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On gonality automorphisms of p-hyperelliptic
Riemann surfaces

Ewa Tyszkowska

Abstract A compact Riemann surfaceX of genusg > 1 is said to be ap-hyperelliptic if X admits a
conformal involutionρ for which X/ρ has genusp. This notion is the particular case of so called cyclic
(q, n)-gonal surface which is defined as the one admitting a conformal automorphismδ of ordern such
thatX/δ has genusq. It is known that forg > 4p + 1, ρ is unique and so central in the automorphism
group ofX. We give necessary and sufficient conditions onp andg for the existence of a Riemann surface
of genusg admitting commutingp-hyperelliptic involutionρ and(q, n)-gonal automorphismδ for some
prime n and we study its group of automorphisms and the number of fixedpoints ofδ. Furthermore,
we deal with automorphism groups of Riemann surfaces admitting central automorphism with at most8
fixed points. The condition on the small number of fixed pointsof such an automorphism is justified by
the study ofp-hyperelliptic surfaces.

Sobre automorfismos de gonalidad de superficies de Riemann
p-hiperelı́pticas

Resumen. Una superficie de Riemann compactaX de génerog > 1 se dicep-hiperelı́ptica siX
admite una involución conformeρ, tal queX/ρ tiene génerop. Las superficiesp-hiperelı́pticas son un
caso particular de las superficies(q, n)-gonales cı́clicas que se definen como aquellas superficies que
admiten un automorfismo conformeδ de ordenq y de modo queX/δ tiene géneroq. En este trabajo nos
restringiremos al caso en queq es un número primo mayor que2. Es un hecho conocido que sig > 4p+1,
la involuciónρ es única y central en el grupo de automorfismos deX. Obtenemos condiciones necesarias
y suficientes sobrep y g para la existencia de superficies de Riemann de génerog que admiten una
involuciónp-hiperelı́ptica y un automorfismo(q, n)-gonal que conmutan. Se determina la presentación de
un cociente de los grupos de automorfismos de las superficies de Riemann que admiten un automorfismo
(q, n)-gonal que sea central y con8 puntos fijos como máximo. Esta restricción sobre el número de puntos
fijos se justifica por el estudio anterior de las superfices queson a la vezp-hiperelı́pticas y(q, n)-gonales
cı́clicas.
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1 Introduction

A compact Riemann surfaceX of genusg ≥ 2 is said to bep-hyperelliptic if X admits a conformal
involution ρ, called ap-hyperelliptic involution, such thatX/ρ is an orbifold of genusp. This notion has
been introduced by H. Farkas and I. Kra in [16] where they also proved that forg > 4p + 1, p-hyperelliptic
involution is unique and so central in the group of all automorphisms ofX . In [23] it has been proved that
every twop-hyperelliptic involutions commute for3p + 2 ≤ g ≤ 4p + 1 andX admits at most two such
involutions ifg > 3p + 1.

In the particular casesp = 0, 1, X are calledhyperellipticandelliptic-hyperellipticRiemann surfaces
respectively. Hyperelliptic Riemann surfaces and their automorphisms have received a good deal of atten-
tion in the literature. In [1] and [10] the authors determined the full groups of conformal automorphisms of
such surfaces which made possible to classify symmetry types of such actions in [3]. Thep-hyperelliptic
(p ≥ 1) surfaces at large have been studied in [4–9, 13–15] and [24], where the most attention has been
paid to a study of groups of automorphisms of such surfaces and their symmetries.

In [25], [21] and [22] the classification of conformal actions onp-hyperelliptic Riemann surfaces has
been given, up to topological conjugacy, forp = 0, 1 and2, respectively.

A closed Riemann surfaceX which can be realized as an-sheeted covering of the Riemann sphere
is calledn-gonal. Castelnuevo-Severi proved in [11] that if the genusg of X satisfies the inequality
g > (n − 1)2 then an-gonality automorphisms group is unique. In [19], Gromadzki justified that for
g ≤ (n − 1)2, X has one conjugacy class ofn-gonality automorphism groups in the groupAut(X) of
automorphisms ofX . This result has been proved using different techniques by González-Dı́ez in [17].
The authors of [12] found the species of symmetries of real cyclicp-gonal Riemann surfaces while in [2],
groups of automorphisms of cyclic trigonal Riemann surfaces have been determined.

A compact Riemann surfaceX is called(q, n)-gonal if there exists a cyclic group of automorphismC
of X , called a(q, n)-gonal group of prime ordern such thatX/C has genusq. In [18], the conjugacy
of (q, n)-gonal groups has been studied. Let us notice that the notionof (q, 2)-gonality coincides with
q-hyperellipticity, whilst(0, n)-gonality coincides withn-gonality.

In this paper we studyp-hyperelliptic Riemann surfaceX which admits a conformal automorphismδ,
called(q, n)-gonal automorphism, of prime ordern > 2 such thatX/δ has genusq [18]. If the genus ofX
is greater than4p + 1 thenδ andρ commute. We give necessary and sufficient conditions onp andg for
the existence of such a Riemann surface. We show thatδ admits3 or 4 fixed points ifq = 0; 2–6 if q = 1
and at most8 if p < q. We prove that if an automorphism groupG of a Riemann surfaceX has a nontrivial
centralizer then there exists a cyclic normal subgroupH ⊆ G and we determine the presentation of a factor
groupG/H in the case when a central automorphism ofX has at most8 fixed points.

2 Preliminaries

A Fuchsian groupΛ is a discrete subgroup of the group of linear fractional transformations

LF(2, R) =

{

z 7→
az + b

cz + d
: a, b, c, d ∈ R, ad − bc = 1

}

,

of the complex upper half-planeH onto itself with compact orbit space. This orbit space can begiven an
analytic structure such that the projectionπΛ : H → H/Λ is holomorphic. The algebraic structure ofΛ is
determined by the signatureσ(Λ) = (g; m1, . . . , mr), whereg, mi are integers verifyingg ≥ 0, mi ≥ 2.
The signature determines the presentation ofΛ:

generators: x1,. . . ,xr, a1, b1, . . . ,ag, bg,
relations : xm1

1 = · · · = xmr
r = x1 . . . xr[a1, b1] . . . [ag, bg] = 1.

Such set of generators is called acanonical set of generatorsand often, by abuse of language, its elements,
canonical generators. Geometricallyxi are elliptic elements which correspond to hyperbolic rotations and
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the remaining generators are hyperbolic translations. Theintegersm1, m2,. . . , mr are called theperiods
of Λ andg is the genus of the orbit spaceH/Λ. Fuchsian groups with signatures(g;−) are calledsurface
groupsand they are characterized among Fuchsian groups as these ones which are torsion free.

The groupΛ has associated to it a fundamental regionFΛ whose areaµ(FΛ) = µ(Λ), called thearea
of the group, is:

µ(Λ) = 2π

(

2g − 2 +

r∑

i=1

(1 − 1/mi)

)

.

If Γ is a subgroup of finite index inΛ, then we have theRiemann-Hurwitz formulawhich says that

[Λ : Γ] =
µ(Γ)

µ(Λ)
.

By Riemann uniformization theorem, each compact Riemann surfaceX of genusg ≥ 2 can be represented
as the orbit space of the hyperbolic planeH under the action of some Fuchsian surface groupΓ. Further-
more, a groupG of automorphisms of a surfaceX = H/Γ can be represented asG = Λ/Γ for another
Fuchsian groupΛ. The number of fixed points of an automorphism ofX can be calculated by the following
theorem of Macbeath [20].

Theorem 1 Let X = H/Γ be a Riemann surface with the automorphism groupG = Λ/Γ and let
x1, . . . , xr be elliptic canonical generators ofΛ with periodsm1, . . . , mr respectively. Letθ : Λ → G
be the canonical epimorphism and for1 6= g ∈ G let εi(g) be1 or 0 according asg is or is not conjugate
to a power ofθ(xi). Then the numberF(g) of points ofX fixed byg is given by the formula

F(g) = |NG(〈g〉)|

r∑

i=1

εi(g)/mi,

whereN is a normalizer.

3 p-hyperelliptic Riemann surface with (q, n)-gonal automor-
phism

In this section we study Riemann surfaces of generag > 1 which arep-hyperelliptic and cyclic(q, n)-gonal
simultaneously for a primen > 2 and a naturalq. If g > 4p + 1, then its(q, n)-gonal automorphism and
p-hyperelliptic involution commute. The first theorem givesnecessary and sufficient conditions onp andg
for the existence of such a surface.

Theorem 2 There exists ap-hyperelliptic Riemann surface of genusg ≥ 2 admitting (q, n)-gonal au-
tomorphism commuting with ap-hyperelliptic involution if and only ifp = nγ + b(n − 1)/2 and g =
nq + a(n − 1)/2 for some integersγ, b, a such that

b = −2 or b ≥ 0, b ≤ a ≤ 2(b + 1), 0 ≤ γ ≤ (q + 1)/2. (1)

Furthermore, the(q, n)-gonal automorphism admitsa + 2 fixed points.

PROOF. Assume that a Riemann surfaceX = H/Γ admitsp-hyperelliptic involutionρ and(q, n)-gonal
automorphismδ. The groups〈δ〉 and 〈ρ〉 can be identified withΓδ/Γ andΓρ/Γ, whereΓδ andΓρ are
Fuchsian groups containingΓ as a normal subgroup of indexn and 2, respectively. By the Riemann-
Hurwitz formula they have signatures

σ(Γδ) = (q; n r. . ., n) and σ(Γρ) = (p; 2, s. . ., 2), (2)
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wheres = 2g + 2 − 4p andr = 2 + (2g − 2nq)/(n − 1). Thusg = nq + a(n − 1)/2 for a = r − 2. If ρ
andδ commute then they generate the groupZ2n which can be represented byΛ/Γ for a Fuchsian groupΛ
with the signature

(γ; 2, k1. . ., 2, n, k2. . ., n, 2n, k3. . ., 2n). (3)

By the Riemann-Hurwith formula

2g − 2 = 4nγ − 4n + nk1 + 2k2(n − 1) + k3(2n − 1) (4)

and according to Theorem1
nk1 = s − k3, 2k2 = r − k3.

By substituting the last equalities to (4), we obtainp = nγ + b(n − 1)/2, for an integerb such that
a = 2b + 2 − k3. Thus

k1 = 2q + a − 4γ − 2b, k2 = a − b, k3 = 2 + 2b − a

are nonnegative integers if and only if the inequalities (1) are satisfied.
Conversely, assume thatg = nq + a(n − 1)/2 andp = nγ + b(n − 1)/2 for some integersa, b

andγ satisfying the inequalities (1). Then there exists a Fuchsian groupΛ with the signature (3). Let
θ : Λ → 〈ρ〉 ⊕ 〈δ〉 be an epimorphism which maps all hyperbolic generators ofΛ ontoρδ, the firstk1 of
elliptic generators ontoρ and the remaining in the following way :

δ . . . δ
︸ ︷︷ ︸

(k2+1)/2

δ−1 . . . δ−1
︸ ︷︷ ︸

(k2−3)/2

δ−2 ρδ . . . ρδ
︸ ︷︷ ︸

(k3+1)/2

ρδ−1 . . . ρδ−1

︸ ︷︷ ︸

(k3−3)/2

ρδ−2 if k2 ≡ 1 (2) andk3 ≡ 1 (2),

δ . . . δ
︸ ︷︷ ︸

(k2+1)/2

δ−1 . . . δ−1
︸ ︷︷ ︸

(k2−3)/2

δ−2 ρδ . . . ρδ
︸ ︷︷ ︸

k3/2

ρδ−1 . . . ρδ−1

︸ ︷︷ ︸

k3/2

if k2 ≡ 1 (2) andk3 ≡ 0 (2),

δ . . . δ
︸ ︷︷ ︸

k2/2

δ−1 . . . δ−1
︸ ︷︷ ︸

k2/2

ρδ . . . ρδ
︸ ︷︷ ︸

(k3+1)/2

ρδ−1 . . . ρδ−1

︸ ︷︷ ︸

(k3−3)/2

ρδ−2 if k2 ≡ 0 (2) andk3 ≡ 1 (2),

δ . . . δ
︸ ︷︷ ︸

k2/2

δ−1 . . . δ−1
︸ ︷︷ ︸

k2/2

ρδ . . . ρδ
︸ ︷︷ ︸

k3/2

ρδ−1 . . . ρδ−1

︸ ︷︷ ︸

k3/2

if k2 ≡ 0 (2) andk3 ≡ 0 (2).

Then the kernel ofθ is a surface Fuchsian groupΓ of genusg while θ−1(ρ) andθ−1(δ) are Fuchsian
groups with the signatures (2). ThusH/Γ is a p-hyperelliptic Riemann surface admitting(q, n)-gonal
automorphism. It is easy to notice that fork2 < 3 or k3 < 3, such an epimorphism does not exist if and
only if k2 + k3 + γ = 0 or k2 + k3 = 1. The first equality is never satisfied since ifk2 + k3 = 0 then
b = −2 andp = n(γ − 1) + 1 what requiresγ ≥ 1. The second one occurs forb = −1 and therefore this
value ofb is rejected. �

Corollary 1 LetX be ap-hyperelliptic Riemann surface of genusg > 4p+1. Then for any primen ≥ 3,

(i) X can be realized as cyclicn-sheeted covering of the Riemann sphere if and only ifp = 0 and
g = n − 1 or g = (n − 1)/2 and its cyclicn-gonal automorphism admits4 or 3 fixed points,
respectively.

(ii) X can be realized as cyclicn-sheeted covering of an elliptic curve if and only ifp = 0 and
g ∈ {2n− 1, (3n − 1)/2, n} or p = (n − 1)/2 andg ∈ {3n − 2, (5n − 3)/2} and its(1, n)-gonal
automorphism admits4, 3, 2 or 6, 5 fixed points, respectively.

Corollary 2 LetX = H/Γ be a Riemann surface of genusg ≥ 2 which admitsp-hyperelliptic involutionρ
and(q, n)-gonal automorphismδ for p < n. If δ andρ commute thenp = b(n−1)/2, g = nq+a(n−1)/2
for integersa, b in range0 ≤ b ≤ 2 andb ≤ a ≤ 2b + 2 and a Fuchsian groupΛ such that〈δ, ρ〉 = Λ/Γ
has a signature(0; 2, 2q+a−2b. . . , 2, n, a−b. . . , n, 2n, 2b+2−a. . . , 2n). Furthermore,δ admitsa + 2 ≤ 8 fixed points.

The last corollary is the inspiration for the next section inwhich we study the groups of automorphisms
of a Riemann surface admitting a central automorphism with at most8 fixed points.
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4 Automorphism groups of a Riemann surface with nontrivial
centralizer

Let G be an automorphism group of a Riemann surfaceX of genusg ≥ 2 admitting a central elementδ of
ordern. If z ∈ X is a fixed point ofδ, thenδ preserves all points in the orbitGz. Assume that the stabilizer
Stab(z) of z is a cyclic group of orderm generated byx ∈ G. Thenn dividesm and〈δ〉 = 〈xm/n〉.
Any elementg ∈ G permutes points ofGz and we shall assign a permutationσg ∈ Sk to g, where
k = |Gz| = |G|/m. The permutationσx splits into product of cycles of lengthst1, . . . , tβ , respectively,
wheretj dividem. Let g1, . . . ,gβ be different elements ofG for which tj are the smallest positive integers
such thatxtj ∈ gj〈x〉g

−1
j . Then

Gz = {h1z, . . . , hαz, g1z, xg1z, . . . , xt1−1g1z, . . . , gβz, . . . , xtβ−1gβz},

whereα = k − (t1 + · · ·+ tβ) andhi ∈ G normalize〈x〉. We shall denote pointshiz by zi, in particularz
by z1, and pointsxlgjz by zj,l. In order to determine the presentation ofG we shall need the following
lemmata.

Lemma 1 Letri be the smallest positive integer such thatgri

i ∈ 〈x〉 for i = 1, . . . ,β. Then there exists an
integerbi such thatbi ≡ 1 (n), (m/ti, bi) = 1, bri

i ≡ 1 (m/ti) and

gix
tig−1

i = xbiti .

Moreover,gri

i = xpi for somepi such thatpi ≡ 0 (ti) andbi ≡ 1 (m/ gcd(m, pi)).

PROOF. Assume thatxti = gix
tilig−1

i for an integerli co-prime withm/ti. Then there existai andbi

such thataim/ti + bili = 1 and sogix
tig−1

i = xbiti .
If c is an integer such thatxc andgi commute thenc ≡ 0 (ti) what impliesbi≡1 (m/ gcd(m, c)). Other-

wise, a smaller power thanxti would belong togi〈x〉g
−1
i . In particular,pi ≡ 0 (ti), bi ≡ 1 (m/ gcd(m, pi))

andbi ≡ 1 (n). Finally, sincegri

i andx commute, it follows thatbri

i ≡ 1 (m/ti). �

Lemma 2 For any i in range1 ≤ i ≤ β, gi maps the setF = {z1, . . . , zα} into Gz \ F . Furthermore,
if gi maps a point ofF into zi′,l for some1 ≤ i′ ≤ β and1 ≤ l ≤ ti′ thenti = ti′ andgi′ maps a point of
F into zi,−l.

PROOF. On a contrary, suppose thatgi(zj) = zj′ for somezj, zj′ ∈ F . Thenzj is a fixed point ofg−1
i xgi.

Thusg−1
i xgi ∈ hj〈x〉h

−1
j = 〈x〉 what implieszi,0 = zi,1, a contradiction. Sogi maps everyzj ∈ F into

some pointzi′l ∈ Gz \ F . Thusxlgi′xg−1
i′ x−l = gihjxh−1

j g−1
i ∈ gi〈x〉g

−1
i what impliesti = ti′ .

Now letg ∈ G be such an element thatgi′(gz) = zi,−l Thenzi′,0 = gi′g(g−1z) = x−lgix
s(g−1z) for

some integers and sozi′,l = gi(x
sg−1z) what impliesg−1z = zj . Thusgxg−1 ∈ 〈x〉 what means that

gz ∈ F . �

By the proof of Lemma2, we obtain the following

Corollary 3 If β 6= 0 thenα ≤ t1 + · · · + tβ andG is generated byx andg1, . . . , gβ .

Lemma 3 If gs(zi0,l0) = z for somes, i0 and l0 in range1 ≤ s, i0 ≤ β and1 ≤ l0 ≤ ti0 , respectively,
thents = ti0 . In particular, for s = i0, the elementg = gi0x

l0−1 satisfies the relation(gx)2 = 1 modulo
xti0 and

g(zi,l) = zi′,l′ if and only if g(zi′,l′+1) = zi,l−1, (5)

g(zj) = zi,l if and only if g(zi,l+1) = zj, (6)

if g(zi,l+1) = zi,l thenti is even and fori = i0, xti/2g = gx1−lgxl. (7)
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PROOF. Sincegsx
l0gi0 ∈ 〈x〉, it follows thatg−1

s xgs = xl0gi0xg−1
i0

x−l0 what impliesti0 = ts. If s = i0
andg = gi0x

l0−1 then(gx)2z = z and so(gx)2 = xq for some integerq. Thusg2x = gxq−1g−1. On
the other handxq = gxg−1g2x implies thatg2x = gx−1g−1xq. Consequently,gxqg−1 = xq and so
q ≡ 0 (ti0).

The statements (5) and (6) follow from the relation(gx)2 = xq.
If g(zi,l+1) = zi,l thengx preserves pointzi,l and sogx = xlgix

rg−1
i x−l for somer not being a

multiple of ti. If ti is odd then rising the last equation to second power we obtainthatgxr′

g−1 ∈ 〈x〉 for
some integerr′ < ti against our choice ofti. For eventi, r = ti/2 and additionally ifi = i0 then using the
relation(gx)2 = xq we obtaingx1−lgxl = xt/2g. �

Lemma 4 Let i, j ∈ {1, . . . β}, l ∈ {1, . . . , tj} andl′ ∈ {1, . . . , ti}.

(i) If g ∈ G preserves pointzj,l thengtj ∈ 〈x〉.

(ii) If gi(zj,l) = zi,l′ , thentj dividesti.

PROOF. (i) By the assumption,g ∈ xlgj〈x〉g
−1
j x−l and sogtj ∈ 〈x〉.

(ii ) Heregj = x−lg−1
i xl′gix

s for some integers. Thusgjx
tig−1

j ∈ 〈x〉 and sotj dividesti. �

Theorem 3 Let G be a group of automorphisms of a Riemann surfaceX admitting a central automor-
phismδ of ordern and suppose thatδ admitsk ≤ 8 fixed points in the same orbit. Then fork > 1, there
exists an elementx ∈ G of orderm = |G|/k and an integert dividingm such thatH = 〈xt〉 is a normal
subgroup ofG, δ ∈ H andG/H has one of presentations listed in Table1. For k = 1, G is a cyclic group.

PROOF. Sincek < 9 then the sequence of parameters for the action ofG on such an orbit must be of the
form Ck = (α; t1, t2, t3). First we show that some sequences are not possible. For, suppose thatt1 6= t2
andt1 6= t3. Then by Lemma3, g1(z1,l0) = z for somel0 = 1, . . . , t1 and we shall useg = g1x

l0−1

instead ofg1. Furthermore, according to Lemma2, g(F ) ⊂ {z1,0, . . . z1,t1} and if z1,l is an image of a
point fromF thenz1,−l is also an image of a point fromF . In particular, ifF contains only two points
z1 = z andz2 thenx−lgz = g(z2) = xlgz what requirest even. Thus the sequencesC5 = (2; 3, 0, 0),
C7 = (2; 3, 2, 0) andC7 = (2; 5, 0, 0) must be rejected. ForC8 = (3; 3, 2, 0), without lost of generality we
can assume thatg(z2) = xgz andg(z3) = x2gz. Thus by (6), z2 = g(x2gz) andz3 = g(gz). So it remains
that g preserves or exchanges pointsz2,0 andz2,1 what by item (i) of Lemma4 implies thatg2 ∈ 〈x〉
or gx = g2xg−1

2 = x−1g, respectively. Thus not all points inGz are different against the assumption.
Similarly for C8 = (3; 5, 0, 0), we can assume thatg(z2) = x2gz andg(z3) = x3gz. Thus by (6) and (7),
σg = (1, 4, 5)(2, 6, 8, 3, 7) and sog3 ∈ 〈x〉. Howeverg3(z2) 6= z2, a contradiction once again.

If ti does not dividet1 for i = 1 or 2 then by item (ii ) of Lemma4, g(zi,l) 6∈ {z1,1, . . . , z1,t1}. Thus for
C8 = (1; 5, 2, 0) andC6 = (1; 3, 2, 0), g preserves pointsz2,0, z2,1 or exchanges them what has been shown
is impossible. Using (7) for C8 = (1; 3, 2, 2), we conclude thatσg is a product of cycles, one of which is
(1, 2, 3), and sog3 = xp for some integerp. However sinceσg neither preserves nor exchanges pointszi,0

andzi,1, it follows thatg3(z2,0) 6= z2,s for s = 0, 1, a contradiction. The sequenceC8 = (1; 4, 3, 0) is also
impossible since there does not existσg for which g(z2,l) 6= z1,l′ andg(z2,l+1) 6= z2,l for l = 0, 1, 2 and
l′ = 1, . . . ,4.

Since the case(1; 3, 2, 2) is rejected andk < 9, it follows that two parametersti in the sequence
Ck = (α; t1, t2, t3) can be equal if and only ifti ∈ {0, 2} or ti ∈ {0, 3} for i = 1, 2, 3. We shall describe
only the first possibility since the second one can be solved in the similar way. However in most cases all
parameterst1, t2 andt3 are different and first we concentrate on them. So assume thatt1, t2, t3 are different
integers. Then by Lemma3, there existi andl in range1 ≤ i ≤ 3 and1 ≤ l ≤ ti, respectively such that
gi(zi,l) = z and it is convenient to exchangegi for g = gix

l−1 which satisfies the relation(gx)2 ≡ 1 (xt),
for t = ti. From now on we will write all relations moduloxt unless we say differently. Let us notice
that g(xgsz) = x−1gs−1z for s = 1, . . . , r and sog(xgz) = z. We find the permutationσg and by
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k Case Presentation of̃G

2 ≤ k ≤ 8 k.1 〈g : gk = 1〉

k.2 〈x, g : x2 = 1, gk = 1, (gx)2 = 1〉

4 4.3 〈x, g : x3 = 1, g3 = 1, (gx)2 = 1〉

5 5.3 〈x, g : g4 = 1, gxg−1 = xgx−1, g2 = x2(gx)x−2〉

6 6.3 〈x, g : x4 = 1, g3 = 1, (gx)2 = 1〉

6.4 〈x, g : x3 = 1, g6 = 1, xg3x−1 = gx〉

6.5 〈x, g : x2 = 1, g3 = 1, (gx)3 = 1〉

7 7.3 〈x, g : g3 = 1, x3gx−3 = gx2g−1, gx3g−1 = x2(gx)x−2〉

8 8.3 〈x, g : x3 = 1, g4 = 1, (gx)2 = 1〉

8.4 〈x, g : g6 = 1, gxg−1 = xg2x−1, (gx)2 = 1〉

8.5 〈x, g : x4 = 1, g8 = 1, (gx)2 = 1, [g2, x] = 1〉

8.6 〈x, g : g7 = 1, (gx)2 = 1, x2g−1x−2 = gxg−1〉

8.7 〈x, g : x3 = 1, g4 = 1, (gx)3 = 1, [g2, x] = 1〉

8.8 〈x, g : x3 = 1, g4 = 1, (gx)3 = g2, [g2, x] = 1〉

8.9 〈x, g : x3 = 1, g3 = 1, (gx)2 = g−1xg〉

8.10 〈x, g : g3 = 1, (gx)4 = 1, xgx−1 = gx−1g−1〉

8.11 〈x, g : x3 = 1, g7 = 1, gx = g−1xg〉

8.13 〈x, g : x2 = 1, g4 = 1, (gx)4 = 1, [g2, x] = 1〉

8.14 〈x, g : x2 = 1, g8 = 1, (gx)8 = 1, [g2, x] = 1〉

8.15 〈x, g : x4 = 1, g4 = 1, (gx)2 = 1, [g2, x2] = 1〉

8.16 〈x, g1, g2 : x2 = (g1x)2 = g4
1 = (g2x)2 = 1, g2

1 = g2
2〉

Table 1. The presentation of the group G/H

consideration how it acts on points ofGz we obtain relations which determine the presentation ofG. We
consider the case witht1 = t = 4 as an example, the remaining cases can be solved in the similar way.
First we find the all possible values ofg2z. If g2 = xgz theng3 ∈ 〈x〉 and by (5), g(x2gz) = x3gz. Using
the relation(gx)2 = 1 andg3 = 1 we calculate that(gx3g)x(gx3g)−1 = x−1 what means thatg(x3gz) is
a fixed point ofx, sayz2. Thus by (6), g(z2) = x2gz. It is easy to notice thatGz cannot have any other
points butz, z2, gz, . . . ,x3gz since otherwise we get a contradiction with lemata. So we getthe sequence
C6 = (2, 4, 0, 0) for which σg = (1, 3, 4)(2, 5, 6). By Lemma1 and Corollary3, G is generated byx, g

and admits a normal cyclic subgroupH = 〈x4〉. By analyzingσg we conclude that̃G = G/H has the
presentation6.3.

Next suppose thatg2 = x2gz. Then by (5), x3gz is a fixed point ofg and so by Lemma4, g4 ∈ 〈x〉.
Thusg(x2gz) = g3z = xgz. SinceGz cannot have any additional points, it follows thatC5 = (1; 4, 0, 0),
σg = (1, 2, 4, 3) andG̃ has the presentation5.3.

If g2z = x3gz thengxg2z = g2z. Thusgx preserves pointg2z and sogx = g2x2g−2. Consequently
z = gxgz = g2x2g−1z = g2x3gz = g4z. So g4 ∈ 〈x〉 and we conclude that forC5 = (1; 4, 0, 0),
σg = (1, 2, 5, 3) andG̃ has the presentatioñG = 〈x, g : x4 = 1, g4 = 1, gxg−1 = x2gx−2, gx2g−1 = xg〉
which is isomorphic to5.3.

If g2z = z2 ∈ F theng(z2) = x3gz. Thus according to Lemma2, there existsz3 ∈ F such that
xgz = g(z3) and so by (6), z3 = g(x2gz). If g(x3gz) = x2gz then by (7), x2g = gx3gx2. However
x2g(gz) 6= gx3gx2(gz) and so there exists one more pointz4 ∈ F such thatg(x3gz) = z4. Thusg(z4) =
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x2gz andσg = (1, 5, 2, 8, 4, 7, 3, 6). So forC8 = (4; 4, 0, 0), G̃ has the presentation8.5.
Finally suppose thatg2z = z2,0. Theng(z2,1) = z1,3 and so by item (ii ) of Lemma4, t2 = 2. Let

us consider all possible values ofg3z. If g3z = z1,1 theng4 ∈ 〈x〉 andz2,1 = g(z1,2). Furthermore,
g(z1,3) 6= z1,2 since otherwise by (7), x2g = gx3gx2. However by evaluation the last equality inz1,0 we
obtain different points. Thus there existsz2 ∈ F such thatg(z1,3) = z2 and consequentlyg(z2) = z1,2. So
for C8 = (2; 4, 2, 0), σg = (1, 3, 7, 4)(2, 5, 8, 6) andG̃ has the presentation8.15.

If g3z = z1,2 thenz2,1 = g(z1,3) and it remains thatg(z1,2) = z1,1 or g(z1,2) = z2 for somez2 ∈ F . In
the first case by (7), x2g = g2x against the assumption thatz2,0 = g2z. The second one is also impossible
since theng(z2) = z1,1. However there does not exist an integers such thatg2x2g(z2) = xgxs(z2).

If g3 = z2,1 then g(z1,2) 6= z1,1 and g does not preservez1,2. Thus there existsz2 ∈ F such
that g(z1,2) = z2 what impliesg(z2) = z1,1. So it remains thatg(z1,3) = z1,2. Howeverx2g(z2) 6=
gx3gx2(z2), a contradiction with (7).

Now we shall consider the sequencesCk = (α; t1, t2, t3), whereti ∈ {0, 2} for i = 1, 2, 3. First
suppose that one ofgi, sayg1, satisfies(gix)2 ∈ 〈x〉. Thenxgs

1 = g−s
1 x for s = 1, . . . , r, wherer is

the smallest positive integer such thatgr
1 ∈ 〈x〉. Thusgs

1z is a fixed point ofx if and only if r is even and

s = r/2, in this case we shall denote the pointg
r/2
1 z by z2. In particular, ifr = k thenα = 1 or 2 according

to k being odd or even, respectively,g = g1 andx generateG and

G̃ = 〈x, g : x2 = 1, gk = 1, (gx)2 = 1〉. (8)

Sinceg1 neither preserves nor exchanges pointszj,l andzj,l+1 for j = 1, 2, 3 andl = 0, 1, it follows that
we have the following possibilities forr < k:

(i) r = 3, C6 = (2; 2, 2, 0), σg1
= (1, 3, 4)(2, 5, 6),

(ii) r = 4, C8 = (2; 2, 2, 2), σg1
= (1, 3, 2, 4)(5, 7)(6, 8) or (1, 3, 2, 4)(5, 6, 7, 8),

(iii) r = 4, C8 = (4; 2, 2, 0), σg1
= (1, 5, 2, 6)(3, 8, 4, 7). By analyzingσg1

we conclude thatG is gen-
erated byx andg2. So we shall findσg2

in order to determine the presentation ofG. If z = g2(z1,l)
for somel ∈ {0, 1} then not all points inGz are different. So we can assume that(g2z)2 ∈ 〈x〉.

(i) Sincexg1 preserves pointz2,0, it follows thatxg1 = g2xg−1
2 . Thusg1 = g−2

2 and sog6
2 ∈ 〈x〉.

ConsequentlỹG has the presentation (8), wherek = 6 andg = g2.
(ii ) Let us notice that the first permutation leads to a contradiction. Indeed, sinceg2

1 preservesz2,0, it
follows thatg2

1 = g2xg−1
2 . Thus if z′ is a fixed point ofg2

1 theng−1
2 (z′) ∈ F . Howeverg2

1 admits4 fixed
points and therefore not all points inGz are different. By the second permutation,xg1 preserves(z2,0),
what impliesg1 = xg2xg−1

2 = g−2
2 . Thusg8

2 ∈ 〈x〉 and soG̃ has the presentation (8), wherek = 8 and
g = g2.

(iii ) Sincexg2
1 preservesz2,0, it follows thatxg2

1 = g2xg−1
2 and sog2

1 = g2
2 . Thus we conclude that

σg2
= (1, 7, 2, 8)(3, 5, 4, 6) andG̃ has the presentation8.16.
Next suppose that(gix)2 6∈ 〈x〉 for i = 1, 2, 3. Then without lost of generality we can assume that

z2,l = xlg−1z for l = 0, 1 andg = g1. Let us notice thatg(z2,1) 6= z1,1 since otherwisegxg−1 = xgxs

for some integers and evaluation the last equality inz1,0 implies thatg(z1,s) = z1,1, a contradiction.
Sinceg does not preserve any pointszi,l andg(z2,l) 6= z2,l+1 for i = 1, 2, 3, it follows that the sequences
C5 = (1; 2, 2, 0) andC = (3; 2, 2, 0) are impossible. ForC6 = (2; 2, 2, 0), g(z2,1) = z2 andg(z2)
is one of pointsz1,1, z2,0, z2,1. Using Lemma2 we check that all possibilities provide a contradiction
except the first one. Hereσg = (1, 3, 5)(2, 4, 6) and we conclude that̃G has the presentation6.5. For
C8 = (2; 2, 2, 2) we obtain the presentation8.12. Finally for C8 = (4; 2, 2, 0), sinceg(F ) = Gz \ F , we
can assume thatz2 = g2z and so[g2, x] = 1. Furthermore,g3z ∈ {z1,1, z2,0, z2,1}. If g3z = z1,1 then
z1,0 = xg3z = g2xgz what impliesz1,1 = z2,0, a contradiction. Ifg3z = z2,0 theng4 ∈ 〈x〉 and so
g2(xgz) = xg3z andg2(xg3z) = xgz. Thusσg = (1, 5, 2, 7)(3, 8, 4, 6) andG̃ has the presentation8.13. If
g3z = z2,1 theng−1z = xg3z = g(gxgz). Hereσg = (1, 5, 2, 8, 4, 6, 3, 7) andG̃ has the presentation8.14.
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If β = 0, thenG is generated by two elementsg andx, 〈x〉 is a normal subgroup ofG and G̃ =
〈g : gk = 1〉. �

By corollaries1 and3 we obtain the following

Corollary 4 Let X be a p-hyperelliptic Riemann surface with a central(q, n)-gonal automorphismδ.
Then forp < n or q = 0, 1, δ has at most8 fixed points and an automorphism group ofX is determined by
Theorem3.
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