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Nonlinear evolution equations on locally closed graphs

Mihai Necula, Marius Popescu and loan I. Vrabie

Abstract Let X be a real Banach space, lét D(A) C X ~» X be anm-dissipative operator, let

a nonempty, bounded interval and I§t: I ~~ D(A) be a given multi-valued function. By using the
concept ofA-quasi-tangent seintroduced by Carja, Necula, Vrabi€][and [2] and using a tangency
condition expressed in the terms of this concept, we estallinecessary and sufficient condition for
C°-viability referring to nonlinear evolution inclusions tife formu’(t) € Au(t) + F(t,u(t)), where
Fis a multi-function defined on the graph &f. As an application, we deduce a comparison result for a

class of fully nonlinear evolution inclusions driven by rinvalued perturbations of subdifferentials.

Ecuaciones de evoluci 6n no lineales en grafos localmente cerrados.

Resumen. SeaX un espacio de Banach real, séaD(A) C X ~~ X un operadorn-disipativo, sed

un intervalo acotado no vacio y sé&: I ~» D(A) una funcion multivaluada. Utilizando el concepto
de conjuntoA-casi-tangente introducido por Carja, Necula, Vrabiey[[9] y utilizando condiciones de
tangencia expresadas en términos de este concepto,eestaols una condicion necesaria y suficiente
de C°-viabilidad para inclusiones de evolucion no lineales aléoimau’(t) € Au(t) + F(t,u(t)),
dondeF es una multi-funcién definida en el grafo & Como aplicacion, se deduce un resultado de
comparacion para una clase de inclusiones de evolucifingales completas asociadas a perturbaciones
multi-valuadas de subdiferenciales.

Introduction

Let X be a real Banach space andtet D(A) C X ~ X be anm-dissipative operator, which means that
— A is m-accretive, generating the nonlinear semigroup of cotimas{ S(¢): D(A) — D(A); t > 0}.
Let K: I ~ D(A) andF: X ~» X be two multi-functions with nonempty values, whereC R is a
nonempty and open from the right interval @id= graph(K).

Submitted by lldefonso Diaz

Received March 20, 2009Accepted April 1, 2009

Keywords Differential inclusion, locally closed graph, tangent, sangency condition, multi-valued mapping, viability
Mathematics Subject Classificatiorrimary 34G25; Secondary 34A60, 47H20, 34C11

(© 2010 Real Academia de Ciencias, Espafa

97


http://www.rac.es/racsam

M. Necula, M. Popescu and I. I. Vrabie

Our aim here is to prove some new necessary and sufficienitmorglin order that be viable with
respect tad + F'. To be more precise, let us consider the Cauchy Problem

{u’(t) € Au(t) + F(t,u(t)) (1)

u(r) = ¢&.

The next concept is widely known, after the pioneering wdr€@andall, Liggett [LZ], under the name
of mild solutionand, within the frame here considered, coincides with theeadmtegral solutionintroduced
by Benilan P].

Definition 1 Let A: D(A) € X ~ X bem-dissipative and letf € L!(r,T; X). A C°-solution or
D S-limit solution, of the equation
u'(t) € Au(t) + (1) )
is a functionu in C([7, T']; X) satisfying: for each- < ¢ < T ande > 0 there exist
(i)7’:15()<151<"'<C§tn<T7 tpy —tp—1 < € fork=1,2,...,n;

noot,
(i) fr,...,fn€X with > I£(t) — felldt <e;
k=1 tk—1
(iii) vo,...,v, € X satisfying:
Vg — Ug—1
U — th—1
||u(t) — 'Uk” <e forte [tkfl,tk), k=1,2,...,n.

€ Avg + fx for k=1,2,...,n andsuch that

Definition 2 A functionu: [r,7] — X is a C%-solutionof (1) if u(r) = &, wu(t) € K(t) for each
t € [r,T), and there exists an a.e. selectipre L'(7,T; X) of t — F(t,u(t)),i.e., f(t) € F(t,u(t)) a.e.
for t € [r,T], such that: is a C°-solution on[r, T'] of the equatior{2) in the usual sense.

The next two classical results will prove useful in thatdalk.

Theorem 1 Let X be a Banach space and let: D(A) C X ~» X bem-dissipative. Then, for each

¢ € D(A)and f € LY(r,T; X), there exists a uniqué®-solutionu: [r,T] — D(A), of (2), which
satisfiesu(r) = €.

PROOF See Lakshmikantham-Leel&4, Theorem 3.6.1, p. 116].1

In order to exhibit the dependence of thE-solutionw of (2) on 7, £ and f, we denote it byu =
u(-,7,&, f). Throughout[z, y];+ denotes the right directional derivative of the norm calted atz in the
directiony, i.e.,

1
[yl =l o (fl + byl = [l=)
Similarly,

B B 1 2 2
(z,9)+ =lim 5 (2 + hyl|* = [|=]|?) -

Theorem 2 Let X be a Banach space, let: D(A) C X ~ X bem-dissipative, let, n € D(A), f,
g e Ll(TaT;X) and letu = U(',T,g,f) andv = u(-77'777,g). We have

Ja®) ~ o) < g = all + [ [3(s) = 5(s), 5) ~ gl ds
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and
t

[a(t) = o@)|* < [I€ = nl* + 2/ (u(s) = v(s), f(s) = 9(s))+ ds,

T

for eacht € [r, T]. Moreover, we have the following evolution property

u(tvaaé.vf) - u(ta V,U(V,a,g, f)vf|[u,l/+5])7 (3)
forr<a<v<t<v+s.

PROOFE See VrabieZ5, Section 1.7]. W

Since for eachr, y € X, [z, y]+ < |ly||, from Theoren®, we deduce

Corollary 1 Let X be a Banach space, let: D(A) C X ~ X bem-dissipative, lett, n € D(A),
frg€ LY7,T; X)andletu = u(-,7,¢, f) andv = u( -, 7,1, g). We have

[u(t) —v(®)] < [lu(s) - v(s)| +/ 1£(6) — g(0)]| 46

foreachr < s <t <T.

Definition 3 We say that the graphi, of K: I ~ D(A), is C°-viable with respect tod + F, where

F: X ~ X, if for each(r,&) € X, there existsI' > 7, such thatlr,T] C I and (1) has at least one
CP-solutionu: [7,T] — X. If T € (r,sup I) can be taken arbitrary, we say that is globally C°-viable

with respect tod + F.

A short review of the main contributions to the viability trg for evolution inclusions is given below.
Roughly speaking, th8-viability of a set, K, with respect to the right-hand side of an evolution ina@usi
means that for each € K there exists at least ornfe-solutionu of the evolution inclusion in question
satisfyingu(r) = € andu(t) € K for eacht € [r,T]. HereS means the sense in which the term solution
should be understood, sense which has to be made very pcasisédy case.

Throughout, ifu € X, B C X andC C X, we denote by

dist (u, C') = inf |ju — ||, dist (B, C) = inf ||jv — w|| and || BJ| = sup|v]|
ved :‘Leeg vEB

Emerged from its classical ordinary differential equasi@ounterpart initiated by Perro7] in the
one-dimensional case and extended by Naguhitp the arbitrary but finite dimensions, the viability
theory for ordinary differential inclusions of the formi(¢) € F(u(t)) started with the paper of Bebernes,
Shuur [I] where they have shown that, whenevér K ~~ X is upper semi-continuous (u.s.c.) with
nonempty, convex, closed and bounded values,/dnd X is locally closed, a necessary and sufficient
condition in order thaf be absolutely continuous-viable with respecfitds

FE)NTx(E) #0 (4)

foreach € K, whereT () denotes the contingent conekbat{ € K. We recall thaflx () consists of
all vectorsn € X which are tangent t& at¢ € K in the sense of Bouligané] and SeveriP3, i.e.,

R
hrilllonf 7 dist(¢ + hn; K) = 0.

Clearly, @) is nothing but a simple extension of the well-known tangerandition: f(£) € Tk () for
eaché € K, used by Nagumal[f] in the single-valued and autonomous case,€) = {f(£)}. Exten-
sions of the main result of Bebernes-Schuljy fo multi-functions defined on graphs, in finite dimensibna
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spaces, were obtained subsequently by Methlolittjj for u.s.c.F’, and by Bothe J], for almost u.s.cF.
For similar results in infinite dimensional spaces, see 8¢th as well as Carja, Necula, Vrabi€][

Recently, Carja, Necula, Vrabig(] considered the multi-valued perturbed ca&g) € Au(t)+ F(u(t))
with A the infinitesimal generator of @y-semigroup and”: K ~» X. In order to cover more general
situations, from the viewpoints of both necessary and seffitconditions of mild-viability, they introduced
the concept ofd-quasi-tangent set to a given s&tat a given point € K by saying that a nonempty and
bounded subsdf in X is A-quasi-tangenttd< até € K if

h
lim inf 1 dist (S(h)§ + / S(h — s)Fg ds; K) =0,
hlo h 0

where
Fr = {f € Li(R; X); f(s) € Ea.e. fors € R}. (5)

We notice that this concept is strictly more general thahdha of A-tangent vector used by Pavél]
in the single-valued case, and by Pavel, VraBig [n the multi-valued case. Subsequently, inspired by the
notion of A-tangent vector, withd nonlinear, used by Vrabiefl], they have extended this concept to the
case in whichd is nonlinear and have proved some necessary and sufficieditioms ofC°-viability. See
Carja, Necula, Vrabieq] and [L1].

By imposing a tangency condition expressed in termd-gfuasi-tangent sets, in this paper, we extend
the main result in Necula, Popescu, Vrabié][to the fully nonlinear case, by proving a sufficient, andreve
a necessary and sufficient condition f6f-viability referring to nonlinear evolution inclusionsiden by
multi-valued nonautonomous andliscontinuous perturbations defined on graphs. The adgerdf using
A-quasi-tangent sets insteadAftangent vectors consists in that, in infinite dimensioms, multi-valued
tangency condition” turns out to be not only sufficient oft-viability, but necessary as well.

Finally, it should be noticed that there are two main diffiad to overcome in this context. The first one
consists in finding a suitable definition of the approximatieions, in the general case here considered,
i.e., that one of a multi-function defined on a non-cylindt@main, multi-function which may fail to be
u.s.c. with respect to thevariable. The second main difficult point here is to condtiai sequence of
approximate solutions which, under some additional faidyural assumptions, has at least one convergent
subsequence.

The paper is divided into 7 sections, teecondand thethird ones being merely concerned with the
definition of both tangency concepts and special classesutif-fanctions to be used in the sequel. The
fourth sectioncontains the main necessary condition@viability, while in the fifth section we state the
main mild-viability sufficient condition and prove the etdace of approximation solutions. In sectién
we prove the main sufficient condition for mild-viability,hile the last sectior?, as an application, we
include a comparison result referring to a class of nonfieealution inclusions governed by multi-valued
perturbations of subdifferentials.

2 Tangency concepts

Let X be a real Banach spaceC R a nonempty and open from the right interval, fét I ~~ D(A) be

a multi-function with nonempty values and &tbe the graph of<, i.e. X := {(1,¢) € I x X; 7 €1,
e K(r)}. Let(r,€) € X, letn € X and letE € B(X), whereB(X) denotes the class of all nonempty
and bounded subsets k.

Definition 4 We say that
(i) the vectom is A-tangento X at (, &) if

I
hI}rLlllOnf 7 dist (u(T +h,7,&n); K(T+ h)) =0,
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whereu( -, 7, &,n) denotes the uniqué®-solutionof the Cauchy problem
v'(t) € Av(t) +n
() =&,

on|r, +o00). See Definitior.

(i) the setF is A-tangento X at (7, ¢) if

1
lirillionf 7 dist (u(r +h, 7,&, E); K(1+h)) =0,

whereu(r + h,7,&, E) = {u(t + h,7,§,m); n € E }.
(i) Eis A-quasi-tangento X at (7, &) if

1
lim inf 3 dist (u(r + b, 7.6, Fe); K(r+h) =0,

whereF g is defined by5), andu(r + h, 7, &, Fg) = {u(r + h, 7, &, f); f € Fr }.
Throughout, we denote by:
(i) T4(7,€) the set of allA-tangent vectors t& at (T, £);
(i) T84 (7€) the set of alld-tangent sets t& at (7, £);
(iiiy QT84 (7, €) the set of alld-quasi-tangent sets 6 at (7, £).
Identifying vectors with singletons, and constants wittelty integrable functions, we deduce

Tie(7,€) C T84 (7,€) € QT8 (7, &),

and it may happen, even in the simplest cdse: 0, that both inclusions to be strict. See Example 2.4.1,
p. 36 in Carja, Necula, Vrabiél].

3 Special classes of multi-functions
ThroughoutX is endowed with the metriel, defined by
d((7,€), (0, 1)) = max{ |7 — 0], (1€ — pll },

forall (1,¢), (0, 1) € K. Furthermore, whenever we will use the testrongly-weakly u.s.ave will mean
that the domain of the multi-function in question is equippéth the strong topology, while the range is
equipped with the weak topology. The terns.c. refers to the case in which both domain and range are
endowed with the strong, i.e. norm, topology. Finally, irtladt follows, A stands for the Lebesgue measure.

Definition 5 The multi-functionf’: X ~» X is called 6trongly-weakly almost u.s.cif for eache > 0
there exists an open st C I such that\(O.) < ¢ and F;(;\ 0.)x x]nx IS (Strongly-weakly) u.s.c.

Definition 6 We say tha#': X ~~ X is essentially locally boundeif| for each(r,¢) € X, there exist a
negligible set\V; C I, p > 0, and¢; € L2 (I;R) such that for all(t,u) € (I '\ N1) x D(&,p)) N XK, we
have

[ F(t, w)l| < £1(2)-

If we relax the conditiod; € L (I;R)to ¢y € Li _(I;R), we say thaf" is locally integrally bounded

loc loc
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Remark 1 If D(A) is separable, we can choo$g in Definition6 independent ofr, £) € X and, in this
case, foreachir, &) € [(I \ N1) x X]NXK, F(r,£) is bounded.

Excepting the case whefi: I ~~ X is constant, i.e.K(t) = C, whenX = I x C'is a cylindrical
domain, one may happen that there would be no multi-fundiiofk ~» X such thatk be C°-viable with
respect tod + F'. See Example 2.1 in Necula, Popescu, Vrahi#.[

So, in order to get necessary and even necessary and suftioieditions for the viability of a non-
cylindrical graph with respect to a given multi-functiorme has to consider merely a special class of
graphs. This class of graphs, we are going to define predisdby, was considered for the first time by
Necula [L7].

Definiton 7 Let K: I ~ D(A) be a multi-function. The graplti, of K is said to beA—CO—vigbIe
by itselfif for each(r,¢) € X, there existl’ > 7, p > 0 and/, € L{ (I;R), so that for each7,¢) €
([7,T) x S(&, p))NK, there exist” € (7, T] and a pair of functions(g, v) € L*([7, T]; X)xC([7, T]; X),
satisfying:

(v1) v(t) = u(t,7,€,9) foreacht € [7,T];
(v2) (t,0(t)) € ([7,T] x S(&,p))NK  foreacht € [7,T7;

(v3) |lg(s)|| < la(s) a.e. fors e [7,T).

By a simple solution issuing frortr, &) € ([7,T) x S(&, p)) N X we mean a pail(g, v) satisfying
(v1)—(vs3).

Remark 2 In other words, the graph, of K : I ~ D(A) is A-C°-viable by itself if and only if, for each
(1,€) € K, there exis" > 7, p > 0 and/, € L _(I;R), so that([r,T) x S(&, p)) N K is C°-viable with

loc

respect tod + G, where the multi-functiot: ([7,7) x X) N X ~ X is defined by
G(t,€) :=={veX; v <l(t) },

foreach(t, &) € ([7,T) x X) N XK.

Remark 3 (i) If K: I ~ D(A) is constantand(t)K C K for eacht > 0, thenX is A-C?-viable by
itself.

(i) If K is C%-viable with respect tod + F, whereF': X ~~ X is some locally essentially bounded
multi-function then, for eaclr, £) € X, the function, defined as in Rematk with /5 = ¢;, where
¢, is given by Definitior, satisfies the conditions in Remd&kand thusK is A-C°-viable by itself.

4 Necessary conditions for viability

Throughout)\ denotes the Lebesgue measureéRoriirst we recall

Definition 8 Anm-dissipative operatod: D(A) ~» X is of compact typédf for each sequencef.,, u, )
in LY(7,T; X) x C(|r, T); X) with u,, a C°-solution of the problem/, (t) € Au,,(t) + f.(t) on|[r,T] for
n=1,2,...,lim, f, = f weakly inL!(r, T; X) andlim,, u,, = u strongly inC([r, T]; X), it follows that
u is aC-solution of the problem’(t) € Au(t) + f(t) on[r, T].

A typical example ofn-dissipative nonlinear operator of compact type is given\gyin L' () with
Dirichlet boundary conditions. See Diaz, Vrabig] and Carja, Necula, Vrabie®)], Theorem 1.7.9, p. 22.
The hypotheses we will use in the sequel are listed below.
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(A1) A: D(A) € X ~ X is m-dissipative and{ S(t): D(A) — D(A); t > 0} is the nonlinear
semigroup of contractions generatedAy

(A2) A: D(A) C X ~ X ism-dissipative and S(t): D(A) — D(A); t > 0} is compact, i.e.S(t) is
compact for each > 0;

(A43) A: D(A) € X ~ X ism-dissipative and of compact type;
(F1) the grapHK is A-CP-viable by itself;

(F3) F hasnonempty and closed values;

(F3) F: X~ X isalmostu.s.c.;

(Fy) F:X ~ X isessentially locally bounded;

(F5) F: X ~~ X is almost strongly-weakly u.s.c.;

(Fs) there exists aséYf C I, with A\(IV) = 0, and such that for eadht, &) € [(1\ N) x X] N X, we have
F(7,€) € QT85(7,£).

Theorem 3 Let D(A) be separable. I{A;), and(F3) are satisfied,F' is nonempty-valued and locally

integrally bounded, an& is C°-viable with respect tol + F, then both(F;) and (Fs) hold.

PrROOE In view of (ii) in Remark3, it remains to check out onl¢Fg). SinceD(A) is separable, and
I is locally integrally bounded, from Remadk it follows that there exist a finite or countable d&t
(15, &)ier € K, (6:)ier C (0,00), (pi)ier C (0,00), (li)ier C Li,.(I;R) and a negligible sel C T
such that C U;er (7 — i, 7 + 6;) x S(&;, p;) and, for each € T and eacht, u) € (((1; — &;, 7% + ;) \
N) X S(&,pl)) NX, we havd|F(t, u)|| < fi(t).

From(F3) it follows that for eachn > 1 it existsI,, C I such that\(I \ I,,) < 1/n andF is u.s.c. on
(I, x X)NnX.

Let F, C I, the set of all density points df, which are also Lebesgue points for for all i € T". Let
E = (Up>1E,) N (I'\ N). Obviously,A(I \ E) = 0.

LetT € E and¢ € K (7). We will show thatF (r,¢) € QTS5 (7, €).

Letu: [r,T] — D(A) be a solution of I). Hence there exist§ € L!(r,T; X) such thatf(s) €
F(s,u(s))a.e.s € [r,T] andu = u(-,7,¢&, f).

Sincer € E, there existsiy € N such thatr € E,,,. Analogously, sincé& C U;er (7 — 0i, 75 + 6;) X
S(&, pi), there existgy € T such that(r, &) € (T, — 0iy, Tip + 0ip) X S(&iys piy)- Lete > 0 be arbitrary
but fixed and led < ¢ < 9;, be such that

f(s) € F(s,u(s)) C F(1,€) + D(0,¢),

a.e.fors € [r,7 + 0] N E,, andu(s) € S(&,, pi,) forall s € [r,7 4 4].
Letn € F(r,£) be fixed and

~ f(s) forse[r,7+ 0N Ey,
n forse [r,7+0]\ Eny.
Hencef(s) € F(r,&) + D(0,¢) a.e. fors € [r, 7 + 4]. N
Let f: [r,7 + 8] — X countably valued such thdlf(s) — f(s)|| < ¢ a.e. fors € [r,7 + J]. So, we
have

f(s) e F(1,€) + D(0, 2¢)

a.e.fors € [r,7 +4].
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Then, there exist two countably valued functigngr, 7 + 6] — F(7,€) andr: [r,7 4+ 6] — D(0, 2¢)
such that

f(s) =g(s) +7(s)
a.e.fors € [r,7 +d]. Hencey, r € L' (7,7 + 6; X).
Sinceu(r + h) € K(7+ h), ||g(s) — f(s)]| < 3e a.e. fors € [, T + 4], using Corollaryl, we deduce
that for eact) < h < §

1 1
— dist (U(T""haTagang(T,f))a K(T+h)) < E||u(7_+h77—7§ag) —’U/(T—f—h,T,g,f)H

h
T+h
<i [l - o)l as
T+h ~ THh
<t [ lo - Follds+ 1 [ 17 - sl ds

1
<se+p [ () =l ds
[T77—+h]\E710

1 1
<sevt | el ds+ 5 Il s
[T, 7+h]\En, [T, 7+h]\En,
A[r, T+ AN Eno))

1 T+h
sty [ 1 - tallds + (e l+ ) (1- XG0

Passing tdim sup in the inequality above and recalling thais both a density point and a Lebesgue
point for ¢;,, we get

1
lim sup 7 dist (u(T +h, 7,6, Fpire), K(T+ h)) < 3e.
h10

As e > 0 was arbitrary, we dedudds). B

In fact, we have proved a stronger result, i.e.,

Theorem 4 Let D(A) be separable. If{A;), and (F3) are satisfied,F’ is nonempty-valued and locally
integrally bounded, antk is C°-viable with respect tol + F, then(F}) holds and there exists a sdt C 1,
with A\(N) = 0, and such that for eacfr, &) € ((I \ N) x X) N X, we have

N
E?&Edlst (w(T 4+ h, 7,6, Fr(re); K(r+h)) =0.

5 Sufficient conditions for viability

Definition 9 We say that the grapi is:

(i) locally closed from the lefif for each(r, &) € X there existl” > 7 andp > 0 such thqvt, for each
(Tn,&n) € ([7,T] x D(&, p)) N K, with (7,,),, nondecreasingim,, 7, = 7 andlim,, §, = &, we have
(7,6) € X,

(i) c~losed from thf lefif for each(r,, &,) € X, with (7,,),, nondecreasindim,, 7, = 7 andlim,, &,, =
&, we haveT, ¢) € K.

Theorem 5 LetX be locally closed from the left and lét: X ~~ X be nonempty, convex and weakly
compact valued. IfA;), (42), (As), (F1), (Fy), (Fy) and(F5) are satisfied, then a sufficient condition in
order thatX be C°-viable with respect tol + F is (Fg). If, instead of(F5), the stronger conditioiF) is
satisfied, theiF;) is also necessary in order that be C°-viable with respect tod + F.
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The necessity follows from Theore8by observing thafA,) implies the separability 0D(A). This
separability result is a straightforward extension of iite&r counterpart in Vrabie2p, Theorem 6.2.2,
p. 136]. The sufficiency, which is by far the most interestagt of Theorend, will be proved later.

From Theorenbd, by a slight extension of Brezis-Browder Ordering Prineipi], i.e. Theorem 2.1.1,
p. 30 in Carja, Necula, Vrabié], we deduce the global-viability result below.

Theorem 6 LetX be closed from the left and lét: X ~~ X be nonempty, convex and weakly compact
valued. If(A1), (A2), (43), (F1), (Fy), (Fy) and (F5) are satisfied, then a sufficient condition in order
that X be globallyC?-viable with respect tol + F' is (Fg). If, instead of(F), the stronger conditioF)

is satisfied, theliFy) is also necessary.

The next lemma is the main step through the proof of Thedsem

Lemmal LetX be areal Banach spacel: D(A) C X ~ X anm-dissipative operator] a nonempty
and open from the right intervals : I ~» D(A) a multi-function with locally closed from the left graph
andF': X ~ X a nonempty-valued, locally essentially bounded multéfiom. Let us assume théat,),
(F1) (F2), (Fy), and(F) are satisfied. Letr,&) € X and letZ = N; U N, whereN; and N are the
negligible sets in{F}) and in(Fg). B

Letp > 0 andT > 7 be such thaf[r, T| x D(&, p)) N K is closed from the leftf" is a.e. bounded by
b e Lg (I:; R) on([r, T]x D(&, p))NK —see Definitio and let/, e L .(I;R) be given by Definitiof.

Then, for each: € (0,1) and each open sdb C I, with Z C O, there existl' € (r,7] and
three functions:a: [r, T] — [r, T] nondecreasing and right continuoug; [r,7] — X measurable and

v: [r,T] — X continuous satisfying:
(Y t—e<a(t)<t forallte[r,T],a(T)=T,;
(i) foreacht € [r, T] for whicha(t) € O it follows that [a(t),¢] C O;
(i) v(a(t)) € D p)NK(a(t)) forallte [r,T];
(iv) f(t) € F(a(t),v(a(t))) foreacht € [r,T]\ O;

W) If@®) < £t) ae. fort € [r,T], with £(t) = max{l:(t), l2(t)}, wherel, € LS (I;R) is as in
Definition6 and/, € L{ .(I;R) as in Definition?;

(vi) v(r) = &and|v(t) —ul(t, als),v(a(s)), )| < (t—a(s))e forallt,se[r,T),7<s<t<T;
i) lo(t) —v(a()|| <e forallte [r,T];

T

(vii) sup ||S(t—71)§ =&+ / Ls)ds+T —7 < p.
te(r,T] T

Definition 10 Let(7,{) € K, e € (0,1) andO C I a nonempty and open set with C O. A triplet

(a, f,v) satisfying(i)—(viii ) is called an(e, ©)-approximate_?-solutionof (1).

We can now proceed to the proof of Lemta
PROOF OFLEMMA 1 Let(7,£) € K be arbitrary and chooge> 0 andT" > 7 such that

([T, Tl x D(&p)) NK

is closed from the left. This is always possible becdlisis locally closed. Next, diminishin@ > r if
necessary, we may assume thaii { holds.

We first prove that the conclusion of Lemrhaemains true if we replac€ as above with a possible
smaller number + § with § € (0,7 — 7] which, at this stage, is allowed to depend:oa (0,1). Then, by
using the extension of Brezis-Browder Ordering Principlg .e. Theorem 2.1.1, p. 30 in Carja, Necula,
Vrabie [9], we will prove that we can take + § = T independent of.

Lete € (0, 1) be arbitrary. We distinguish between the following two cdenpentary cases.
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Casel. If 7 € O,wetaken: [1,7+d] — [r,7+¢] defined byn(t) = T fort € [r,7+0), a(t+0) = 7+4.
In order to definef andv, let us recall that there exists a simple solutignw) issuing from(r, £),
defined on[r, 7 + ¢]. Let (g,v) be such a simple solution, and let us defif{e) = ¢(s) a.e. for
s € [r,T + d]. Obviously {) and {ii )—(vi) are satisfied and, taking into account tlas open and
is continuous, diminishing if necessary, we conclude théif)(@nd ii) are satisfied too.

Case2. If 7 ¢ Othenr ¢ Z, thenF(r,£) € QTS5 (7, €), and therefore there exigte Fr(re) 0 €(0,¢)
andp € X with ||p|| < e such that

u(t +0,7,& f)+ op € K(1+9).

We recall thatF p(, ¢y = { f € L' (Ry; X); f(s) € F(r,¢) a.e.fors € Ry }. With f as above,
let us definex: [r,7 + 0] — [r,7 + d] andv: [r,7 + 0] — X by a(t) = 7 fort € [r,7 + ),
a(T +d) = 7 + 9, and respectively by

’U(t) = u(thvé.a f) + (t - T)p
for eacht € [, 7 + d].

Let us observe that the functions f andwv satisfy {)—(v) with T = 7 + §. Clearly,v(7) = &.
Moreover, sincéd|p|| < ¢, we deduce

[o(t) = u(t, als), v(e(s), NI = [lo(t) = u(t, 7,0(7), )| = (¢ = )llpll < (¢ = als))e

forall 7 < s <t < 7+ 4. Thus i) is also satisfied. Next, diminishing> 0 and redefiningy if
necessary, we get

[o(t) = v(a@®)]] = llv(t) = v(7)]]
< lult, &, f) = &l + (& = 7)]lpl

t
< IS¢ - -6l + [ Nl ds+ (¢ =7
T+6
< sup ||S(t—7')§—§|\+/ ls)ds+d<e
te[T,7+0] T
for eacht € [r, 7 + ¢), and thus\ii) is also satisfied.

Next, we will show that there exists at least one triglet f, v) satisfying ()—(viii) on [r, T]. We shall
use the extension of Brezis-Browder Ordering Principle [.e. Theorem 2.1.1, p. 30 in Carja, Necula,
Vrabie [9], as follows. LetS be the set of all triplet$c, f, v), defined on[r, u], with 7 < p < T and
satisfying {)—(viii) with x instead ofl". This set is clearly nonempty, as we have already provedS ®a
introduce a partial order as follows. We say that

(a1, f1,v1) = (a2, f2,v2)

if 11 < pe andag(s) = aa(s), f1(s) = fa(s) andvy(s) = va(s) for eachs € [r, u1].
Let us define the functiol: § — R by

N(a, f,v) = p.
Itis clear thatN is increasing o18. Let us now take an increasing sequence
((Oéj, fja Uj))j
in 8§ and let us show that it is bounded from above inNVe define an upper bound as follows. First, set

p* =sup{p;; j € N}
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If u* = p; for somej € N, (¢, f;, v;) is clearly an upper bound. Jf; < p* for eachj € N, let us define

a(t) = a;(t),  fO)=f(t),  v(t) =v;(0)

for j € Nand everyt € [r, 11;]. To extendy, f andv tot = p*, we proceed as follows.

First, we extend atu* by settingf (1*) = 7, wheren € X is arbitrary but fixed.

Second, byi¢) and ), it follows that f € L!(r, u*; X) and therefore, for each € N, the function
w(+y pg,v(pg), f): [mg, w*] — D(A) is continuous.

To extendv to p*, it suffices to show that there exidis - v(t). To this aim, let us observe that, in
view of (vi), we have

[o(t) = v@I < () — ult, s, v(p5), P

+ g v(ug), £) = ult g, v() Ol + ludE g, 0(m5), £) = 0(@)]
(t = mj)e + llult, i, v(pg), £) = ult, g, 0(i), F)Il + (E = py)e
(" = ) + llult, g, vpg), £) = ult, i, 0(0), Ol + (17 = e,

for eachj € N, eacht > p; and eacht > p;. Sincelim; ; = p* andu( -, u;,v(;)) is continuous at
t = u*, we conclude that — v(t) satisfies the Cauchy necessary and sufficient conditioméexistence
of the limit at¢ = p*. Indeed, let’ > 0 be arbitrary and let us fix € N such that(y* — u;)e < &'/3.
Next, let us fixj(¢') > 0 such that, for each t € [p;, u*) with p* —¢ < §(¢’) andu* —t < §(¢’), we have
w(t, s, v(pg), f)—u(t, ws, v(ui), f)|| < €'/3. Thus, for each andt as above, we havp () —v(t)| < ¢/,
as claimed. So, we can extendby continuity, to the whole intervét, .*]. Finally, we definev(u*) = p*.
Sincev(um) € D(&, p) N K (uy,), for eachm € N, and the latter is closed from the left, we deduce that
v(p*) € D(&, p)N K (1*). Atthis point, let us observe that, if necessary, i.euiiZ O, we have to redefine
f(u*) = n by choosing) € F(u*,v(n*)), in order that i) be satisfied. This is always possible because
f is supposed to be ih! (7, u*; X). Hence,(a, f,v) satisfies i)—(iv). Next, we may easily verify that
(o, f, v) satisfies {)—(viii) and so, it is an upper bound 0, f;,v;));. Consequently the sétendowed
with the partial order< and the functioriN satisfy the hypotheses of the extension of Brezis-Browder
Ordering PrincipleT], i.e. Theorem 2.1.1, p. 30 in Carja, Necula, Vralig [Accordingly, there exists at
least onéN-maximal element«,, f,,v,) in §, i.e., an element such that, (f., f,,v.) = (as, fo, Vo)
thenv = o.
We next show that = T, whereT satisfies yiii). We prove this by contraposition, i.e., we show
that an elementa,, f,,v,) in 8 with v < T is notN-maximal. So, let us assume that< 7" and let
& = v, (v) = vy, (e, (v)) which, by (i), belongs taD (€, p) N K (v). In view of (v) and {i), we have

& = € IS = 1) = €]+ ul7.6 ) = SIE + oo (v) — w6, 1)
<180 =) =8l + [ IAe)lds+ (=)

<
<

IN

sup [S(0¢ — €]+ [ “e(s)ds + (v — )e.

0<t<v—r

Recalling thatr < T"ande < 1, from (viii), we get

ng—gH <p. (6)

At this point we act as at the beginning of the proof witinstead ofr and with¢,, instead of. So,
distinguish between the following two complementary cases
Casel. If v € O, we takea: [1,v + §] — [r,v + J] defined by

ay(t) ifterv]
apys(t) =< v ifte(v,v+9)
v+o6 ift=v+9,
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In order to definef, s andv, s, let us recall that there exists a simple solutignv) issuing from(v, &,,),
defined or{v, v + ¢]. Let (g, v) be such a simple solution, and let us define

A@) iftelny]
fu+5(t)_{g(t) ift e (v,v+4),

and

Ju) iftelny
Vyys(t) = {v(t) if t € (v,v+4].

One may easily see thait) @nd {ii)—(vi) are satisfied and, taking into account tifais open andv is
continuous, diminishing if necessary, we conclude thaf)( (vii) and iii) are satisfied too.

Case2. If v ¢ Othenv ¢ Z, thenF(v,&) € QT8%(v,€). So, from ), we infer that there exist
J € TFpey 0 € (0,e]withv 46 < T andp € X satisfying||p|| < ¢, such that

u(v +0,v,&, f) +0p € D(E,p) N K (v +9).
Letus definev,is: [r,v+ 0] — [r,v 4+ 6], futs: [T,v + 6] = X andv,45: [1,v + ] — X by

a,(t) iftenv
ayys(t) =< v ifte(v,v+9)
v+49 ift=v+4,

JA@) i te ]
fois(t) = {f(t) if t € (v,v+4],

and

poeslt) = {vl,(t) if t € [r, 0]

U(t,lj,gl,,fl,+§)+(t—l/)p IftE(I/,V—F(S]

Sincev,45(v +6) € D& p) N K(v +96), (1o futs, vuts), it fOllows that satisfiesif—(v), with T’
replaced by + 4.

To check ¢i) we consider the complementary cases: t < v,v < s < tands < v < t.

Clearly (i) holds for eacht, s satisfyings <t < v. If v < s < ¢, we have

[vpts () —ult, wts5(8), vuts(Quts(s)), furo)ll
= ”u(tv v, &y, fl/+5) + (t - V)p - u(tv v, &, fu+t5)H
<(t—v)e=(t— apis(s))e.

Let nows < v < ¢, and let us observe that, by virtue of the evolution prop@)yand of {i) (which is
valid on both[r, v] and[v, v + §]), we have

Vv+46 (t) - ’U,(t, OLU+5(S), Vu+6§ (Oéqué(S))a fu+6)
= u(t7 v, UV+5(V)7 fV+5) + (t - I/)p - u(t7 v, U(Vv aV+5(S)7 UV+5(aV+5(S))7 fV+5)7 fu+6)-
Therefore
H’UVths(t)_u(ta OLU+5(S), Vu+6§ (Oéqué(S))a fu+6) ||
< Nwps(v) — uv, awt5(s), vurs(wts(s)), furs)ll + (= v)pll
< (= qurs(s)e + (E = v)e

= (t - aVJr(;(S))Ea
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which provesyi).
Similarly, diminishingé if necessary and redefining the functions f and v, we deduce thatwi)
and {iii) are satisfied. S@, 45, fu+s, Vvts) € S,

(Oé,j, fl/a UV) j (aV+5a fl/+61 UV+5)

andv < v + ¢. Hence(w,, f.,v,) is notN-maximal, and this completes the proof of Lemina H

Remark 4 Under the general hypotheses of Lemingor eachy > 7, we can diminish botlh > 0 and
T > 7, such thatl’ < ~, p < v — 7 and all the conditiongi)—(viii) in Lemmal be satisfied.

6 Proof of Theorem 5

PROOF OFTHEOREM5 Since the necessity follows from Theor&nwe will confine ourselves only to
the proof of the sufficiency.

LetZ C R be anegligible setincluding the negligible $&t appearing in Definitio® and the negligible
setN in (Fs). Letp > 0and7’ > 7 and/ be as in Lemma. Lete,, € (0,1), withe,, | 0, let(0,),>1 CR
be a sequence of open sets such that:

(@ Zc 0, foreachn € N,n > 1;
(b) 041 € O, andX([7, T]NO,) <&, foreachn € N,n > 1;
(©) Fij(1\0.)xD(e,p)nx is strongly-weakly u.s.c., for eaehe N, n > 1.

Let ((an,fn,un))n be asequence ¢f,,, O, )-approximate solutions o}, sequence given by Lemnia
Clearly

lima,(s) =s

uniformly for s € [r, T).
In view of (vi) in Lemmal, we have

un(t) = u(thvgvfn) +wn(t) (7)

for eachn € N andt € [r, T, wherelim,, w, (t) = 0 uniformly for¢ € [r,T]. We will show that, on a
subsequence at least,, ), is uniformly convergent offr, 7'] to some function, which will turn out to be
aCP-solution for the problem().

To do this, it suffices to show that the sequefee-, 7. &, f,)),, is uniformly convergent ofir, '] to
some function..

Sincel| f(t)|| < £(t) for eachn € N and a.e. for € [r,T], and the semigroup generated Hyis
compact, by virtue of Baras’ Theorem 2.3.3, p. 47, in Vrakig,|we conclude thatu,,),, has at least
one uniformly convergent subsequence to some funetioBut a,,(t) 1 ¢t andlim,, u,(a,(t)) = u(t),
uniformly for¢ € [7,T), and hence, for eadh> 1, the set

Cr = { (an(t),un(an(t)));n >k, t€[r,T)}

is compact. Sincé’ is strongly-weakly u.s.c. and has weakly compact valued,dmma 2.6.1, p. 47, in
Carja, Necula, Vrabied], it follows that, for eachk > 1, the set

By, := conv (U U F(an(t),un(an(t))))

n>k te[r,T\O
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is weakly compact. Using again the fact thidt, (¢)|| < ¢(¢) for eachn € N and a.e. fot € [r, T], where
¢ € L'(r,T;R), recalling thatBy, is weakly compact antdm;, A\(O;) = 0, by Diestel's Theorem 1.3.8,
p. 10, in Carja, Necula, Vrabiel], it follows that, on a subsequence at ledsty, f,, = f weakly in
LY(7,T; X). By (ii) in Lemmal, for eachk > 1 there existsi(k) € N so that, for each > n(k) > k, we
havea, (s) € [, T]\O a.e. fors € [r, T]\Ok. Aslim,, u, (t) = u(t) uniformly fort € [, T|, lim,, f, = f
weakly in L (7, T; X ), fu(s) € F(an(s), un(an(s))) a.e. fors € [7,T]\ Ok, andFj;(p0,)xD(¢,p)ink 1S
strongly-weakly u.s.c., from Theorem 3.1.2, p. 88, in Veglii5], we conclude thaf (s) € F(s,u(s)) for
eacht > 1 and a.e. fos € [, 7]\ Oy. Sincelimy A(Oy) = 0, we deduce that

f(s) € F(s,u(s)) (8)

a.e.fors € [r,T).
Finally, taking into account that is of compact type —see Definiti@®— and passing to the limit both
sides in ), for n — oo, we get

u(t) = u(t, 7§, f),

for eacht € [r,T]. Since, by (), (i), (vi) and {ii) in Lemmal, we haveu,(a,(t)) € K(an(t)),
un(T) € K(T), an(t) 1 t, asn — oo, uniformly for¢ € [, T), lim, up(an(t)) = lim, u,(t) = u(t)
uniformly for¢ € [r, T, andX is locally closed from the left, it follows that(t) € K (¢) for eacht € [, T.
By (8), we conclude that is aC°- solution of (1), and this completes the proofl

7 A comparison result

Let H be a real Hilbert space with inner product,-), let C C H be a closed convex cone with
C N (—C)={0}, let“=<"Dbe the partial order ot/ defined byC, i.e.,x < yifandonlyify —x € C. Let
p: H — R4 U {+oc} be a proper, |.s.c., convex function anddet: D(0p) C H ~~ H be the subdif-
ferential of . It is known that— 0y is the infinitesimal generator of a nonlinear semigroup oft@rctions
{S(t): D(0p) — D(d¢); t > 0}. Leta: I — D(Op) be a continuous function and 1&t: I ~~ H be
defined byK (t) := {z € H; a(t) < « } for eacht € I. LetX be the graph of{ andF': X ~~ H be a
given multi-function. We are interested in finding suffidieonditions in order thadC be strongly-viable
with respect to-0¢ + I, i.e., in order that, for eacfr, &) € I x H with a(7) < &, to exists at least one
strong-solution, on [, T'], of the problem

u'(t) € —0p(u(t)) + F(t,u(t))
(1)
(

e

=¢
a(t) < u(t) for eacht € [, T7,

~—

i.e. a continuous functiom: [r,T] — D(dp) with v € Wh2(r,T; H) and for which there exists
f € L3(r,T; H) such that:

(S1) () € —dp(u(t)) + f(t), a.e.fort € [r,T];
(Ss) f(t) € F(t,ut)), ae.forte [r,T;

(S3) u(r) =¢;

(S4) a(t) 2 u(t), foreachte [r,T).

For a thorough study of problems of this kind, with single-valued and independent of that is
F(t,u) = {f(¢t)}, and without the monotonicity constraiffl,), see Brezis{].
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Definition 11 We say that a convex functign H — R U {400} is of compact typef for eachk > 0,
the level set
Lo ={ueH; Jul® +p(u) <k}

is relatively compact in the norm topology &t

Remark 5 If p: H — R} U {+o0} is a proper, |.s.c., convex function of compact type apds its sub-
differential, thenA = —0dy generates a compact semigroup —see Vr@big Proposition 2.2.2, p. 42}
and is of compact type in the sense of Defini8on-Vrabie[ 25, Corollary 2.3.2, p. 50]

Theorem 7 Lety: H — R, U{+0o0} be a proper, |.s.c., convex function of compact type @ittsingle-
valued, leta € W' (I; H), with a(t) € D(dy) for eacht € I, let C € D(dy) be a closed convex cone
with C N (=C) = {0} and D(9p) N C' = C, and letX be the graph of the multi-functioR": I ~~ H
defined byK (t) = a(t) + C for t € I. Let us assume tha(¢t)C C C for eacht > 0, and X is
—0p-CP-viable by itself. Let us further assume tifatis a nonempty, convex and weakly compact valued
multi-function which is essentially locally bounded andakt strongly-weakly u.s.c. Then, a sufficient
condition in order thatk be C°-viable with respect te-dyp + F is to exists a negligible sé¥ C I such
that, for eachr € I\ N and eacht € 9C N D(9¢), we have

dist (— 0p(a(r) + &) + dp(€) — d'(7) + F(r,a(r) + £); C) = 0. 9)

PrROOF  Throughout,O, Oy, ..., 04, denote some functions defined @ 1) with values inH, with
limhio O(h) = Hmhio 01 (h) == Hmhio O4(h) =0.
First, let us notice that, for evertye (0,1), ¢ € D(0¢) andn € H, we have

a(7 + h) = a(7) + ha' () + hO(h)
w(T + h,7,6,m) = & — hdp(€) + hn + hO(h) (10)
S(h)§ =& —hdp(§) + hO(h).

To prove that9) implies the tangency condition
F(r,a(r) +§) € 78,7 (7, a(7) +€), (11)

foreachr € I\ N and eaclf € CND(9y), let us observe that, in view 010), for eachy € F(7, a(1)+£),
we have
dist (u(T +h,ma(r)+&n); K(r+ h))
= dist (u(T +h,ma(t)+&,n); alt+h)+ C’)
= dist (a(r) + € + h[=0p(a(7) + &) + 1] + hO1(h); a(r) + ha'(r) + hOx(h) + C)  (12)
= dist (§ = S(h)¢ + h[=0p(a(7) + &) — d/(7) + ] + hOs(h); —S(h)¢ + C)
= dist (h[—acp(a(T) + &)+ 0p(€) —d' (1) +n] + hO4(h); —S(h)E + C).
Since, for eaclf € C' N D(9¢) and eachh > 0, we haveS(h)C C C andC'is a convex cone, it follows

that
CC-Sh)E¢+C and hC=C. (13)

Let nown € F(r,a(r) + &) be arbitrary but fixed. FromlQ), (12) and (3), we get
dist (u(r + h,7,a(1) + & F(7,a(7) +&)); K(T+ h))
< dist (u(r + h,7,a(7) + & n); K(T+ h))
< dist (h[—0¢p(a(r) + &) + 0p(&) — a' (1) + 1+ Os(h)]; C)

111



M. Necula, M. Popescu and I. I. Vrabie

= dist (h[—&p(a(T) + &)+ 0p(€) —a' (1) + 1+ O4(h)]; hC’)
= hdist ( — dp(a(r) + &) + 0p(&) — d'(1) +n+ O4(h); C)

< hdist (= 0p(a(r) +€) + dp(&) — a'(r) +n; C) + L[| Oa(h)|
= h[|Oa(R)|.

a

Dividing by h and passing to the limit fok | 0, we deduce

li%%nf % dist (u(7 + h,7,a(7) + & F(r,a(1) +€)); K(+h))
< dist (= 9p(a(r) +€) + 90(§) — a'(7) +m; C)
for eachn € F(r,a(7r) + £). Since for eacl§ € 0C N D(9y¢), we have

e dist (= 20(a(r) +€) +9p(€) = () + i )

=dist ( — dp(a(r) + &) + 0p(§) — a'(7) + F(1,a() +§); C)

and, by 0), the latter equal8, we conclude thatl(l) holds true. If¢ € (C'\ 9C) N D(dy), the conclusion
above follows from the simple remark that, for> 0 small enough,

dist (u(r + h,1a(r) +&,n); K(T+ h)) = dist (u(T +h,ma(t)+&,n); a(t +h)+ C’) =0.

So (12) holds true for eacly € C'N D(d), and thus we are in the hypotheses of Theobemsee also
Remark5. This completes the proof. B

Remark 6 SinceF(r,a(7) + &) is convex and weakly compact attlis convex and closed, the condi-
tion (9) is equivalent to: for each € I\ N and eactt € 9C N D(9y), there exists) € F(7,a(r) + &)
such that

—0¢(a(r) + &) + 0p(§) —a'(r) +n € C.

Remark 7 Inthe semi-linear case, i.8,0 = A with A linear, we have a sufficient condition better tH@p
Namely, ifdy is linear, in order thatk be C°-viable with respect te-d¢ + F it suffices to exists a negligible
setN C I such that, for each € I\ N and eactt € 9C

Aa(t) —d' (1) + F(r,a(t) + &) € ‘J'Sé({).
For details, see Necula, Popescu, Vrapié].
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