
obtained with ;1 = 0.25 at ¢ = 0, t; = 0.0025, t2 = 0.0055, t3 = 0.0085, t4 = 0.012, t5 = 0.017,
t. = 0.019 seconds; On the bottom: Snapshots of the solution w(t, ) restricted to the domain
diagonal obtained with ;. = 0.0025 at ty = 0, t; = 0.0025, to = 0.005, t3 = 0.0075, t4 = 0.0125,
ts = 0.0165, tg = 0.025, t, = 0.028 seconds.
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Figure 19. Case IV - On the top: Snapshots of the normalized solution wu(t, z)/|u| z>(o)(t) re-
stricted to the domain diagonal obtained with = 0.25 at t;, = 0, t; = 0.0025, t2 = 0.0055,
t3 = 0.0085, t4 = 0.012, t5 = 0.017, ¢, = 0.019 seconds; On the bottom: Snapshots of the nor-
malized solution u(t, z)/||ul|2(o)(t) restricted to the domain diagonal obtained with p = 0.0025
attp = 0, t1 = 0.0025, t2 = 0.005, t3 = 0.0075, t4 = 0.0125, t5 = 0.0165, ts = 0.025, t. = 0.028
seconds.
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1w ="025 00025

Figure 20. Case IV - Comparison between the supports of the normalized solutions at extinction
time obtained with . = 0.25 (outer shape) and with ;. = 0.0025 (inner shape).
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Figure 21. Case V - Time evolution of [|ul| 2, (¢) for 4 = 0.25 and p = 0.0025 [Pa s].
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Figure 22. Case V - On the left: Snapshots of the normalized solution u(t, x)/||u|| 12(q) () obtained
with = 0.25att = 0, 0.01, 0.025, 0.035, 0.045 seconds; On the right: Snapshots of the normalized
solution u(t, z)/|ul 2o (t) obtained with 4 = 0.0025 at ¢ = 0, 0.015, 0.03, 0.045, 0.064 seconds.
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1.414
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Figure 23. Case V - On the top: Snapshots of the solution w(t, z) restricted to the domain diagonal
obtained with . = 0.25 at to = 0, t; = 0.0075, t2 = 0.0175, t3 = 0.025, t4 = 0.035, t5 = 0.04,
t. = 0.0465 seconds; On the bottom: Snapshots of the solution (¢, z) restricted to the domain
diagonal obtained with p = 0.0025 at 1 = 0.0025, to = 0, t1 = 0.0025, t2 = 0.005, t3 = 0.015,
ty = 0.03, t5 = 0.05, tg = 0.06, t, = 0.064 seconds.
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Figure 24. Case V - On the top: Snapshots of the normalized solution w(t,z)/||ul z>q)(t) re-
stricted to the domain diagonal obtained with = 0.25 at t, = 0, t; = 0.0075, to = 0.0175,
ts = 0.025, t4 = 0.035, t5 = 0.04, t, = 0.0465 seconds; On the bottom: Snapshots of the nor-
malized solution u(t, x)/||ul| 2o (t) restricted to the domain diagonal obtained with ;. = 0.0025 at
to =0, t1 = 0.0025, to = 0.005, t3 = 0.015, t4 = 0.03, t5 = 0.05, tg = 0.06, t. = 0.064 seconds.
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06
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Figure 25. Case V - Comparison between the supports of the normalized solutions at extinction
time obtained with . = 0.25 (outer circle) and with ;1 = 0.0025 (inner circle).

o0l

Figure 26. Case VI - Time evolution of [[u[ . q, (¢) for different values of C.
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