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On gonality automorphisms of  p-hyperelliptic
Riemann surfaces

Ewa Tyszkowska

Abstract A compact Riemann surfac€ of genusg > 1 is said to be a-hyperelliptic if X admits a
conformal involutionp for which X /p has genug. This notion is the particular case of so called cyclic
(¢,n)-gonal surface which is defined as the one admitting a corgbautomorphisnd of ordern such
that X/§ has genug. It is known that forg > 4p + 1, p is unique and so central in the automorphism
group of X. We give necessary and sufficient conditiong@mndg for the existence of a Riemann surface
of genusg admitting commuting-hyperelliptic involutionp and(g, n)-gonal automorphism for some
prime n and we study its group of automorphisms and the number of fagadts of 5. Furthermore,
we deal with automorphism groups of Riemann surfaces aidigitentral automorphism with at mast
fixed points. The condition on the small number of fixed poaftsuch an automorphism is justified by
the study ofp-hyperelliptic surfaces.

Sobre automorfismos de gonalidad de superficies de Riemann
p-hiperelipticas

Resumen. Una superficie de Riemann compactade génerog > 1 se dicep-hipereliptica siX
admite una involucion conformg, tal que X/p tiene géner@. Las superficieg-hiperelipticas son un
caso particular de las superficiég n)-gonales ciclicas que se definen como aquellas superfioes q
admiten un automorfismo conformele orden; y de modo queX /4 tiene génerg. En este trabajo nos
restringiremos al caso en qg&s un niumero primo mayor g2eEs un hecho conocido quegi> 4p+1,

la involucionp es Gnicay central en el grupo de automorfismoXd®btenemos condiciones necesarias
y suficientes sobre y ¢ para la existencia de superficies de Riemann de gépepee admiten una
involucionp-hipereliptica y un automorfisma, n)-gonal que conmutan. Se determina la presentacion de
un cociente de los grupos de automorfismos de las superfeiRgethann que admiten un automorfismo
(¢g,m)-gonal que sea central y c8rpuntos fijos como méaximo. Esta restriccion sobre el naderpuntos
fijos se justifica por el estudio anterior de las superficessquea la vez-hiperelipticas y(¢, n)-gonales
ciclicas.
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1 Introduction

A compact Riemann surfac& of genusg > 2 is said to bep-hyperellipticif X admits a conformal
involution p, called ap-hyperelliptic involution, such thaX/p is an orbifold of genug. This notion has
been introduced by H. Farkas and I. Kra ircf where they also proved that fgr> 4p + 1, p-hyperelliptic
involution is unique and so central in the group of all autopmisms ofX. In [23] it has been proved that
every twop-hyperelliptic involutions commute f@p + 2 < g < 4p + 1 and X admits at most two such
involutions ifg > 3p + 1.

In the particular casgs = 0, 1, X are calledchyperellipticandelliptic-hyperellipticRiemann surfaces
respectively. Hyperelliptic Riemann surfaces and theiomorphisms have received a good deal of atten-
tion in the literature. In]] and [LO] the authors determined the full groups of conformal autgghsms of
such surfaces which made possible to classify symmetrystgpsuch actions ing]. The p-hyperelliptic
(p > 1) surfaces at large have been studied4r9] 13-15] and [24], where the most attention has been
paid to a study of groups of automorphisms of such surface$tegir symmetries.

In [29], [2]] and [27] the classification of conformal actions grhyperelliptic Riemann surfaces has
been given, up to topological conjugacy, for= 0, 1 and2, respectively.

A closed Riemann surfac& which can be realized asrasheeted covering of the Riemann sphere
is calledn-gonal. Castelnuevo-Severi proved ihl] that if the genusy of X satisfies the inequality
g > (n — 1) then an-gonality automorphisms group is unique. 9], Gromadzki justified that for
g < (n —1)%, X has one conjugacy class afgonality automorphism groups in the grodmt(X) of
automorphisms ofX. This result has been proved using different techniques dwyz&lez-Diez in ]7].
The authors of 17 found the species of symmetries of real cygligonal Riemann surfaces while if][
groups of automorphisms of cyclic trigonal Riemann suréatave been determined.

A compact Riemann surfack is called(q, n)-gonal if there exists a cyclic group of automorphi€n
of X, called a(q,n)-gonal group of prime order such thatX/C has genug. In [18], the conjugacy
of (¢,n)-gonal groups has been studied. Let us notice that the nofidg, 2)-gonality coincides with
g-hyperellipticity, whilst(0, n)-gonality coincides wit-gonality.

In this paper we study-hyperelliptic Riemann surfac& which admits a conformal automorphism
called(q, n)-gonal automorphispof prime ordem > 2 such thatX/§ has genug [18]. If the genus ofX
is greater thadp + 1 thend andp commute. We give necessary and sufficient conditiong andg for
the existence of such a Riemann surface. We showstadimits3 or 4 fixed points ifg = 0; 2—6if ¢ = 1
and at mos8 if p < ¢q. We prove that if an automorphism groGpof a Riemann surfac& has a nontrivial
centralizer then there exists a cyclic normal subgriug G and we determine the presentation of a factor
groupG/ H in the case when a central automorphisnXohas at mos8 fixed points.

2 Preliminaries
A Fuchsian group\ is a discrete subgroup of the group of linear fractional¢farmations

az+b
cz+d

LF(2,R)—{ZI—> ca,b,e,d € R, ad—bc—l},

of the complex upper half-plarf onto itself with compact orbit space. This orbit space cagieen an
analytic structure such that the projection: H — H/A is holomorphic. The algebraic structure ofis
determined by the signatuedA) = (g; m1, ..., m,), whereg, m; are integers verifying > 0, m; > 2.
The signature determines the presentation:of

generators: L1y Tp, @1, b1, .0 ag, by,
relations: z7" = =" =21 ...3.[a1,b1] ... [ag, by = 1.

Such set of generators is calledanonical set of generatoend often, by abuse of language, its elements,
canonical generatorsGeometricallyr; are elliptic elements which correspond to hyperbolic iotet and
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the remaining generators are hyperbolic translations. ifitegersmy, mo,. .., m, are called thegeriods
of A andy is the genus of the orbit spagé/A. Fuchsian groups with signaturgg —) are calledsurface
groupsand they are characterized among Fuchsian groups as thesevhith are torsion free.

The groupA has associated to it a fundamental regionwhose area(Fy) = u(A), called thearea
of the groupis:

w(A) = 2w (29 -2+ Z(l — 1/mi)> .

i=1
If T"is a subgroup of finite index i, then we have thRiemann-Hurwitz formulavhich says that

[A:F]:M(F)

n(A)

By Riemann uniformization theorem, each compact RiemarfaselX of genusg > 2 can be represented
as the orbit space of the hyperbolic plaieunder the action of some Fuchsian surface grbupurther-
more, a group of automorphisms of a surfacé = H/T" can be represented &5 = A/T for another
Fuchsian grouph. The number of fixed points of an automorphismtan be calculated by the following
theorem of MacbeatH[).

Theorem1l Let X = H/T be a Riemann surface with the automorphism grétip= A/T" and let
x1, ..., 2, be elliptic canonical generators of with periodsmy, ..., m, respectively. Let: A — G
be the canonical epimorphism and foe£ g € G lete;(g) bel or 0 according agy is or is not conjugate
to a power ofY(z;). Then the numbér(g) of points ofX fixed byy is given by the formula

F(g) = Na((9)] Z gi(g)/mi,
i=1

whereN is a normalizer.

3 p-hyperelliptic Riemann surface with (¢, n)-gonal automor-
phism

In this section we study Riemann surfaces of gegeral which arep-hyperelliptic and cycli¢q, n)-gonal

simultaneously for a prime > 2 and a naturad. If ¢ > 4p + 1, then its(¢, n)-gonal automorphism and

p-hyperelliptic involution commute. The first theorem givescessary and sufficient conditionspandg
for the existence of such a surface.

Theorem 2 There exists a-hyperelliptic Riemann surface of gengs> 2 admitting (¢, n)-gonal au-
tomorphism commuting with a-hyperelliptic involution if and only i) = ny + b(n — 1)/2 andg =
ng + a(n — 1)/2 for some integers, b, a such that

b=-2orb>0, b<a<2(b+1), 0<~v<(qg+1)/2. (1)

Furthermore, the ¢, n)-gonal automorphism admits+ 2 fixed points.

PROOF Assume that a Riemann surfa&e= 7 /I" admitsp-hyperelliptic involutionp and(q, n)-gonal
automorphismd. The groups(d) and (p) can be identified witl';/I"' andT',/T", whereI's andT', are
Fuchsian groups containinig as a normal subgroup of index and 2, respectively. By the Riemann-
Hurwitz formula they have signatures

ols)=(gn.7.,n) and o(,) = (p;2,.%.,2), 2
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wheres = 2g +2 —4p andr = 2+ (2g — 2ng)/(n — 1). Thusg = nqg +a(n —1)/2fora =r — 2. If p
ando commute then they generate the gr@sp which can be represented By T for a Fuchsian group
with the signature

(752, k., 2,n, k2. on, 2n, ks 2n). 3)
By the Riemann-Hurwith formula

29 —2=4dny —4An+nki +2ka(n — 1) + k3 (2n — 1) 4)

and according to Theorefin

nkle—kg, 2]{32:7"—]{33.
By substituting the last equalities td)( we obtainp = nvy + b(n — 1)/2, for an integer such that
a=2b+2— k. Thus

k1 =2q+ a— 4y — 2b, ko =a — b, ks=2+2b—a
are nonnegative integers if and only if the inequalitiBsafe satisfied.
Conversely, assume that= ng + a(n — 1)/2 andp = nvy + b(n — 1)/2 for some integers, b
and~ satisfying the inequalitiesl{. Then there exists a Fuchsian grodpwith the signature3). Let

0: A — (p) @ (4) be an epimorphism which maps all hyperbolic generators ohto pd, the firstk; of
elliptic generators ontp and the remaining in the following way :

-1 -1 -2 -1 -1 -2 _ _
0...0 0 " ...07 0877 pd...pd pd...pd pd if ko =1 (2)andks =1 (2),
(ka41)/2  (k2—3)/2 (ks+1)/2 (k3—3)/2
—1 -1 ¢—2 -1 -1 = =
0...0 0 "...07 0% pd...pd pd " ...pd if ko =1 (2)andks =0 (2),
(k2+1)/2  (k2—3)/2 ks/2 ks3/2
1 -1 -1 -1 -2 _ —
0...0 0 ...07 pd...pd pd T ...pd " pd if ko =0 (2)andks =1 (2),
k2 /2 ka2 /2 (ks+1)/2 (k3—3)/2
—1 -1 -1 -1 = =
0...0 0 “...0 © pd...pd pbé " ...pd if ko =0 (2)andks =0 (2).
ko /2 k2 /2 ks/2 k3 /2
Then the kernel of is a surface Fuchsian grodpof genusg while 6—*(p) andd~*(§) are Fuchsian
groups with the signature®); ThusH /T is ap-hyperelliptic Riemann surface admittir{g, n)-gonal
automorphism. It is easy to notice that fey < 3 or k3 < 3, such an epimorphism does not exist if and
only if ko + k3 +~v = 0 or ks + k3 = 1. The first equality is never satisfied sincecif + k3 = 0 then

b= —2andp = n(y — 1) + 1 what requiresy > 1. The second one occurs for= —1 and therefore this
value ofbis rejected. W

Corollary 1 Let X be ap-hyperelliptic Riemann surface of genws- 4p + 1. Then for any prime, > 3,

(i) X can be realized as cyclig-sheeted covering of the Riemann sphere if and onfy 4# 0 and
g =mn-—1o0rg = (n—1)/2and its cyclicn-gonal automorphism admit$ or 3 fixed points,
respectively.

(i) X can be realized as cyclia-sheeted covering of an elliptic curve if and onlypif= 0 and
ge{2n—1,3n—1)/2,n}orp= (n—1)/2andg € {3n — 2, (5n — 3)/2} and its(1, n)-gonal
automorphism admit$, 3, 2 or 6, 5 fixed points, respectively.

Corollary 2 LetX = H/T be a Riemann surface of genp& 2 which admitg-hyperelliptic involutiorp
and(g, n)-gonal automorphism for p < n. If 6 andp commute thep = b(n—1)/2,9 = ng+a(n—1)/2
for integersa, b in range0 < b < 2 andb < a < 2b + 2 and a Fuchsian group: such that(, p) = A/T
has a signaturg0; 2, 2912720 2 n a7b n 2n, 201274 2pn), Furthermoreg admitsa + 2 < 8 fixed points.

The last corollary is the inspiration for the next sectiomvimch we study the groups of automorphisms
of a Riemann surface admitting a central automorphism with@st8 fixed points.

90



On gonality automorphisms @fhyperelliptic Riemann surfaces

4 Automorphism groups of a Riemann surface with nontrivial
centralizer

Let G be an automorphism group of a Riemann surfacef genusy > 2 admitting a central elementof
ordern. If z € X is a fixed point ofy, thend preserves all points in the orlfitz. Assume that the stabilizer
Stab(z) of z is a cyclic group of ordern generated by: € G. Thenn dividesm and (§) = (x™/™).
Any elementg € G permutes points ofsz and we shall assign a permutatiop € S, to g, where
k = |Gz| = |G|/m. The permutatiorr, splits into product of cycles of lengtlts, ..., ¢z, respectively,
wheret; dividem. Let gl, ..., gp be different elements aF for whicht; are the smallest positive integers
such thatrtﬂ € g;(x)g; . Then

Gz={hiz,...,haz, 12,2912, ..., 2" " rg12,... gz, ..., a" " Lggz},
wherea = k — (t1 + - - - + tg) andh; € G normalize(x). We shall denote points; z by z;, in particularz
by z1, and pointsr'g;z by z;,. In order to determine the presentation(®fve shall need the following
lemmata.

Lemmal Letr; be the smallest positive integer such thgte (z) fori =1, ..., 5. Then there exists an
integerd; such that, = 1 (n), (m/t;,b;) =1,b" =1 (m/t;) and

ti —1 _ bit;
gix'gy = ah

Moreoverg;® = zPi for somep; such thap;, = 0 (¢;) andb; =1 (m/ ged(m, p;)).

PROOF Assume that’ = gixtiligi‘l for an integer; co-prime withm/t;. Then there exist; andb;
such that;m/t; + b;il; = 1 and sog;ztig; b = abits,

If ¢is aninteger such that andg; commute theia = 0 (¢;) whatimpliesh; =1 (m/ ged(m, ¢)). Other-
wise, a smaller power thart: would belong tgy; (z)g; *. In particularp; = 0 (t;),b; = 1 (m/ gcd(m Di))
andb; =1 (n). Finally, sinceg;* andz commute, it follows thab," =1 (m/t;). W

Lemma2 For anyiinrangel < i < (3, g; maps the set’ = {z1,...,z,} into Gz \ F. Furthermore,
if g; maps a point of" into z;; for somel < i’ < gandl <[ < t; thent, = ¢, andg;; maps a point of
Finto z; _;.

PROOF Onacontrary, suppose thatz;) = z; for somez;, z;; € F. Thenz; is afixed pOintO@i_la:gi.
Thusg; 'zg; € h; <:c>h;1 = (z) what impliesz; o = z;,1, a contradiction. S@; maps every; € F into
some point;; € Gz \ F. Thusz!gizg; 'a~" = gihjah; 'g; " € gi(x)g; ' what impliest =ty

Now letg € G be such an element that (92) = z;—; Thenzy o = girg(g~'2) = 2~ giz* (g~ 2) for
some integes and soz; ; = g;(z*g~'2) what impliesg~'z = z;. Thusgzg~' € (x) what means that
gzeF. 1

By the proof of Lemma&, we obtain the following
Corollary 3 If § # 0thena <t; +---+tgandG is generated by andgy, .. ., gs.

Lemma 3 If gs(zi,.1,) = z for somes, ip andly in rangel < s,ip < gandl < Iy < t,,, respectively,
thent, = t;,. In particular, fors = iy, the elemeny = g,,z'°~! satisfies the relatiofigz)?> = 1 modulo
zto and

g(ZiJ) =z if and only if g(zi/,l/+1) = Zil—1, (5)
g(zj) = Zi,l if and only if g(zuﬂ) = zj, (6)
if g(2i141) = zi; thent; is even and foi =iy, xz'/%2g = ga'~'gal. (7)
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PROOF.  Sinceg,z'0g;, € (x), it follows thatg; ' zg, = z'°g;,xg; =" whatimpliest;, = . If s = ig
andg = g;,x'°~! then(gr)?z = 2 and so(gz)? = 29 for some integet;. Thusg?z = gz? 'g~!. On
the other hand:? = gxg—'g%x implies thatg?z = gz~ 'g~'29. Consequentlygzig—' = 27 and so
q=0 (tio)'

The statementsj and 6) follow from the relation(gz)? = x9.

If g(zi141) = #,; thengzx preserves point;; and sogz = :vlgi:vrgi_lx_l for somer not being a
multiple of ¢;. If ¢; is odd then rising the last equation to second power we olttairyz" g~ (x) for
some integer’ < t; against our choice af. For evert;, » = ¢;/2 and additionally ifi = i, then using the
relation(gz)? = 27 we obtaingz'~!gz! = /2. M

Lemma4 Leti,je{l,...0}1e{l,....¢t;}andl’ € {1,...,t;}.
(i) If g € G preserves point;; theng'i € ().
(i) If gi(z;.1) = 2.0, thent; dividest;.

PROOF. (i) By the assumptioy € z'g;(z)g; 'z~" and sog' € (x).

(i) Hereg; = z~'g; 12" g;z* for some integes. Thusg,z'ig; " € () and sot; dividest;. W

Theorem 3 Let G be a group of automorphisms of a Riemann surfacadmitting a central automor-
phism¢ of ordern and suppose that admitsk < 8 fixed points in the same orbit. Then for> 1, there
exists an element € G of orderm = |G|/k and an integet dividing m such thatd = (z*) is a normal
subgroup of7, 6 € H andG/H has one of presentations listed in TalilleFor & = 1, G is a cyclic group.

PROOF Sincek < 9 then the sequence of parameters for the acticd ofi such an orbit must be of the
form Cy, = (a;t1,t2,t3). First we show that some sequences are not possible. Faosephat; # to
andt; # t3. Then by Lemma, g1(z1,,) = = for somely = 1, ...,#; and we shall usg = g;z'o~!
instead ofg,. Furthermore, according to Lemn2ag(F) C {z1,0,...21 } and if z;; is an image of a
point from F' thenz; _; is also an image of a point frotfA. In particular, if ¥ contains only two points
21 = zandz, thenz~!gz = g(z9) = 2'gz what requires even. Thus the sequenc€s = (2;3,0,0),
C7 = (2;3,2,0) andC7 = (2;5,0,0) must be rejected. Fars = (3; 3,2, 0), without lost of generality we
can assume that(z;) = zgz andg(z3) = z2gz. Thus by 6), z2 = g(z2gz) andzz = g(gz). So it remains
that g preserves or exchanges points, and z2 ; what by item {) of Lemma4 implies thatg? € (x)
or gr = gawg, - = x~'g, respectively. Thus not all points iiz are different against the assumption.
Similarly for Cs = (3;5,0,0), we can assume thafz,) = 2%gz andg(z3) = #3gz. Thus by 6) and (),
o, =(1,4,5)(2,6,8,3,7) and sog® € (z). Howeverg3(z2) # 22, a contradiction once again.

If ¢; does not divide, for i = 1 or 2 then by item {{) of Lemmad4, g(z;;) € {z1.1, .-, 21,1, }. Thus for
Cs = (1;5,2,0)andCs = (1;3,2,0), g preserves points; o, z2,1 or exchanges them what has been shown
is impossible. Using®) for Cs = (1;3, 2, 2), we conclude that, is a product of cycles, one of which is
(1,2,3), and sog® = 2? for some integep. However sincer, neither preserves nor exchanges points
andz; 1, it follows thatg? (22 0) # 22,5 for s = 0, 1, a contradiction. The sequen€e = (1;4, 3,0) is also
impossible since there does not exigtfor which g(z2,;) # z1,» andg(z2,41) # 22, forl = 0,1,2 and
'=1,...,4.

Since the casél; 3,2,2) is rejected and:c < 9, it follows that two parameters in the sequence
Cr = (a;t1,t2,t3) can be equal if and only if; € {0,2} ort, € {0,3} for i = 1, 2, 3. We shall describe
only the first possibility since the second one can be solwgle similar way. However in most cases all
parameters;, to andts are different and first we concentrate on them. So assumethiatzs are different
integers. Then by Lemm®, there exist and/ in rangel < i < 3 andl < [ < t;, respectively such that
gi(zi1) = z and itis convenient to exchangefor g = g;#'~! which satisfies the relatiofyz)? = 1 (x?),
for t = t;. From now on we will write all relations module’ unless we say differently. Let us notice
thatg(zg®z) = 27 '¢g° 'z for s = 1, ..., r and sog(zgz) = 2. We find the permutation, and by
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Case Presentation ofy
2<k<8 |kl |(g:g"=1)

k.2 (r,g:22=1,g"=1,(g2)%> =1)

4 4.3 (,9:2%=1,g°=1,(g92)*> = 1)
5.3 (r,9:9*=1,9297t = xgx~t, g% = 2%(gx)2~2?)
6.3 (w,g: 2t =1,g=1,(g92)*> =1)
6.4 (r,g:2%=1,¢5=1,2g%271 = gx)
6.5 (r,g:22=1,03=1,(g2)3 =1)
7.3 (w,9:9°=1,23g273 = gag~ 1, ga®g~! = 2%(g2)2~2)
8.3 (,g:2%=1,g*"=1,(g2)* = 1)
8.4 (,9:9%=1,929g7' = 29?27, (gx)? = 1)
8.5 (,g: 20t =1,g8=1,(g92)* = 1,[¢% 2] = 1)
8.6 (r,9:9" =1,(92)% = 1,229 1272 = gag™ 1)
8.7 (,g: 23 =1,g"=1,(g92)3 = 1,[¢% 2] = 1)
88 | (z.g:2®=19"=1,(92)° = g% [¢% 2] = 1)
8.9 (r,g:23=1,¢°=1,(g2)* = g tag)
810 | (w,9:9°=1,(g2)* = 1,292~ = gz~ 1g71)
811 | (w,g:2°=1,9" = 1,97 = g 'ag)
813 | (w,g:2%2=1,9"=1,(g2)* =1,[¢% 2] = 1)
814 | (w,g:2%2=1,0=1,(92)® =1,[¢% 2] = 1)
815 | (w,g:2*=1,9*=1,(92)®> =1,[¢% 2% =1)
8.16 | (291,92 : 2% = (q12)* = g1 = (922)* = 1,97 = ¢3)

Table 1. The presentation of the group G/H

consideration how it acts on points 6f: we obtain relations which determine the presentatio& ofVe
consider the case with = ¢t = 4 as an example, the remaining cases can be solved in the rswaila
First we find the all possible values gtz. If g> = 2gz theng? € (z) and by 6), g(2?gz) = 23g2. Using
the relation(gz)? = 1 andg® = 1 we calculate thatgz®g)z(ga®g) ! = 2~! what means thaj(z3g2) is

a fixed point ofr, sayz;. Thus by 6), g(z2) = z%g=2. It is easy to notice that’z cannot have any other
points butz, 20, gz, ..., x%gz since otherwise we get a contradiction with lemata. So wetgesequence
Cs = (2,4,0,0) for whicho, = (1,3,4)(2,5,6). By Lemmal and Corollary3, G is generated by, g
and admits a normal cyclic subgrodp = (z*). By analyzingo, we conclude thaG = G/H has the
presentatiors.3.

Next suppose that? = 2%gz. Then by b), 2%¢z is a fixed point ofg and so by Lemmd, ¢* € ().
Thusg(z%gz) = g3z = xgz. SinceGz cannot have any additional points, it follows thia = (1;4,0,0),
o, = (1,2,4,3) andG has the presentatidn3.

If g22 = 23g2 thengzg®z = ¢?z. Thusga preserves poing?z and sogx = g22%¢—2. Consequently
2z = grgz = g?2%g 1z = ¢g*x3g2 = g*z. Sog* € (x) and we conclude that fof's = (1;4,0,0),
o, = (1,2,5,3) andG has the presentatiail = (z,g : 2! = 1,9* = 1, gzg~ ! = 2%gx~2, g2?g~" = zg)
which is isomorphic t&.3.

If g2 = 2o € F theng(z2) = 23gz. Thus according to Lemm2, there exists:;; € F such that
rgz = g(z3) and so by 6), z3 = g(22gz2). If g(x3gz) = 22gz then by (), 229 = ga3gx?. However
22g(g2) # gx®gx®(gz) and so there exists one more poiptc F' such thay(z3gz) = z4. Thusg(zs) =
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z?gz ando, = (1,5,2,8,4,7,3,6). So forCs = (4;4,0,0), G has the presentatichs.

Finally suppose thag?z = z29. Theng(zs,1) = 213 and so by itemi{) of Lemma4, t, = 2. Let
us consider all possible values gfz. If g3z = z;; theng? € () andza1 = g(21,2). Furthermore,
g(21,3) # 21,2 since otherwise by7), 2?9 = gz*gx*. However by evaluation the last equalitydn, we
obtain different points. Thus there existse F such thay(z; 3) = z2 and consequently(z2) = z1 2. SO
for Cs = (2;4,2,0), 0, = (1,3,7,4)(2,5,8,6) and@ has the presentatichl5.

If g32 = 212 thenze 1 = g(z1,3) and it remains thag(z1 2) = 21,1 0r g(z1,2) = 22 forsomez, € F. In
the first case by?), 2?9 = g?z against the assumption that, = g?z. The second one is also impossible
since thery(z2) = z1.1. However there does not exist an integauch thay?z2g(z2) = zgz°(22).

If g> = 221 theng(z12) # 211 andg does not preserve; ». Thus there exists, € F such
thatg(z1,2) = 22 what impliesg(z2) = z1.1. So it remains thay(z13) = z12. Howeverz?g(zs) #
gr3gx?(z2), a contradiction with 7).

Now we shall consider the sequenegs = («;t1,1o,t3), Wheret, € {0,2} fori = 1, 2, 3. First
suppose that one @f;, sayg;, satisfies(g;z)* € (). Thenzg; = g; *z for s = 1, ..., r, wherer is
the smallest positive integer such théte (z). Thusg;z is a fixed point ofx if and only if r is even and
s = r/2, in this case we shall denote the pq’y@sz by zs. In particular, ifr = k thena = 1 or 2 according
to k being odd or even, respectively— ¢, andx generaté&z and

G=(z,g:22=1,¢"=1,(gz)? = 1). (8)

Sinceg; neither preserves nor exchanges poinisandz; ;1 for j = 1, 2, 3 andl = 0, 1, it follows that
we have the following possibilities for < k:

(i) r=3,C6 =(2;2,2,0), 04, = (1,3,4)(2,5,6),
(i) r=4,Cs =1(2;2,2,2),04, =(1,3,2,4)(5,7)(6,8) or (1, 3,2,4)(5,6,7,8),

(i) r=4,Cs =(42,2,0),04 = (1,5,2,6)(3,8,4,7). By analyzingo,, we conclude tha is gen-
erated byz andg.. So we shall findr,, in order to determine the presentation@fIf z = ga(z1,)
for somel € {0, 1} then not all points irGz are different. So we can assume thatz)? € ().

(i) Sincexg, preserves point, g, it follows thatzg, = gaxg, '. Thusg, = g, > and sog§ € (x).
Consequently? has the presentatioB) wherek = 6 andg = g,.

(i) Let us notice that the first permutation leads to a conttadic Indeed, since? preservess o, it
follows thatg? = goxg, *. Thusif2' is a fixed point ofg? theng, *(z') € F. Howeverg? admits4 fixed
points and therefore not all points @z are different. By the second permutatiarny, preservegzs ),
what impliesg; = zgazg9, * = g5 >. Thusgs € (z) and so(; has the presentatioB){ wherek = 8 and
g = 92.

(i) Sincexg? preservess o, it follows thatzg? = gozg, ' and sog; = g3. Thus we conclude that
04 = (1,7,2,8)(3,5,4,6) andG has the presentatich16.

Next suppose thaty;z)? ¢ (x) fori = 1, 2, 3. Then without lost of generality we can assume that
29, = alg7lzforl = 0,1andg = g;. Let us notice thay(z2.1) # 21,1 since otherwisgzg~! = zgx*
for some integes and evaluation the last equality in o implies thatg(z; s) = 211, a contradiction.
Sinceg does not preserve any points; andg(z2,;) # 22,41 fori = 1, 2, 3, it follows that the sequences
Cs = (1;2,2,0) andC = (3;2,2,0) are impossible. Fo€s = (2;2,2,0), g(z2,1) = z2 andg(z2)
is one of pointszy 1, 22,0, 22,1. Using Lemma2 we check that all possibilities provide a contradiction
except the first one. Here, = (1,3,5)(2,4,6) and we conclude tha' has the presentatidh5. For
Cs = (2;2,2,2) we obtain the presentatioh12. Finally for Cs = (4;2,2,0), sinceg(F) = Gz \ F, we
can assume that = g%z and so[g?, z] = 1. Furthermoreg®z € {211, 22,0, 22.1}. If g32 = 211 then
210 = vg°2 = g?xgz what impliesz; 1 = 22, a contradiction. Ifg3>z = 2, theng* € (x) and so
g?(zgz) = xg°z andg?(xg®z) = xgz. Thuso, = (1,5,2,7)(3,8,4,6) andG has the presentatienl 3. If
g%z = 21 theng™'z = xg®2 = g(grgz). Hereo, = (1,5,2,8,4,6,3,7) andG has the presentatiani 4.
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If 3 = 0, thenG is generated by two elemengsand z, (z) is a normal subgroup off andG =
(g:g"=1). m
By corollariesl and3 we obtain the following

Corollary 4 Let X be ap-hyperelliptic Riemann surface with a centr@l, n)-gonal automorphisna.
Then forp < norg =0, 1, 6 has at mosg fixed points and an automorphism groupXfis determined by
TheorenS.
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