Available on line at www.rac.es/racsam Geometry and Topology

RACSAM 104 (1), 2010, 87-96. DOI:10.5052/RACSAM.2010.09

On gonality automorphisms of *p*-hyperelliptic Riemann surfaces

Ewa Tyszkowska

Abstract A compact Riemann surface X of genus g > 1 is said to be a p-hyperelliptic if X admits a conformal involution ρ for which X/ρ has genus p. This notion is the particular case of so called cyclic (q, n)-gonal surface which is defined as the one admitting a conformal automorphism δ of order n such that X/δ has genus q. It is known that for g > 4p + 1, ρ is unique and so central in the automorphism group of X. We give necessary and sufficient conditions on p and g for the existence of a Riemann surface of genus g admitting commuting p-hyperelliptic involution ρ and (q, n)-gonal automorphism δ for some prime n and we study its group of Riemann surfaces admitting central automorphism with at most 8 fixed points. The condition on the small number of fixed points of such an automorphism is justified by the study of p-hyperelliptic surfaces.

Sobre automorfismos de gonalidad de superficies de Riemann *p*-hiperelípticas

Resumen. Una superficie de Riemann compacta X de género g > 1 se dice p-hiperelíptica si X admite una involución conforme ρ , tal que X/ρ tiene género p. Las superficies p-hiperelípticas son un caso particular de las superficies (q, n)-gonales cíclicas que se definen como aquellas superficies que admiten un automorfismo conforme δ de orden q y de modo que X/δ tiene género q. En este trabajo nos restringiremos al caso en que q es un número primo mayor que 2. Es un hecho conocido que si g > 4p+1, la involución ρ es única y central en el grupo de automorfismos de X. Obtenemos condiciones necesarias y suficientes sobre p y g para la existencia de superficies de Riemann de género g que admiten una involución p-hiperelíptica y un automorfismos de las superficies de Riemann que admiten un automorfismo (q, n)-gonal que commutan. Se determina la presentación de un cociente de los grupos de automorfismos de las superficies de Riemann que admiten un automorfismo (q, n)-gonal que sea central y con 8 puntos fijos como máximo. Esta restricción sobre el número de puntos fijos se justifica por el estudio anterior de las superfices que son a la vez p-hiperelípticas y (q, n)-gonales cíclicas.

Submitted by José María Montesinos Amilibia

Received: May 18, 2009. Accepted: November 11, 2009

Keywords: Automorphism groups of Riemann surfaces, hyperelliptic Riemann surfaces, p-hyperelliptic Riemann surfaces, p-gonal Riemann surfaces, Fuchsian groups

Mathematics Subject Classifications: 14H, 30F

^{© 2010} Real Academia de Ciencias, España

1 Introduction

A compact Riemann surface X of genus $g \ge 2$ is said to be *p*-hyperelliptic if X admits a conformal involution ρ , called a *p*-hyperelliptic involution, such that X/ρ is an orbifold of genus *p*. This notion has been introduced by H. Farkas and I. Kra in [16] where they also proved that for g > 4p + 1, *p*-hyperelliptic involution is unique and so central in the group of all automorphisms of X. In [23] it has been proved that every two *p*-hyperelliptic involutions commute for $3p + 2 \le g \le 4p + 1$ and X admits at most two such involutions if g > 3p + 1.

In the particular cases p = 0, 1, X are called *hyperelliptic* and *elliptic-hyperelliptic* Riemann surfaces respectively. Hyperelliptic Riemann surfaces and their automorphisms have received a good deal of attention in the literature. In [1] and [10] the authors determined the full groups of conformal automorphisms of such surfaces which made possible to classify symmetry types of such actions in [3]. The *p*-hyperelliptic $(p \ge 1)$ surfaces at large have been studied in [4–9, 13–15] and [24], where the most attention has been paid to a study of groups of automorphisms of such surfaces and their symmetries.

In [25], [21] and [22] the classification of conformal actions on *p*-hyperelliptic Riemann surfaces has been given, up to topological conjugacy, for p = 0, 1 and 2, respectively.

A closed Riemann surface X which can be realized as a n-sheeted covering of the Riemann sphere is called n-gonal. Castelnuevo-Severi proved in [11] that if the genus g of X satisfies the inequality $g > (n-1)^2$ then a n-gonality automorphisms group is unique. In [19], Gromadzki justified that for $g \le (n-1)^2$, X has one conjugacy class of n-gonality automorphism groups in the group Aut(X) of automorphisms of X. This result has been proved using different techniques by González-Díez in [17]. The authors of [12] found the species of symmetries of real cyclic p-gonal Riemann surfaces while in [2], groups of automorphisms of cyclic trigonal Riemann surfaces have been determined.

A compact Riemann surface X is called (q, n)-gonal if there exists a cyclic group of automorphism C of X, called a (q, n)-gonal group of prime order n such that X/C has genus q. In [18], the conjugacy of (q, n)-gonal groups has been studied. Let us notice that the notion of (q, 2)-gonality coincides with q-hyperellipticity, whilst (0, n)-gonality coincides with n-gonality.

In this paper we study *p*-hyperelliptic Riemann surface X which admits a conformal automorphism δ , called (q, n)-gonal automorphism, of prime order n > 2 such that X/δ has genus q [18]. If the genus of X is greater than 4p + 1 then δ and ρ commute. We give necessary and sufficient conditions on p and g for the existence of such a Riemann surface. We show that δ admits 3 or 4 fixed points if q = 0; 2–6 if q = 1 and at most 8 if p < q. We prove that if an automorphism group G of a Riemann surface X has a nontrivial centralizer then there exists a cyclic normal subgroup $H \subseteq G$ and we determine the presentation of a factor group G/H in the case when a central automorphism of X has at most 8 fixed points.

2 Preliminaries

A Fuchsian group Λ is a discrete subgroup of the group of linear fractional transformations

$$\mathrm{LF}(2,\mathbb{R}) = \left\{ z \mapsto \frac{az+b}{cz+d} : a, b, c, d \in \mathbb{R}, \ ad-bc = 1 \right\},\$$

of the complex upper half-plane \mathcal{H} onto itself with compact orbit space. This orbit space can be given an analytic structure such that the projection $\pi_{\Lambda} \colon \mathcal{H} \to \mathcal{H}/\Lambda$ is holomorphic. The algebraic structure of Λ is determined by the signature $\sigma(\Lambda) = (g; m_1, \ldots, m_r)$, where g, m_i are integers verifying $g \ge 0, m_i \ge 2$. The signature determines the presentation of Λ :

generators: $x_1, ..., x_r, a_1, b_1, ..., a_g, b_g,$ relations: $x_1^{m_1} = \cdots = x_r^{m_r} = x_1 \dots x_r[a_1, b_1] \dots [a_g, b_g] = 1.$

Such set of generators is called a *canonical set of generators* and often, by abuse of language, its elements, *canonical generators*. Geometrically x_i are elliptic elements which correspond to hyperbolic rotations and

the remaining generators are hyperbolic translations. The integers m_1, m_2, \ldots, m_r are called the *periods* of Λ and g is the genus of the orbit space \mathcal{H}/Λ . Fuchsian groups with signatures (g; -) are called *surface groups* and they are characterized among Fuchsian groups as these ones which are torsion free.

The group Λ has associated to it a fundamental region F_{Λ} whose area $\mu(F_{\Lambda}) = \mu(\Lambda)$, called the *area* of the group, is:

$$\mu(\Lambda) = 2\pi \left(2g - 2 + \sum_{i=1}^{r} (1 - 1/m_i) \right).$$

If Γ is a subgroup of finite index in Λ , then we have the *Riemann-Hurwitz formula* which says that

$$[\Lambda:\Gamma] = \frac{\mu(\Gamma)}{\mu(\Lambda)}.$$

By Riemann uniformization theorem, each compact Riemann surface X of genus $g \ge 2$ can be represented as the orbit space of the hyperbolic plane \mathcal{H} under the action of some Fuchsian surface group Γ . Furthermore, a group G of automorphisms of a surface $X = \mathcal{H}/\Gamma$ can be represented as $G = \Lambda/\Gamma$ for another Fuchsian group Λ . The number of fixed points of an automorphism of X can be calculated by the following theorem of Macbeath [20].

Theorem 1 Let $X = H/\Gamma$ be a Riemann surface with the automorphism group $G = \Lambda/\Gamma$ and let x_1, \ldots, x_r be elliptic canonical generators of Λ with periods m_1, \ldots, m_r respectively. Let $\theta \colon \Lambda \to G$ be the canonical epimorphism and for $1 \neq g \in G$ let $\varepsilon_i(g)$ be 1 or 0 according as g is or is not conjugate to a power of $\theta(x_i)$. Then the number F(g) of points of X fixed by g is given by the formula

$$\mathbf{F}(g) = |\mathbf{N}_G(\langle g \rangle)| \sum_{i=1}^r \varepsilon_i(g)/m_i,$$

where N is a normalizer.

3 *p*-hyperelliptic Riemann surface with (q, n)-gonal automorphism

In this section we study Riemann surfaces of genera g > 1 which are *p*-hyperelliptic and cyclic (q, n)-gonal simultaneously for a prime n > 2 and a natural *q*. If g > 4p + 1, then its (q, n)-gonal automorphism and *p*-hyperelliptic involution commute. The first theorem gives necessary and sufficient conditions on *p* and *g* for the existence of such a surface.

Theorem 2 There exists a p-hyperelliptic Riemann surface of genus $g \ge 2$ admitting (q, n)-gonal automorphism commuting with a p-hyperelliptic involution if and only if $p = n\gamma + b(n-1)/2$ and g = nq + a(n-1)/2 for some integers γ , b, a such that

$$b = -2 \text{ or } b \ge 0, \qquad b \le a \le 2(b+1), \qquad 0 \le \gamma \le (q+1)/2.$$
 (1)

Furthermore, the (q, n)-gonal automorphism admits a + 2 fixed points.

PROOF. Assume that a Riemann surface $X = \mathcal{H}/\Gamma$ admits *p*-hyperelliptic involution ρ and (q, n)-gonal automorphism δ . The groups $\langle \delta \rangle$ and $\langle \rho \rangle$ can be identified with Γ_{δ}/Γ and Γ_{ρ}/Γ , where Γ_{δ} and Γ_{ρ} are Fuchsian groups containing Γ as a normal subgroup of index *n* and 2, respectively. By the Riemann-Hurwitz formula they have signatures

$$\sigma(\Gamma_{\delta}) = (q; n . \overset{r}{\ldots}, n) \quad \text{and} \quad \sigma(\Gamma_{\rho}) = (p; 2, \overset{s}{\ldots}, 2), \tag{2}$$

89

where s = 2g + 2 - 4p and r = 2 + (2g - 2nq)/(n - 1). Thus g = nq + a(n - 1)/2 for a = r - 2. If ρ and δ commute then they generate the group \mathbb{Z}_{2n} which can be represented by Λ/Γ for a Fuchsian group Λ with the signature

$$(\gamma; 2, \frac{k_1}{2}, 2, n, \frac{k_2}{2}, n, 2n, \frac{k_3}{2}, 2n).$$
 (3)

By the Riemann-Hurwith formula

$$2g - 2 = 4n\gamma - 4n + nk_1 + 2k_2(n-1) + k_3(2n-1)$$
(4)

and according to Theorem 1

 $nk_1 = s - k_3, \qquad 2k_2 = r - k_3.$

By substituting the last equalities to (4), we obtain $p = n\gamma + b(n-1)/2$, for an integer b such that $a = 2b + 2 - k_3$. Thus

$$k_1 = 2q + a - 4\gamma - 2b,$$
 $k_2 = a - b,$ $k_3 = 2 + 2b - a$

are nonnegative integers if and only if the inequalities (1) are satisfied.

Conversely, assume that g = nq + a(n-1)/2 and $p = n\gamma + b(n-1)/2$ for some integers a, band γ satisfying the inequalities (1). Then there exists a Fuchsian group Λ with the signature (3). Let $\theta: \Lambda \to \langle \rho \rangle \oplus \langle \delta \rangle$ be an epimorphism which maps all hyperbolic generators of Λ onto $\rho\delta$, the first k_1 of elliptic generators onto ρ and the remaining in the following way :

$$\underbrace{\delta \dots \delta}_{(k_{2}+1)/2} \underbrace{\delta^{-1} \dots \delta^{-1}}_{(k_{2}-3)/2} \delta^{-2} \underbrace{\rho \delta \dots \rho \delta}_{(k_{3}+1)/2} \underbrace{\rho \delta^{-1} \dots \rho \delta^{-1}}_{(k_{3}-3)/2} \rho \delta^{-2} \quad \text{if } k_{2} \equiv 1 \ (2) \text{ and } k_{3} \equiv 1 \ (2),$$

$$\underbrace{\delta \dots \delta}_{(k_{2}+1)/2} \underbrace{\delta^{-1} \dots \delta^{-1}}_{(k_{2}-3)/2} \delta^{-2} \underbrace{\rho \delta \dots \rho \delta}_{k_{3}/2} \underbrace{\rho \delta^{-1} \dots \rho \delta^{-1}}_{k_{3}/2} \text{ if } k_{2} \equiv 1 \ (2) \text{ and } k_{3} \equiv 0 \ (2),$$

$$\underbrace{\delta \dots \delta}_{k_{2}/2} \underbrace{\delta^{-1} \dots \delta^{-1}}_{(k_{2}-3)/2} \underbrace{\rho \delta \dots \rho \delta}_{(k_{3}+1)/2} \underbrace{\rho \delta^{-1} \dots \rho \delta^{-1}}_{(k_{3}-3)/2} \rho \delta^{-2} \text{ if } k_{2} \equiv 0 \ (2) \text{ and } k_{3} \equiv 1 \ (2),$$

$$\underbrace{\delta \dots \delta}_{k_{2}/2} \underbrace{\delta^{-1} \dots \delta^{-1}}_{k_{2}/2} \underbrace{\rho \delta \dots \rho \delta}_{k_{3}/2} \underbrace{\rho \delta^{-1} \dots \rho \delta^{-1}}_{k_{3}/2} \operatorname{if } k_{2} \equiv 0 \ (2) \text{ and } k_{3} \equiv 0 \ (2).$$

Then the kernel of θ is a surface Fuchsian group Γ of genus g while $\theta^{-1}(\rho)$ and $\theta^{-1}(\delta)$ are Fuchsian groups with the signatures (2). Thus \mathcal{H}/Γ is a p-hyperelliptic Riemann surface admitting (q, n)-gonal automorphism. It is easy to notice that for $k_2 < 3$ or $k_3 < 3$, such an epimorphism does not exist if and only if $k_2 + k_3 + \gamma = 0$ or $k_2 + k_3 = 1$. The first equality is never satisfied since if $k_2 + k_3 = 0$ then b = -2 and $p = n(\gamma - 1) + 1$ what requires $\gamma \ge 1$. The second one occurs for b = -1 and therefore this value of b is rejected.

Corollary 1 Let X be a p-hyperelliptic Riemann surface of genus g > 4p + 1. Then for any prime $n \ge 3$,

- (i) X can be realized as cyclic n-sheeted covering of the Riemann sphere if and only if p = 0 and g = n 1 or g = (n 1)/2 and its cyclic n-gonal automorphism admits 4 or 3 fixed points, respectively.
- (ii) X can be realized as cyclic n-sheeted covering of an elliptic curve if and only if p = 0 and $g \in \{2n 1, (3n 1)/2, n\}$ or p = (n 1)/2 and $g \in \{3n 2, (5n 3)/2\}$ and its (1, n)-gonal automorphism admits 4, 3, 2 or 6, 5 fixed points, respectively.

Corollary 2 Let $X = \mathcal{H}/\Gamma$ be a Riemann surface of genus $g \ge 2$ which admits p-hyperelliptic involution ρ and (q, n)-gonal automorphism δ for p < n. If δ and ρ commute then p = b(n-1)/2, g = nq + a(n-1)/2 for integers a, b in range $0 \le b \le 2$ and $b \le a \le 2b + 2$ and a Fuchsian group Λ such that $\langle \delta, \rho \rangle = \Lambda/\Gamma$ has a signature $(0; 2, {}^{2q+a-2b}, 2, n, {}^{a-b}, n, 2n, {}^{2b+2-a}, 2n)$. Furthermore, δ admits $a + 2 \le 8$ fixed points.

The last corollary is the inspiration for the next section in which we study the groups of automorphisms of a Riemann surface admitting a central automorphism with at most 8 fixed points.

4 Automorphism groups of a Riemann surface with nontrivial centralizer

Let G be an automorphism group of a Riemann surface X of genus $g \ge 2$ admitting a central element δ of order n. If $z \in X$ is a fixed point of δ , then δ preserves all points in the orbit Gz. Assume that the stabilizer $\operatorname{Stab}(z)$ of z is a cyclic group of order m generated by $x \in G$. Then n divides m and $\langle \delta \rangle = \langle x^{m/n} \rangle$. Any element $g \in G$ permutes points of Gz and we shall assign a permutation $\sigma_g \in S_k$ to g, where k = |Gz| = |G|/m. The permutation σ_x splits into product of cycles of lengths t_1, \ldots, t_β , respectively, where t_j divide m. Let g_1, \ldots, g_β be different elements of G for which t_j are the smallest positive integers such that $x^{t_j} \in g_j \langle x \rangle g_j^{-1}$. Then

$$Gz = \{h_1z, \dots, h_{\alpha}z, g_1z, xg_1z, \dots, x^{t_1-1}g_1z, \dots, g_{\beta}z, \dots, x^{t_{\beta}-1}g_{\beta}z\},\$$

where $\alpha = k - (t_1 + \dots + t_\beta)$ and $h_i \in G$ normalize $\langle x \rangle$. We shall denote points $h_i z$ by z_i , in particular z by z_1 , and points $x^l g_j z$ by $z_{j,l}$. In order to determine the presentation of G we shall need the following lemmata.

Lemma 1 Let r_i be the smallest positive integer such that $g_i^{r_i} \in \langle x \rangle$ for $i = 1, ..., \beta$. Then there exists an integer b_i such that $b_i \equiv 1$ (n), $(m/t_i, b_i) = 1$, $b_i^{r_i} \equiv 1$ (m/t_i) and

$$q_i x^{t_i} g_i^{-1} = x^{b_i t_i}.$$

Moreover, $g_i^{r_i} = x^{p_i}$ for some p_i such that $p_i \equiv 0$ (t_i) and $b_i \equiv 1$ $(m/\gcd(m, p_i))$.

PROOF. Assume that $x^{t_i} = g_i x^{t_i l_i} g_i^{-1}$ for an integer l_i co-prime with m/t_i . Then there exist a_i and b_i such that $a_i m/t_i + b_i l_i = 1$ and so $g_i x^{t_i} g_i^{-1} = x^{b_i t_i}$.

If c is an integer such that x^c and g_i commute then $c \equiv 0$ (t_i) what implies $b_i \equiv 1$ $(m/\gcd(m, c))$. Otherwise, a smaller power than x^{t_i} would belong to $g_i \langle x \rangle g_i^{-1}$. In particular, $p_i \equiv 0$ (t_i) , $b_i \equiv 1$ $(m/\gcd(m, p_i))$ and $b_i \equiv 1$ (n). Finally, since $g_i^{r_i}$ and x commute, it follows that $b_i^{r_i} \equiv 1$ (m/t_i) .

Lemma 2 For any *i* in range $1 \le i \le \beta$, g_i maps the set $F = \{z_1, \ldots, z_\alpha\}$ into $Gz \setminus F$. Furthermore, if g_i maps a point of *F* into $z_{i',l}$ for some $1 \le i' \le \beta$ and $1 \le l \le t_{i'}$ then $t_i = t_{i'}$ and $g_{i'}$ maps a point of *F* into $z_{i,-l}$.

PROOF. On a contrary, suppose that $g_i(z_j) = z_{j'}$ for some $z_j, z_{j'} \in F$. Then z_j is a fixed point of $g_i^{-1}xg_i$. Thus $g_i^{-1}xg_i \in h_j\langle x \rangle h_j^{-1} = \langle x \rangle$ what implies $z_{i,0} = z_{i,1}$, a contradiction. So g_i maps every $z_j \in F$ into some point $z_{i'l} \in Gz \setminus F$. Thus $x^l g_{i'} x g_{i'}^{-1} x^{-l} = g_i h_j x h_j^{-1} g_i^{-1} \in g_i \langle x \rangle g_i^{-1}$ what implies $t_i = t_{i'}$.

Now let $g \in G$ be such an element that $g_{i'}(gz) = z_{i,-l}$ Then $z_{i',0} = g_{i'}g(g^{-1}z) = x^{-l}g_ix^s(g^{-1}z)$ for some integer s and so $z_{i',l} = g_i(x^sg^{-1}z)$ what implies $g^{-1}z = z_j$. Thus $gxg^{-1} \in \langle x \rangle$ what means that $gz \in F$.

By the proof of Lemma 2, we obtain the following

Corollary 3 If $\beta \neq 0$ then $\alpha \leq t_1 + \cdots + t_\beta$ and G is generated by x and g_1, \ldots, g_β .

Lemma 3 If $g_s(z_{i_0,l_0}) = z$ for some s, i_0 and l_0 in range $1 \le s$, $i_0 \le \beta$ and $1 \le l_0 \le t_{i_0}$, respectively, then $t_s = t_{i_0}$. In particular, for $s = i_0$, the element $g = g_{i_0}x^{l_0-1}$ satisfies the relation $(gx)^2 = 1$ modulo $x^{t_{i_0}}$ and

$$g(z_{i,l}) = z_{i',l'}$$
 if and only if $g(z_{i',l'+1}) = z_{i,l-1}$, (5)

$$g(z_j) = z_{i,l} \qquad \text{if and only if} \qquad g(z_{i,l+1}) = z_j, \tag{6}$$

$$if g(z_{i,l+1}) = z_{i,l} \quad then \ t_i \ is \ even \ and \ for \ i = i_0, \quad x^{t_i/2}g = gx^{1-l}gx^l.$$

$$\tag{7}$$

91

PROOF. Since $g_s x^{l_0} g_{i_0} \in \langle x \rangle$, it follows that $g_s^{-1} x g_s = x^{l_0} g_{i_0} x g_{i_0}^{-1} x^{-l_0}$ what implies $t_{i_0} = t_s$. If $s = i_0$ and $g = g_{i_0} x^{l_0 - 1}$ then $(gx)^2 z = z$ and so $(gx)^2 = x^q$ for some integer q. Thus $g^2 x = gx^{q-1}g^{-1}$. On the other hand $x^q = gxg^{-1}g^2 x$ implies that $g^2 x = gx^{-1}g^{-1}x^q$. Consequently, $gx^q g^{-1} = x^q$ and so $q \equiv 0$ (t_{i_0}) .

The statements (5) and (6) follow from the relation $(gx)^2 = x^q$.

If $g(z_{i,l+1}) = z_{i,l}$ then gx preserves point $z_{i,l}$ and so $gx = x^l g_i x^r g_i^{-1} x^{-l}$ for some r not being a multiple of t_i . If t_i is odd then rising the last equation to second power we obtain that $gx^{r'}g^{-1} \in \langle x \rangle$ for some integer $r' < t_i$ against our choice of t_i . For even t_i , $r = t_i/2$ and additionally if $i = i_0$ then using the relation $(gx)^2 = x^q$ we obtain $gx^{1-l}gx^l = x^{t/2}g$.

Lemma 4 Let $i, j \in \{1, ..., \beta\}, l \in \{1, ..., t_i\}$ and $l' \in \{1, ..., t_i\}$.

- (i) If $g \in G$ preserves point $z_{j,l}$ then $g^{t_j} \in \langle x \rangle$.
- (ii) If $g_i(z_{j,l}) = z_{i,l'}$, then t_j divides t_i .

PROOF. (i) By the assumption, $g \in x^l g_j \langle x \rangle g_j^{-1} x^{-l}$ and so $g^{t_j} \in \langle x \rangle$. (ii) Here $g_j = x^{-l} g_i^{-1} x^{l'} g_i x^s$ for some integer s. Thus $g_j x^{t_i} g_j^{-1} \in \langle x \rangle$ and so t_j divides t_i .

Theorem 3 Let G be a group of automorphisms of a Riemann surface X admitting a central automorphism δ of order n and suppose that δ admits $k \leq 8$ fixed points in the same orbit. Then for k > 1, there exists an element $x \in G$ of order m = |G|/k and an integer t dividing m such that $H = \langle x^t \rangle$ is a normal subgroup of G, $\delta \in H$ and G/H has one of presentations listed in Table 1. For k = 1, G is a cyclic group.

PROOF. Since k < 9 then the sequence of parameters for the action of G on such an orbit must be of the form $C_k = (\alpha; t_1, t_2, t_3)$. First we show that some sequences are not possible. For, suppose that $t_1 \neq t_2$ and $t_1 \neq t_3$. Then by Lemma 3, $g_1(z_{1,l_0}) = z$ for some $l_0 = 1, \ldots, t_1$ and we shall use $g = g_1 x^{l_0 - 1}$ instead of g_1 . Furthermore, according to Lemma 2, $g(F) \subset \{z_{1,0}, \ldots, z_{1,t_1}\}$ and if $z_{1,l}$ is an image of a point from F then $z_{1,-l}$ is also an image of a point from F. In particular, if F contains only two points $z_1 = z$ and z_2 then $x^{-l}gz = g(z_2) = x^lgz$ what requires t even. Thus the sequences $C_5 = (2; 3, 0, 0)$, $C_7 = (2; 3, 2, 0)$ and $C_7 = (2; 5, 0, 0)$ must be rejected. For $C_8 = (3; 3, 2, 0)$, without lost of generality we can assume that $g(z_2) = xgz$ and $g(z_3) = x^2gz$. Thus by (6), $z_2 = g(x^2gz)$ and $z_3 = g(gz)$. So it remains that g preserves or exchanges points $z_{2,0}$ and $z_{2,1}$ what by item (i) of Lemma 4 implies that $g^2 \in \langle x \rangle$ or $gx = g_2xg_2^{-1} = x^{-1}g$, respectively. Thus not all points in Gz are different against the assumption. Similarly for $C_8 = (3; 5, 0, 0)$, we can assume that $g(z_2) = x^2gz$ and $g(z_3) = x^2gz$. Thus by (6) and (7), $\sigma_g = (1, 4, 5)(2, 6, 8, 3, 7)$ and so $g^3 \in \langle x \rangle$. However $g^3(z_2) \neq z_2$, a contradiction once again.

If t_i does not divide t_1 for i = 1 or 2 then by item (ii) of Lemma 4, $g(z_{i,l}) \notin \{z_{1,1}, \ldots, z_{1,t_1}\}$. Thus for $C_8 = (1; 5, 2, 0)$ and $C_6 = (1; 3, 2, 0)$, g preserves points $z_{2,0}, z_{2,1}$ or exchanges them what has been shown is impossible. Using (7) for $C_8 = (1; 3, 2, 2)$, we conclude that σ_g is a product of cycles, one of which is (1, 2, 3), and so $g^3 = x^p$ for some integer p. However since σ_g neither preserves nor exchanges points $z_{i,0}$ and $z_{i,1}$, it follows that $g^3(z_{2,0}) \neq z_{2,s}$ for s = 0, 1, a contradiction. The sequence $C_8 = (1; 4, 3, 0)$ is also impossible since there does not exist σ_g for which $g(z_{2,l}) \neq z_{1,l'}$ and $g(z_{2,l+1}) \neq z_{2,l}$ for l = 0, 1, 2 and $l' = 1, \ldots, 4$.

Since the case (1; 3, 2, 2) is rejected and k < 9, it follows that two parameters t_i in the sequence $C_k = (\alpha; t_1, t_2, t_3)$ can be equal if and only if $t_i \in \{0, 2\}$ or $t_i \in \{0, 3\}$ for i = 1, 2, 3. We shall describe only the first possibility since the second one can be solved in the similar way. However in most cases all parameters t_1, t_2 and t_3 are different and first we concentrate on them. So assume that t_1, t_2, t_3 are different integers. Then by Lemma 3, there exist i and l in range $1 \le i \le 3$ and $1 \le l \le t_i$, respectively such that $g_i(z_{i,l}) = z$ and it is convenient to exchange g_i for $g = g_i x^{l-1}$ which satisfies the relation $(gx)^2 \equiv 1 (x^t)$, for $t = t_i$. From now on we will write all relations modulo x^t unless we say differently. Let us notice that $g(xg^s z) = x^{-1}g^{s-1}z$ for s = 1, ..., r and so g(xgz) = z. We find the permutation σ_g and by

k	Case	Presentation of \tilde{G}
$2 \le k \le 8$	k.1	$\langle g:g^k=1\rangle$
	k.2	$\langle x,g:x^2=1,g^k=1,(gx)^2=1\rangle$
4	4.3	$\langle x,g: x^{3}=1, g^{3}=1, (gx)^{2}=1 \rangle$
5	5.3	$\langle x,g:g^4=1,gxg^{-1}=xgx^{-1},g^2=x^2(gx)x^{-2}\rangle$
6	6.3	$\langle x,g:x^4=1,g^3=1,(gx)^2=1\rangle$
	6.4	$\langle x,g:x^3=1,g^6=1,xg^3x^{-1}=gx\rangle$
	6.5	$\langle x,g:x^2=1,g^3=1,(gx)^3=1\rangle$
7	7.3	$\langle x,g:g^3=1,x^3gx^{-3}=gx^2g^{-1},gx^3g^{-1}=x^2(gx)x^{-2}\rangle$
8	8.3	$\langle x,g:x^3=1,g^4=1,(gx)^2=1\rangle$
	8.4	$\langle x,g:g^6=1,gxg^{-1}=xg^2x^{-1},(gx)^2=1\rangle$
	8.5	$\langle x,g:x^4=1,g^8=1,(gx)^2=1,[g^2,x]=1\rangle$
	8.6	$\langle x,g:g^7=1,(gx)^2=1,x^2g^{-1}x^{-2}=gxg^{-1}\rangle$
	8.7	$\langle x,g:x^3=1,g^4=1,(gx)^3=1,[g^2,x]=1\rangle$
	8.8	$\langle x,g:x^3=1,g^4=1,(gx)^3=g^2,[g^2,x]=1\rangle$
	8.9	$\langle x,g:x^{3}=1,g^{3}=1,(gx)^{2}=g^{-1}xg\rangle$
	8.10	$\langle x,g:g^3=1,(gx)^4=1,xgx^{-1}=gx^{-1}g^{-1}\rangle$
	8.11	$\langle x,g:x^3=1,g^7=1,gx=g^{-1}xg\rangle$
	8.13	$\langle x,g:x^2=1,g^4=1,(gx)^4=1,[g^2,x]=1\rangle$
	8.14	$\langle x,g:x^2=1,g^8=1,(gx)^8=1,[g^2,x]=1\rangle$
	8.15	$\langle x,g:x^4=1,g^4=1,(gx)^2=1,[g^2,x^2]=1\rangle$
	8.16	$\langle x, g_1, g_2 : x^2 = (g_1 x)^2 = g_1^4 = (g_2 x)^2 = 1, g_1^2 = g_2^2 \rangle$

Table 1. The presentation of the group G/H

consideration how it acts on points of Gz we obtain relations which determine the presentation of G. We consider the case with $t_1 = t = 4$ as an example, the remaining cases can be solved in the similar way. First we find the all possible values of g^2z . If $g^2 = xgz$ then $g^3 \in \langle x \rangle$ and by (5), $g(x^2gz) = x^3gz$. Using the relation $(gx)^2 = 1$ and $g^3 = 1$ we calculate that $(gx^3g)x(gx^3g)^{-1} = x^{-1}$ what means that $g(x^3gz)$ is a fixed point of x, say z_2 . Thus by (6), $g(z_2) = x^2gz$. It is easy to notice that Gz cannot have any other points but $z, z_2, gz, \ldots, x^3gz$ since otherwise we get a contradiction with lemata. So we get the sequence $C_6 = (2, 4, 0, 0)$ for which $\sigma_g = (1, 3, 4)(2, 5, 6)$. By Lemma 1 and Corollary 3, G is generated by x, g and admits a normal cyclic subgroup $H = \langle x^4 \rangle$. By analyzing σ_g we conclude that $\tilde{G} = G/H$ has the presentation 6.3.

Next suppose that $g^2 = x^2 gz$. Then by (5), $x^3 gz$ is a fixed point of g and so by Lemma 4, $g^4 \in \langle x \rangle$. Thus $g(x^2 gz) = g^3 z = xgz$. Since Gz cannot have any additional points, it follows that $C_5 = (1; 4, 0, 0)$, $\sigma_g = (1, 2, 4, 3)$ and \tilde{G} has the presentation 5.3.

If $g^2 z = x^3 gz$ then $gxg^2 z = g^2 z$. Thus gx preserves point $g^2 z$ and so $gx = g^2 x^2 g^{-2}$. Consequently $z = gxgz = g^2 x^2 g^{-1} z = g^2 x^3 gz = g^4 z$. So $g^4 \in \langle x \rangle$ and we conclude that for $C_5 = (1; 4, 0, 0)$, $\sigma_g = (1, 2, 5, 3)$ and \tilde{G} has the presentation $\tilde{G} = \langle x, g : x^4 = 1, g^4 = 1, gxg^{-1} = x^2 gx^{-2}, gx^2 g^{-1} = xg \rangle$ which is isomorphic to 5.3.

If $g^2z = z_2 \in F$ then $g(z_2) = x^3gz$. Thus according to Lemma 2, there exists $z_3 \in F$ such that $xgz = g(z_3)$ and so by (6), $z_3 = g(x^2gz)$. If $g(x^3gz) = x^2gz$ then by (7), $x^2g = gx^3gx^2$. However $x^2g(gz) \neq gx^3gx^2(gz)$ and so there exists one more point $z_4 \in F$ such that $g(x^3gz) = z_4$. Thus $g(z_4) = x^2g(z_4) = x^2gz$.

E. Tyszkowska

 x^2gz and $\sigma_g = (1, 5, 2, 8, 4, 7, 3, 6)$. So for $C_8 = (4; 4, 0, 0)$, \tilde{G} has the presentation 8.5.

Finally suppose that $g^2 z = z_{2,0}$. Then $g(z_{2,1}) = z_{1,3}$ and so by item (ii) of Lemma 4, $t_2 = 2$. Let us consider all possible values of $g^3 z$. If $g^3 z = z_{1,1}$ then $g^4 \in \langle x \rangle$ and $z_{2,1} = g(z_{1,2})$. Furthermore, $g(z_{1,3}) \neq z_{1,2}$ since otherwise by (7), $x^2 g = gx^3 gx^2$. However by evaluation the last equality in $z_{1,0}$ we obtain different points. Thus there exists $z_2 \in F$ such that $g(z_{1,3}) = z_2$ and consequently $g(z_2) = z_{1,2}$. So for $C_8 = (2; 4, 2, 0), \sigma_q = (1, 3, 7, 4)(2, 5, 8, 6)$ and \tilde{G} has the presentation 8.15.

If $g^3z = z_{1,2}$ then $z_{2,1} = g(z_{1,3})$ and it remains that $g(z_{1,2}) = z_{1,1}$ or $g(z_{1,2}) = z_2$ for some $z_2 \in F$. In the first case by (7), $x^2g = g^2x$ against the assumption that $z_{2,0} = g^2z$. The second one is also impossible since then $g(z_2) = z_{1,1}$. However there does not exist an integer s such that $g^2x^2g(z_2) = xgx^s(z_2)$.

If $g^3 = z_{2,1}$ then $g(z_{1,2}) \neq z_{1,1}$ and g does not preserve $z_{1,2}$. Thus there exists $z_2 \in F$ such that $g(z_{1,2}) = z_2$ what implies $g(z_2) = z_{1,1}$. So it remains that $g(z_{1,3}) = z_{1,2}$. However $x^2g(z_2) \neq gx^3gx^2(z_2)$, a contradiction with (7).

Now we shall consider the sequences $C_k = (\alpha; t_1, t_2, t_3)$, where $t_i \in \{0, 2\}$ for i = 1, 2, 3. First suppose that one of g_i , say g_1 , satisfies $(g_i x)^2 \in \langle x \rangle$. Then $xg_1^s = g_1^{-s}x$ for $s = 1, \ldots, r$, where r is the smallest positive integer such that $g_1^r \in \langle x \rangle$. Thus $g_1^s z$ is a fixed point of x if and only if r is even and s = r/2, in this case we shall denote the point $g_1^{-r/2}z$ by z_2 . In particular, if r = k then $\alpha = 1$ or 2 according to k being odd or even, respectively, $g = g_1$ and x generate G and

$$\tilde{G} = \langle x, g : x^2 = 1, g^k = 1, (gx)^2 = 1 \rangle.$$
 (8)

Since g_1 neither preserves nor exchanges points $z_{j,l}$ and $z_{j,l+1}$ for j = 1, 2, 3 and l = 0, 1, it follows that we have the following possibilities for r < k:

- (i) $r = 3, C_6 = (2; 2, 2, 0), \sigma_{g_1} = (1, 3, 4)(2, 5, 6),$
- (ii) $r = 4, C_8 = (2; 2, 2, 2), \sigma_{g_1} = (1, 3, 2, 4)(5, 7)(6, 8)$ or (1, 3, 2, 4)(5, 6, 7, 8), (5, 6, 7, 8)
- (iii) $r = 4, C_8 = (4; 2, 2, 0), \sigma_{g_1} = (1, 5, 2, 6)(3, 8, 4, 7)$. By analyzing σ_{g_1} we conclude that G is generated by x and g_2 . So we shall find σ_{g_2} in order to determine the presentation of G. If $z = g_2(z_{1,l})$ for some $l \in \{0, 1\}$ then not all points in Gz are different. So we can assume that $(g_2 z)^2 \in \langle x \rangle$.

(i) Since xg_1 preserves point $z_{2,0}$, it follows that $xg_1 = g_2 x g_2^{-1}$. Thus $g_1 = g_2^{-2}$ and so $g_2^6 \in \langle x \rangle$. Consequently \tilde{G} has the presentation (8), where k = 6 and $g = g_2$.

(ii) Let us notice that the first permutation leads to a contradiction. Indeed, since g_1^2 preserves $z_{2,0}$, it follows that $g_1^2 = g_2 x g_2^{-1}$. Thus if z' is a fixed point of g_1^2 then $g_2^{-1}(z') \in F$. However g_1^2 admits 4 fixed points and therefore not all points in Gz are different. By the second permutation, xg_1 preserves $(z_{2,0})$, what implies $g_1 = xg_2 x g_2^{-1} = g_2^{-2}$. Thus $g_2^8 \in \langle x \rangle$ and so \tilde{G} has the presentation (8), where k = 8 and $g = g_2$.

(iii) Since xg_1^2 preserves $z_{2,0}$, it follows that $xg_1^2 = g_2 xg_2^{-1}$ and so $g_1^2 = g_2^2$. Thus we conclude that $\sigma_{g_2} = (1, 7, 2, 8)(3, 5, 4, 6)$ and \tilde{G} has the presentation 8.16.

Next suppose that $(g_i x)^2 \notin \langle x \rangle$ for i = 1, 2, 3. Then without lost of generality we can assume that $z_{2,l} = x^l g^{-1} z$ for l = 0, 1 and $g = g_1$. Let us notice that $g(z_{2,1}) \neq z_{1,1}$ since otherwise $gxg^{-1} = xgx^s$ for some integer s and evaluation the last equality in $z_{1,0}$ implies that $g(z_{1,s}) = z_{1,1}$, a contradiction. Since g does not preserve any points $z_{i,l}$ and $g(z_{2,l}) \neq z_{2,l+1}$ for i = 1, 2, 3, it follows that the sequences $C_5 = (1; 2, 2, 0)$ and C = (3; 2, 2, 0) are impossible. For $C_6 = (2; 2, 2, 0), g(z_{2,1}) = z_2$ and $g(z_2)$ is one of points $z_{1,1}, z_{2,0}, z_{2,1}$. Using Lemma 2 we check that all possibilities provide a contradiction except the first one. Here $\sigma_g = (1, 3, 5)(2, 4, 6)$ and we conclude that \tilde{G} has the presentation 6.5. For $C_8 = (2; 2, 2, 2)$ we obtain the presentation 8.12. Finally for $C_8 = (4; 2, 2, 0)$, since $g(F) = Gz \setminus F$, we can assume that $z_2 = g^2 z$ and so $[g^2, x] = 1$. Furthermore, $g^3 z \in \{z_{1,1}, z_{2,0}, z_{2,1}\}$. If $g^3 z = z_{1,1}$ then $z_{1,0} = xg^3 z = g^2 xgz$ what implies $z_{1,1} = z_{2,0}$, a contradiction. If $g^3 z = z_{2,0}$ then $g^4 \in \langle x \rangle$ and so $g^2(xgz) = xg^3 z$ and $g^2(xg^3 z) = xgz$. Thus $\sigma_g = (1, 5, 2, 7)(3, 8, 4, 6)$ and \tilde{G} has the presentation 8.13. If $g^3 z = z_{2,1}$ then $g^{-1} z = xg^3 z = g(gxgz)$. Here $\sigma_g = (1, 5, 2, 8, 4, 6, 3, 7)$ and \tilde{G} has the presentation 8.14.

If $\beta = 0$, then G is generated by two elements g and x, $\langle x \rangle$ is a normal subgroup of G and $\tilde{G} = \langle q : q^k = 1 \rangle$.

By corollaries 1 and 3 we obtain the following

Corollary 4 Let X be a p-hyperelliptic Riemann surface with a central (q, n)-gonal automorphism δ . Then for p < n or $q = 0, 1, \delta$ has at most 8 fixed points and an automorphism group of X is determined by Theorem 3.

Acknowledgement. The author supported by the Research Grant N. N201 366436 of the Polish Ministry of Sciences and Higher Education.

References

- BRANDT, R. AND STICHTENOTH, H., (1986). Die Automorphismengruppen hyperelliptischer Kurven, Manuscripta Math., 55, 1, 83–92. DOI: 10.1007/BF01168614
- [2] BUJALANCE, E.; CIRRE, F. J. AND GROMADZKI, G., (2009). Groups of automorphisms of cyclic trigonal Riemann surfaces, J. Algebra, 322, 4, 1086–1103. DOI: 10.1016/j.jalgebra.2009.05.017
- [3] BUJALANCE, E.; CIRRE, F. J.; GAMBOA, J. M. AND GROMADZKI, G., (2001). Symmetry types of hyperelliptic Riemann surfaces, *Mém. Soc. Math. Fr. (N.S.)*, 86.
- [4] BUJALANCE, E. AND COSTA, A. F., (1997). On symmetries of *p*-hyperelliptic Riemann surfaces, *Math. Ann.*, 308, 1, 31–45. DOI: 10.1007/s002080050062
- [5] BUJALANCE, E. AND ETAYO, J. J., (1988). Large automorphism groups of hyperelliptic Klein surfaces, Proc. Amer. Math. Soc., 103, 3, 679–686. DOI: 10.2307/2046834
- [6] BUJALANCE, E. AND ETAYO, J. J., (1988). A characterization of q-hyperelliptic compact planar Klein surfaces, Abh. Math. Sem. Univ. Hamburg, 58, 1, 95–102. DOI: 10.1007/BF02941371
- [7] BUJALANCE, E.; ETAYO, J. J. AND GAMBOA, J. M., (1986). Surfaces elliptiques-hyperelliptiques avec beaucoup d'automorphismes, C. R. Acad. Sci. Paris Sér. I Math., 302, 10, 391–394
- [8] BUJALANCE, E.; ETAYO, J. J. AND GAMBOA, J. M., (1987). Topological types of *p*-hyperelliptic real algebraic curves. *Math. Z.*, **194**, 2, 275–283.
- [9] BUJALANCE, E., ETAYO, J. J., GAMBOA, J. M. AND GROMADZKI, G., (1990). Automorphisms Groups of Compact Bordered Klein Surfaces. A Combinatorial Approach, Lecture Notes in Math., 1439, Springer Verlag.
- [10] BUJALANCE, E.; GAMBOA, J. M. AND GROMADZKI, G., (1993). The full automorphisms group of hyperelliptic Riemann surfaces, *Manuscripta Math*, 79, 1, 267–282. DOI: 10.1007/BF02568345
- [11] CASTELNUEVO, G., (1906). Sulle serie algebriche di gruppi di punti apparteneti ad una curve algebraica, *Rendi*conti della R. Academia dei Lincei, Series 5, XV, (memorie scelte p. 509).
- [12] COSTA, ANTONIO F. AND IZQUIERDO, MILAGROS, (2004). Symmetries of real cyclic p-gonal Riemann surfaces, Pacific J. Math., 213, 2, 231–243. DOI: 10.2140/pjm.2004.213.231
- [13] ESTRADA, B., (2000). Automorphism groups of orientable elliptic-hyperelliptic Klein surfaces, Ann. Acad. Sci. Fenn. Math., 25, 439–456.
- [14] ESTRADA, B., (2002). Geometrical characterization of p-hyperelliptic planar Klein surfaces, Comput. Methods Funct. Theory, 2, 1, 267–279.
- [15] ESTRADA, B. AND MARTÍNEZ, E., (2001). On q-hyperelliptic k-bordered tori, Glasg. Math. J., 43, 3, 343–357. DOI: 10.1017/S0017089501030142

- [16] FARKAS, H. M. AND KRA, I., (1980). Riemann Surfaces, Graduate Text in Mathematics, Springer-Verlag.
- [17] GONZÁLEZ-DÍEZ, G., (1995). On prime Galois coverings of Riemann sphere, Ann. Mat. Pura Appl., 168, IV, 1–15. DOI: 10.1007/BF01759251
- [18] GROMADZKI, G.; WEAVER, A. AND WOOTTON, A., On gonality of Riemann surfaces, *Geom. Dedicata, to appear.* DOI: 10.1007/s10711-010-9459-x
- [19] GROMADZKI, G., (2008). On conjugacy of p-gonality automorphisms of Riemann surfaces, Rev. Mat. Complut., 21, 1, 83–87.
- [20] MACBEATH, A. M., (1973). Action of automorphisms of a compact Riemann surface on the first homology group, Bull. London Math. Soc., 5, 1, 103–108. DOI: 10.1112/blms/5.1.103
- [21] TYSZKOWSKA, E., (2005). Topological classification of conformal actions on elliptic-hyperelliptic Riemann surfaces, J. Algebra, 288, 2, 345–363. DOI: 10.1016/j.jalgebra.2005.03.024
- [22] TYSZKOWSKA, E., (2008). Topological classification of conformal actions on 2-hyperelliptic Riemann surfaces, *Bull. Inst. Math. Acad. Sinica*, **33**, 4,345–368.
- [23] TYSZKOWSKA, E., (2005). On p-hyperelliptic involutions of Riemann surfaces, Beiträge zur Algebra und Geometrie Contributions to Algebra and Geometry, 46, 2, 581–586.
- [24] TYSZKOWSKA, E. AND WEAVER, A., (2008). Exceptional points in the eliptic-hyperelliptic locus, *J. Pure Appl. Algebra*, **212**, 1415–1426.
- [25] WEAVER, A., (2004). Hyperelliptic surfaces and their moduli, Geom. Dedicata, 103, 69–87.

Ewa Tyszkowska

Institute of Mathematics, Gdańsk University, Wita Stwosza 57, 80-952 Gdańsk, Poland