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On a rigidity condition for Berwald spaces

Ricardo Gallego Torrome and Fernando Etayo

Abstract We show that which that for a Berwald structure, any Riemamistructure that is preserved
by the Berwald connection leaves the indicatrix invariamtler horizontal parallel transport. We also
obtain the converse result: (M, F') is a Finsler structure such that there exists a Riemanniaotate
that leaves invariant the indicatrix under parallel tramspf the associated Levi-Civita connection, then
the structure(M, F") is Berwald. As application, a necessary condition for puaadsberg spaces is
formulated. Using this criterion we provide an strategydtve the existence or not of pure Landsberg
surfaces.

Sobre una condici 6n de rigidez de los espacios de Berwald

Resumen. Se muestra que la conexion de Levi Civita de cualquier in&fRiemanniana afinmente
equivalente a una estructura de Berwald deja invarianterposporte paralelo la indicatriz de dicha
estructura de Berwald. También se demuestra el resulegiproco: Si(M, F') es una estructura de
Finsler y existe una estructura Riemanniana cuya conadedrevi Civita deja invariante por transporte
paralelo la indicatriz de la estructura de Finsler, entsri®d, F') es de Berwald. Como aplicacion se
obtiene una condicibn necesaria para que una variedacedeandsberg pura. Y usando este criterio se
formula una estrategia para resolver el problema de lagzxiit de superficies de Landsberg puras.

1 Introduction

A Riemannian structure on a manifold is given by a Riemanmatric. As is well known, the Levi Civita
connection is an important tool associated to the structérenore general concept is that of a Finsler
structure (see Definitioh below). In general, one cannot define a Levi Civita type catioa associated
to a Finsler structure. Given a Finsler structure, one cédingélseveral linear connections on the pull-back
bundler*TM — N determined by the Finsler functiai and additional conditions, usually restrictions
to the “torsion”. Cartan, Chern and Berwald’s linear coriiwgts are notable examplesl]]. Although
the relevant merits of these connections, compared witheaffonnections, are quite complicated objects.
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This is one of the reasons that make Finsler geometry spedifflcult to investigated, compared with the
Riemannian case.

One step on the understanding of the structure of Finslemgéy maybe achieved by the theory pre-
sented (or better suggested) in referenajhere it was introduced the averaged connection. Thegeer
connection is obtained from a linear connectionfd M — NN by an averaged procedure on a suitable
subse® C N, = 7 !(x) C N. Usually this subset is defined to be the indicaloverz € M. The av-
erage connection is an affine connection on the tangenteuandl'M — M. If we perform the averaged
operation on convex combinations of connections that Haeesame averaged connection, the result is the
same averaged connection. We called this property convexiamce. The connection coefficients of the
averaged connection are equal to the average of the coonecigfficients of the original connection &h

The main purpose of this note is to prove a necessary conditioBerwald spaces. The condition
is obtained using the averaged connection and the convexiamce mentioned above. In particular two-
dimensional spaces are considered.

In Section2 we introduce the basic notions of Finsler structures thaheed. We will follow the no-
tation from Bao-Chern-Sheri]. Usually, the concepts of Finsler geometry are introduzgdsing local
coordinates, but we show some intrinsic expressions f@gpositionsl and?2; see also10]). In Section3
we recall the notion of average of a linear connection in thielack bundler*TM — N and other results
from [2]. In Section4 we obtain Propositiod2 which states that for a Berwald structure, any Rieman-
nian structure that is preserved by the Berwald connectiavds the indicatrix invariant under horizontal
parallel transport. We also obtain the converse resulpdésition13: if (M, F') is a Finsler structure such
that there exists a Riemannian structure that leaves amviatie indicatrix under parallel transport of the
associated Levi-Civita connection, then the structivk F') is Berwald. We finish showing that these re-
sults together with the notion of convex invariance, can$eful in the research of pure Landsberg spaces
through Theorem and a criterion for pure two dimensional Landsberg space/éng

2 Basics notions on Finsler geometry

In this section we introduce the notions of Finsler geomasywell the notation that we will use in this
work. The main reference that we follow i$]|

Let M be ann-dimensional manifold an@M its tangent bundle. Ifz*} is a local coordinate system
on M, the induced local coordinate system @M is denoted by{(z*,y%)}. This type of coordinate
systems ofi™ are called natural coordinate systems. The slit tangerdlbuaN = TM \ {0}. Then
we have,

Definition 1 A Finsler structureF’ on the manifoldMI is a non-negative, real functioR: TM — [0, oo
such that

1. Itis smooth in the slit tangent bundhe.
2. Positive homogeneity hold$i(z, A\y) = A\F'(z,y) for every\ > 0.

3. Strong convexity holds: the Hessian matrix

102F%(x,y)
gij(x,y) = 5T<(91/j

is positive definite ilN. The fundamental and the Cartan tensors are defined by thatiegs:

1 9?F2(a,
9(x,y) = LRy

= ~ 7 dat @ da?.
2 Oytoy’ vedr
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Given a Finsler structur@Ml, ) it is not possible to define a Levi-Civita connection in thegel case.
In order to obtain a connection related with the structures bas to go to higher order bundles odr
This is done in the following standard way. First, we introdwa non-linear connection on the bundle
wn: TN — N:

1. there is a splitting of each tangent spdtaN in complementary sub-spac¥s andH,,

2. kery,(mn) = Vu, Vu € N.

This decomposition is invariant by the action@fL(n, R), which is induced by the action of the linear
groupGl(n, R) acting freely and by the right on the tangent bundle maniiod.
A Local basis forT', N is given by the distributions

) 0 0 0 0 0 ; 0

where the non-linear connection coefficiemjé must be specified. The firstelements develop the hori-
zontal subspac#,, while the second half the vertical subspage Similarly, for the cotangent spadg; N
a dual basis is defined by

gy’

{dx1|u, ooy da |y, 7

oy" 5yt 1 . S
ua-'-a(—u ) (_u:_dz N:da’ u-
o o = a4 N o)

The manifold7*TM is a subset of the cartesian prodd&M x N. One has the pull-back bundle
©*TM — N given by the square
™ TM —— TM
I
N————M
The projection on the first and second factors are
m: 7 TM — N, (u,§) — u,
w7 TM — TM,  (u1,§) — &, Eem ' (u).
Every vector fieldY” over M can be interpreted as a section of the tangent bulid& — M and has

associated a sectioriY of the vector bundle*TM — N. In local coordinates, the associatett” to Y
is given in the following way:

Y—Y(x)% — 1Y =Y"(z)r B’ T (ﬂ' (Q)xi)_f)xi'
We also use the following lifted fundamental tensor (or filmetric):
* 1 62F2(l’,y) * 7 * J
s g(l’,y) = §Wﬂ' d(E ®7T dl’ .

Definition 2 Let (M, F') be a Finsler structure. The Cartan tensor is defined by

A(z,y) = 99:; 0y 51‘2 ®da? @ dz*.

. E
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One possible non-linear connection is introduced by defittie non-linear connection coefficients as

N; v oy
F _’7716 F A]k/YTSF F

The coefficientSy;.k are defined in local coordinates by

agsg agjk 8gsk .o
— : k,s=1,...
771@ 2g (8:10’“ o1 + O ) LR, S ) ) TV

i, 5, k,r,s=1,...,n.

A;k = gilAljk andg“glj = 5;

As we have said, there is not a Levi-Civita connection asdedito the Finsler structure. However,
there are several connections that one can define and tlyad glanilar role to the Levi-Civita connection
in Riemannian geometry. One of these connections is Cheomaection, which introduced through the
following theorem ([, p. 38]),

Theorem 1 Let(M, F') be a Finsler structure. The pull-back vector bundlél'M — N admits a unique
linear connection determined by the connection 1-fo{m§, 1,7 = 1,...,n} such that the following
structure equations hold:

1. Torsion free condition,

d(dxi)—dxjAw;:O, ,ji=1,...,n. Q)

2. Almostg-compatibility condition,

k

oy .
dgl] Jkj W glkw 2A7,_]k 1,7, k= 1,....n

F

whereA,;;;, are the components of the Cartan tensor.

A coordinate invariant characterization of Chern’s cottiogcis given by the following two proposi-
tions,

Proposition 1 Let (M, F') be a Finsler structure. Then the almogtcompatibility condition of the
Chern’s connection is equivalent to the conditions

Vi ™9 = 2A(X, ), (2)
ch *
VH(X) g=20, Q)

whereV (X) is the vertical component anl (X) the horizontal component df € T, N.
PROOFE We write the above equations in local coordinates,
Vg = d(gij(w,y)) da’ @ da’ + g, V" (dz') @ da? + gi; da’ @ V" da?

8913 5913
Oy Sk

5y ®dz' @ da? + (—gjwly — guw 7k+

)d:z: ®dz' ®da’.
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Proposition 2 Let (M, F') be a Finsler structure. The torsion-free condition of thee@hconnection is
equivalent to the following conditions

1. Null vertical covariant derivative of sections of TM: let X € T,,N andY € I'M, then

ch * .
V™Y =0. (4)

2. Letus consideX, Y € TM and their horizontal liftsX andY. Then
VErY — Ve X — 7 ([X,Y]) = 0. (5)

PROOFE The expressiond defines a section of the bundté TM due to the commutator term, as well
as @). Therefore, it is only necessary to write the above equatio local coordinates: the commutator
term is zero when the vectors ake= -2, Y = -2-. Then

i OxJ
0 0 0
ch * ch * 1 1 *
T — s - = (I, — I )n"— =
vaii'” Oxd V%‘u ox’ (T i) Ox! 0

because due to equatiol) (one haf;lk = F};j ([1, p. 39]). The result follows from the characterization of
the Chern connection. B

Definition 3 A Berwald space is a Finsler structure such that the coefitsief the Chern’s connection
live onM.

The non-linear connection of the Cartan type is construiidtie following way ([/]). By Finsler
geodesic we mean the parameterized curveslithat are extremal of the Finsler functional arc-length.
They are solutions of the differential equations (in thesgafsunit parameterized Finslerian geodesics)

APzt , daF dad o
@‘FV;]C(I,?J)EE:O, 'L,j,k:l,...,n.
The associated spray coefficients are

Gi = (’Y;k(xvy)ykys)a i,S,k: 17"'7”'

The connection coefficients of the non-linear Cartan cotime@re given by the derivative of the spray

coefficients,
C z:la_z(z(x )ks)
j 281/3 Vse\ Y)Y Yy ).
Using this non-linear connection AN — N we can define the linear Berwald connection through the

following propositions:

Proposition 3 Let (M, F') be a Finsler structure. Then thgcompatibility condition of the Berwald
connection is:
Voo™ g =2A(X,-, ),
y' 0
= F o
Proposition 4 Let(M, F') be a Finsler structure. Then the Berwald connection is tordiee:

1. Null vertical covariant derivative of sections of (TM): let X € T, N andY € 7*(I'M), then
b * o
VV(X)T( Y =0.

2. Letus consideX, Y € TM and the associated vector fields with horizontal compong&fitand
Y% X andY. Then
Vhr'Y — Vin* X — n*([X,Y]) = 0.

In the case of Berwald structures, the Chern’s connectidritzBerwald connection coincide.
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3 Averaged Connection

We introduced in§] a method to obtain a linear connection oddrfrom the Chern connection arf TM.

The structure of this averaged is natural: it is defined usitlg canonical maps and the given Finsler struc-
ture. Itis not unique because depend on the measured usetsariie sub-manifoldl, where we perform
the integration. Also one can see that the covariant dérevassociated with the averaged connection is the
limit of a convex sum of covariant derivatives in differentattions of the tangent spa@, M. However,
since they are all points on the fiver ! (z) C N, the convex sum of covariant derivatives is still covariant
under the structure grou@L(2,R). Therefore the averaged operation can be seen as a homasmorph
betweenConn(7*TM), the space of linear connections #iTM and Conn(TM), the space of affine
connections oM,

{(-): Conn(n*TM) — Conn(TM)
vV — (V).

The averaged connection was introduced in referefjce/fe review briefly this construction. The proof
can be found in the original referencd,[although for convenience of the reader we indicate thécbas
steps here too.

Let *, 71, o be the canonical projections of the pull-back bunei®@M, beingI"'M a tensor bundle
overM:

TM —— I'M

N——=M

7'M denotes the fiber over € N of the bundler*I'M andI',M are the tensors ovar € M, being
S, € T',M a generic element df,M. S, is the evaluation of the sectia# of the bundler*T'M at the
pointu € N. The indicatrix at the point € M is the compact submanifold

L, ={yeT M| F(z,y) =1} C T,M.

Let us consider the elemefif € 7 T'M and the tangent vector field of the horizontal path : [0,1] —
N connecting the points € I, andv € I,. The parallel transport of the Chern connection al§raf a
sectionS € 7*TM is denoted by .S; the parallel transport along of the pointu € I, is by definition
7 (u) = ¥(1) € 7~ 1(2); the horizontal lift of a path is defined using the non-lineannection inN.

The following is a standard result, although a simpler pazof also be found ir?],

Proposition 5 Let (M, F') be a Finsler structure and let: [0,1] — N be the horizontal lift of a path
~:[0,1] — M joining z and z points inM. ThenF'(z, y) is invariant by the horizontal parallel transport
of the Chern’s connection. In particular, let us considee ihdicatrixes overr andz I, ¢ T,M and
I. ¢ T.M. Thenryn*(I,) = =n*I.. Therefore the horizontal parallel transport majs into I, as
submanifolds oN.

PROOF Let X be the horizontal lift ifT'IN of the tangent vector fiel® along the pathy c M joining
z andz, Si, S € 7*(T,M). Then propositior impliesV g(S1, S2) = 2A(X, S1,S2) = 0 because the
vector fieldX is horizontal and the Cartan tensor is evaluated in the figstraent. Therefore the value of
the Finslerian norn#(z,y) = /¢ (z,y)y'y?, y € T,M, Y with Y = n*y is conserved by horizontal
parallel transport,

Vi (F*(2,y)) = Vg (9(z,9)) (YY) + 29(z, V5 Y) = 0,

beingX € TN an horizontal vector. The first term is zero because the ataicelation. The second term
is zero because of the definition of parallel transport ofises V¢ Y = 0. In particular the indicatrii, is
mapped td, because parallel transport is a diffeomorphisnill
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Remark 1 A similar statement also holds for the linear Cartan coni@tV¢ because it is g-compatible
connection. For the linear Berwald connecti& the result is not true for general Finsler structure,
because it is noy-compatible. However, in the case of Berwald structure Bsijion 4 holds for V°
because both Cartan and Berwald connections coincide.

Let us consider;T'M a fiber overv € N and the tensor space over the fiberI',M. For each
S, € T, Mandv € 771(z), 2 € U we consider the isomorphisms
maly: T I'M — T', M, S, — S,
my oM — 7 TM, S, — m,S,.
Definition 4 Let (M, F') be a Finsler structurer(u) = x and f € FM. Thenn*f € F(#*TM) is

defined by
mf = flx), Vuel, c 7 (z) CN.

Let us denote the horizontal lifted operator in the follogvimay:

0 .6
ol UK = Xl

t: TM — TN, X =X! = X'0;, wel, cn'(x) CN,

and the horizontal lift, defined by the non-linear connen:ﬂ(j,
t: TM — TN, (X)=X,| X eH,
such that ifp: TN — NN is the canonical projection; - p(¢(X)) = X for X # 0.

Definition 5 Consider a family of operatord,, := {A,,: 7, TM — 7 TM} withw € 7~ !(z) C N.
The average of this family is another operatéy: T,M — T,M with z € M given by the action on
arbitrary sectionsS € I'TM by the point-wise formula

1

(Aw) 1= (malu A TS = S

(/ o |y AuT: dvol) Sz, wen t(x), S,eT,M. (6)
I

The volume form odvol is the standard volume form induced from the indicaftiXrom the Rieman-
nian volume of the Riemannian structyfB, M — {0}, g.).

Proposition 6 (Averaged connection of a Finsler connection [2]) Let(M, F') be aFinsler struc-
ture and let us consider a linear connecti®hon 7*TM. Then, there is defined dvl a linear covariant
derivative alongX, V x characterized by the conditions:

1. vX € T,M andY € I'TM, the covariant derivative oY in the directionX is given by the
following average operation:

VxY = (V)xY = (m2|u Vi () T8 Y )u, uel, cnt(x) CN,
2. For every smooth functiofi € (M) the covariant derivative is given by the following average:
Vxf=Vxf=mlV.,mflus uwel, Cr (z) CN.

PROOFE There is a complete proof in referencg fection 4] of this fact. It consists on checking that
effectively (V) is a covariant derivative. Here we provide a different argnm This argument also holds
for different averages, like the one used %h¢r the one used more recently if][

The argument follows in the following way. Consider a congar of linear connectiontsVy + - - - +
t,V, such that; + --- + ¢, = 1; the connections are linear connectionshn It is well known that
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t1Vy + -+ t,V, is also a linear connection. Now, consider a compact mahfgl Cc #~!(X) ¢ N

and a set of connections &, all of them labelled by points oR, so there isa maf: M — Mod(TM)

such thatfZ © = 1 and that® > 0. Then, using a limit argument of the convex sum of linear emtions
onM, we have that the averaged of the family of connectigvis} defines also a linear connection bfu

To apply to our case this argument, we only need to specifyXha= I, and thato(u) = 2|, V,, 7",

where the right hand side must be understood for fixedI,, and as acting on sectionsbM. R

Let V be a linear connection om*TM. Then the generalized torsion operator acting on the vector
fieldsX,Y € TM is
Tor,(V): T;M x T'TM — 7, TM
TOI‘U(V)(X, Y) = VLu(X)Tr:Y — VLu(y)TFZX — WZ[X, Y], Yu € N.
Since this definition is point-wised, we can define globailgTor(V) as the family of maps defined as
before.

Proposition 7 Let (M,F) be a Finsler structure and let us define a linear connectowith Tor(V) = 0.

Then the torsiofTor(V) of the average connection is zero.

PrROOFE As with the proposition before, there is a proof i) $ection 4]; it is just a calculation. However,
one can see that the proof is rather direct from the defindfcorsion and from the fact that convex sum
of linear connections define a linear connectiorill

4 A rigidity property of Berwald Spaces

We start considering a generalization of some well knowrperties of linear connections ovaid ([4,
section 5.4]) to linear connections defined on the burdEM — N.
Given two linear connectiorig; andVs on the bundler*TM — N, the difference operator

B: HN @ 7'I'TM — 7*I'TM
B (X),mY) ="'V, xymY = *V,, (x)7"Y, VueN, X,Y eI'TM
is an homomorphism that holds the Leibnitz rule. It is edaém this definition that we have to our
disposition a non-linear connection to define the horizdifta.,, X .
The symmetric and skew-symmetric pastand A of B are defined in the following way

Su: T,M x T'TM — 7, TM

1
Su(X,Y) := 5(B(LUX, mY)+ B(,,Y, 7, X)). Vuer '(z), XeT,M, YeITM.
The antisymmetric pard is defined in a similar way,

Ay: TM x T'TM — 7, TM

1
A X,)Y) = 5(B(LUX, ™Y) — B(1,Y, 7 X)), Vuen t(z), XeT,M, Y ecITM.

As for the torsion, one can define the symmetric and skew-sgtmopartsS and A as a family of operators,
because the above definitions are point-wise.
Consider to vector fieldX andY” on M such thaf X, Y] = 0. Then, the following relation holds:

2Au()(7 Y) = vl(Lu(X))ﬂ-:Y — VQ(LH(X))/]T:;Y — (vl(Lu(Y))T"ZX — VQ(LH(Y))/]T:X)
= Tor,(V1)(X,Y) — Tor,(V2)(X,Y).

Since this relation holds point-wise for alle 7=!(z) C N we can write

2A(X,Y) = Tor(V1)(X,Y) — Tor(Vs)(X,Y).
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Definition 6 LetV be a linear connection on the vector bundileTM — N with connection coeffi-
cientsF?k. The geodesics oV are the solutions of the differential equations

Az T dz\ dz? dz*
= e ) T
ds? R\ ds ) ds ds

wherel, are the connection coefficients ®F.

=0, i, 5,k=1,...,n,

This differential equation can be written as

dz

X =0 ==
Vbu(x)ﬂ'u ) u dt

being X the unit tangent vector to the solution in the given pointotder to check equatior) one uses
local coordinates.

The following propositions are direct generalizations loé analogous results for affine connections
overM ([4]).

Proposition 8 Let us consider two linear connectioRg and V, on the vector bundle*TM — N
such that the covariant derivative along vertical directioare zero. Then the following conditions are
equivalent:

1. The connection¥; andV, have the same geodesic curvedvin
2. B(X,X)=0,whereB =V; — V.

3.5=0.

4. B = A.

The proof follows the lines of referencé,[pp. 64—65] and it is omitted here. However we should
mention that the equivalence of the first statement and ther sequires that the covariant derivative of
sections along vertical directions must be zero. This dardallows to define geodesics in the way we did,
being independent of the derivative of sectiongtT'M along vertical directions iT'N and in this sense
being independent of type of lift, as soon as we have a complaizontal lift.

Proposition 9 LetV; and V5 be linear connections on the vector bundfésTM — N such that they
have null covariant derivative in vertical directions. T™¥&,; = V, if and only if they have the same
parameterized geodesics afidr(V) = Tor(Vs).

PrROOF If V; andV, have the same geodesics, they have the same symmetricheage®ddesic flow
determines the symmetric part of a connection). If they hhgesame torsion, thea =0. W

Let us consider the bundlesTM — N and the tangent bundlEM — M endowed with a linear con-
nectionV. The horizontal lift ofVV (or pull-back connection, § p. 57])) is a connection on*TM — N
defined by .

(m*V)yxym*S = 7" (VxS), X € TM.

One can show, writing the geodesic equation in local coettés) that the parameterized geodesics of both
connectionsr*V andV are the same,

(W*V)LU(X)W:X =0<«= VxX =0,
because the possibly non-zero connection coefficientharsame:

Vo, 0p = Ty = 7°V5,1°0), = 7 (T 05) = (T%,7°8,).
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Proposition 10 Let V! be the Chern connection of a Finsler struct(iel, F), V° the linear Berwald
connection and consider the average connectiGf'). Then

1. The structure is Berwald if and onlysf (V<h) = veb,

2. If 7*(V?) = V?, the structure is Berwald.

ProOF If 7*(V<h) = V<, since the induced horizontal connectioi{ V") has the same coefficients
that(V<t) and they live orM, the structuréM, F) is Berwald.

Let us suppose that the structure is Berwald. The(Ve) = 7*(1)Vh = V. This relation is
checked writing the action of the average covariant devigain arbitrary vector sections.

An alternative proof of is the following. We know thdbr(V<") = Tor((V°h)) = 0. On the other
hand, the parameterized geodesics 0ofv") are the same than the geodesic$Wwf"). But if the space is
Berwald, the geodesic equation (37} are the same than the geodesic equatio®f From this fact it
follows 7* (Vh) = veb,

To proof the second statement we follow a similar reasorling’ (V*) = V°, the Berwald connection
lives onM and therefore the structure is Berwaldl

Proposition 11 Let(M, F') be a Finsler structure. Then there is an affine equivalentrRienian struc-
ture (M, k) if and only if the structure is Berwald.

PrROOF.  If there is an affine equivalence Riemannian structuseich that its Levi-Civita connectioti”

has the same parameterized geodesics as the linear Bewvaldationv® and both connection have also
null torsion, then both connections are the sarve gfction 5.4]) and since the connection coefficients
hFéj live in M, the structure is Berwald. Conversely,(M, F') is Berwald, its Berwald connection is
metrizable (P]). M.

Recall that for Berwald spac&® = V°". Then,

Proposition 12 Let(M, F') be a Berwald structure. Then any Riemanniaon M such thatvbn*h = 0
thenV" leaves invariant the indicatrix under horizontal paralteansport.

PrROOF.  If the Riemannian structure is conserved by the Berwaldheotion,Vo7*h = 0. This implies
that (V®)h = 0. In addition, (V?) is torsion free. ThereforeV?) = V. If vV leaves invariant the
indicatrix, alsor* (V?) = V" leaves invariant the structure. l

There is a converse of this result,

Proposition 13  Let (M, F') be a Finsler structure. Then if there is a Riemannian mefrihat leaves
invariant the indicatrix under the parallel transport pilack of its Levi-Civita connection* V", the struc-
ture is Berwald.

PROOF.  Let us consider such Riemannian mefsiand the associated Levi-Civita connectigh. The
induced connection* V" is torsion free and its connection coefficients in naturardmates live orVI.
In addition, the averaged connecti¢r* V") coincides withV", som*V" = 7*(7*V") = V?, the last
equality because* (7* V") leaves invariant the indicatrix and it is torsion-free. féfere the result follows
because the connectiari(7* V") has coefficients living oM. B
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5 A corollary on pure Landsberg spaces

Let us consider a metrik such that its parallel Riemannian transport leaves inmatfee indicatrix of the
Finsler metricF, following propositions. Then, let us consider the interpolating set of metrics

Fi(z,y) = (1= )F(z,y) + t\/p(@)iy'y?, 5 =1,...,m, t€[0,1]

and their indicatrix,
L(t) :={F(z,y) =1,y € T,M}.

Since the metrid is Berwald, all the above interpolating metrics define iatlix that are invariant under
the Levi-Civita connection of.

Let us consider the hypothesis that each of these indicdefines a submanifold ¢f',M of co-
dimensionl and that they are non-intersecting. Therefore the unionditatrix{I,(¢), € [0, 1]} defines a
submanifold ofT', M of codimensiorf that is invariant under the holonomy of the metricThis conditions
are interesting for us because it help to provided a necgesséeria for pure Landsberg spaces,

Definition 7 A Finsler structure(M, F') is a Landsberg space if thev-curvatureP is such thatAij,C =
Pl = 0, where the vector field is defined as = y/F'(y). A pure Landsberg space is such that it is
Landsberg and it is not Berwald or locally Minkowski.

This definition that we take of Landsberg space is a bit unusdihough can be obtained from the
standard characterizations straightforward. In paricilandsberg space is such that gection 3.4]).

0= Ajyyy = =1 Pjyw = 1; Py, == Pjj,.

Theorem 2 Let (M, F) be a Landsberg space and suppose that the averaged cormégtity) does not
leave invariant any compact submanifoldgt) C T, M of codimension zero. Then the structyM, F")
is a pure Landsberg space.

PROOFE Suppose that the Landsberg space is Berwald. Then we koowértheorem of Szabo that this
linear Berwald connection is metrizabl@}). Then, there is a Riemannian connectiéh that is identified
with the average connectigiv<") and this is in contradiction with the hypothesis of the tle@oibecause
T*Vh = 74(Veh) = V" leaves invariant the set of indicatrlx (¢), V¢ € [0,1] as we show before, the
union defining a submanifold of codimension zerdlbfM. R

In this theorem, the hypothesis of Landsberg meftican be substituted by a general Finsler metric.
Therefore, Theorer is essentially a criterion for not being Berwald.

Application of the Theorem 2 in dimension 2. Letus consider the set of possible holonomy groups
of affine free-torsion connectionsg{). Then we look for the holonomy groups that can leave irarmri

a compact, foliated manifold of dimensi@a The possible holonomy groups for averaged connection
of pure Landsberg spaces should be excluded from this listpatticular, Riemannian holonomies are
excluded. Since the torsion of the averaged connectiorrds ttee only candidates for the holonomy of the
averaged connection in dimensidare of the forni’r -SL(2, R) for real representations, whefg denotes

any connected Lie subgroup &. The second possibility is the whole general grd@iip(2, R). From

this family of groupsSL(2, R) andGL(2, R) are the candidate that can supply the additional Landsberg
condition,

Corollary 1 Let(M, F) be a two-dimensional Finsler structure such that the aver@@nnection igv<").
Then if the space is pure Landsberg, the holonomy groyef) is SL(2, R) or GL(2, R).
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This result provides a strategy to solve the problem of thetemce of pure Landsberg spaces in dimen-
sion2. We hope that future research could reveal the existenceref lpandsberg spaces, following the
direction of Corollary 2.10 (see referenc® for a suggestion of realization of this strategy).

A generalization of this strategy to higher dimensions daa ke fruitful, but additional techniques are
required, due to the growth of the possible holonomies.
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