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On a rigidity condition for Berwald spaces

Ricardo Gallego Torrome and Fernando Etayo

Abstract We show that which that for a Berwald structure, any Riemannian structure that is preserved
by the Berwald connection leaves the indicatrix invariant under horizontal parallel transport. We also
obtain the converse result: if(M, F ) is a Finsler structure such that there exists a Riemannian structure
that leaves invariant the indicatrix under parallel transport of the associated Levi-Civita connection, then
the structure(M, F ) is Berwald. As application, a necessary condition for pure Landsberg spaces is
formulated. Using this criterion we provide an strategy to solve the existence or not of pure Landsberg
surfaces.

Sobre una condici ón de rigidez de los espacios de Berwald

Resumen. Se muestra que la conexión de Levi Civita de cualquier métrica Riemanniana afı́nmente
equivalente a una estructura de Berwald deja invariante portransporte paralelo la indicatriz de dicha
estructura de Berwald. También se demuestra el resultado recı́proco: Si(M, F ) es una estructura de
Finsler y existe una estructura Riemanniana cuya conexiónde Levi Civita deja invariante por transporte
paralelo la indicatriz de la estructura de Finsler, entonces (M, F ) es de Berwald. Como aplicación se
obtiene una condición necesaria para que una variedad sea de Landsberg pura. Y usando este criterio se
formula una estrategia para resolver el problema de la existencia de superficies de Landsberg puras.

1 Introduction

A Riemannian structure on a manifold is given by a Riemannianmetric. As is well known, the Levi Civita
connection is an important tool associated to the structure. A more general concept is that of a Finsler
structure (see Definition1 below). In general, one cannot define a Levi Civita type connection associated
to a Finsler structure. Given a Finsler structure, one can define several linear connections on the pull-back
bundleπ∗

TM → N determined by the Finsler functionF and additional conditions, usually restrictions
to the “torsion”. Cartan, Chern and Berwald’s linear connections are notable examples ([1]). Although
the relevant merits of these connections, compared with affine connections, are quite complicated objects.
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This is one of the reasons that make Finsler geometry specially difficult to investigated, compared with the
Riemannian case.

One step on the understanding of the structure of Finsler geometry maybe achieved by the theory pre-
sented (or better suggested) in reference [2], where it was introduced the averaged connection. The averaged
connection is obtained from a linear connection onπ∗

TM → N by an averaged procedure on a suitable
subsetΣ ⊂ Nx = π−1(x) ⊂ N. Usually this subset is defined to be the indicatrixIx overx ∈ M. The av-
erage connection is an affine connection on the tangent bundleπ : TM → M. If we perform the averaged
operation on convex combinations of connections that have the same averaged connection, the result is the
same averaged connection. We called this property convex invariance. The connection coefficients of the
averaged connection are equal to the average of the connection coefficients of the original connection onΣ.

The main purpose of this note is to prove a necessary condition for Berwald spaces. The condition
is obtained using the averaged connection and the convex invariance mentioned above. In particular two-
dimensional spaces are considered.

In Section2 we introduce the basic notions of Finsler structures that weneed. We will follow the no-
tation from Bao-Chern-Shen [1]. Usually, the concepts of Finsler geometry are introducedby using local
coordinates, but we show some intrinsic expressions (e.g.,propositions1 and2; see also [10]). In Section3
we recall the notion of average of a linear connection in the pull back bundleπ∗

TM → N and other results
from [2]. In Section4 we obtain Proposition12 which states that for a Berwald structure, any Rieman-
nian structure that is preserved by the Berwald connection leaves the indicatrix invariant under horizontal
parallel transport. We also obtain the converse result, Proposition13: if (M, F ) is a Finsler structure such
that there exists a Riemannian structure that leaves invariant the indicatrix under parallel transport of the
associated Levi-Civita connection, then the structure(M, F ) is Berwald. We finish showing that these re-
sults together with the notion of convex invariance, can be useful in the research of pure Landsberg spaces
through Theorem1 and a criterion for pure two dimensional Landsberg space is given.

2 Basics notions on Finsler geometry

In this section we introduce the notions of Finsler geometryas well the notation that we will use in this
work. The main reference that we follow is [1].

Let M be ann-dimensional manifold andTM its tangent bundle. If{xi} is a local coordinate system
on M, the induced local coordinate system onTM is denoted by{(xi, yi)}. This type of coordinate
systems onTM are called natural coordinate systems. The slit tangent bundle isN = TM \ {0}. Then
we have,

Definition 1 A Finsler structureF on the manifoldM is a non-negative, real functionF : TM → [0,∞[
such that

1. It is smooth in the slit tangent bundleN.

2. Positive homogeneity holds:F (x, λy) = λF (x, y) for everyλ > 0.

3. Strong convexity holds: the Hessian matrix

gij(x, y) :=
1

2

∂2F 2(x, y)

∂yi∂yj

is positive definite inN. The fundamental and the Cartan tensors are defined by the equations:

g(x, y) :=
1

2

∂2F 2(x, y)

∂yi∂yj
dxi ⊗ dxj .
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Given a Finsler structure(M, F ) it is not possible to define a Levi-Civita connection in the general case.
In order to obtain a connection related with the structure, one has to go to higher order bundles overM.
This is done in the following standard way. First, we introduce a non-linear connection on the bundle
πN : TN → N:

1. there is a splitting of each tangent spaceTuN in complementary sub-spacesVu andHu

TuN = Vu ⊕Hu, ∀u ∈ N

2. keru(πN ) = Vu, ∀u ∈ N.

This decomposition is invariant by the action ofGL(n,R), which is induced by the action of the linear
groupGl(n,R) acting freely and by the right on the tangent bundle manifoldTM.

A Local basis forTuN is given by the distributions

{

δ

δx1
|u, . . . ,

δ

δxn
|u, F

∂

∂y1
|u, . . . , F

∂

∂yn
|u

}

,
δ

δxj
|u =

∂

∂xj
|u − N i

j

∂

∂yi
|u;

where the non-linear connection coefficientsN i
j must be specified. The firstn elements develop the hori-

zontal subspaceHu while the second half the vertical subspaceVu. Similarly, for the cotangent spaceT∗
uN

a dual basis is defined by

{

dx1|u, . . . , dxn|u,
δy1

F
|u, . . . ,

δyn

F
|u

}

,
δyi

F
|u =

1

F
(dyi + N i

j dxj)|u.

The manifoldπ∗
TM is a subset of the cartesian productTM × N. One has the pull-back bundle

π∗
TM → N given by the square

π∗
TM

π1

��

π2
// TM

π

��

N π
// M

The projection on the first and second factors are

π1 : π∗
TM −→ N, (u, ξ) −→ u,

π2 : π∗
TM −→ TM, (u, ξ) −→ ξ, ξ ∈ π−1

1 (u).

Every vector fieldY overM can be interpreted as a section of the tangent bundleTM → M and has
associated a sectionπ∗Y of the vector bundleπ∗

TM → N. In local coordinates, the associatedπ∗Y to Y
is given in the following way:

Y = Y i(x)
∂

∂xi
−→ π∗Y = Y i(x)π∗ ∂

∂xi
, π2

(

π∗ ∂

∂xi

)

=
∂

∂xi
.

We also use the following lifted fundamental tensor (or fibermetric):

π∗g(x, y) :=
1

2

∂2F 2(x, y)

∂yi∂yj
π∗ dxi ⊗ π∗ dxj .

Definition 2 Let (M, F ) be a Finsler structure. The Cartan tensor is defined by

A(x, y) :=
F

2

∂gij

∂yk

δyi

F
⊗ dxj ⊗ dxk = Aijk

δyi

F
⊗ dxj ⊗ dxk.
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One possible non-linear connection is introduced by defining the non-linear connection coefficients as

N i
j

F
= γi

jk

yk

F
− Ai

jkγk
rs

yr

F

ys

F
, i, j, k, r, s = 1, . . . , n.

The coefficientsγi
jk are defined in local coordinates by

γi
jk =

1

2
gis

(

∂gsj

∂xk
−

∂gjk

∂xs
+

∂gsk

∂xj

)

, i, j, k, s = 1, . . . , n;

Ai
jk = gilAljk andgilglj = δi

j.
As we have said, there is not a Levi-Civita connection associated to the Finsler structure. However,

there are several connections that one can define and that play a similar role to the Levi-Civita connection
in Riemannian geometry. One of these connections is Chern’sconnection, which introduced through the
following theorem ([1, p. 38]),

Theorem 1 Let(M, F ) be a Finsler structure. The pull-back vector bundleπ∗
TM → N admits a unique

linear connection determined by the connection 1-forms{ωi
j, i, j = 1, . . . , n} such that the following

structure equations hold:

1. Torsion free condition,

d(dxi) − dxj ∧ wi
j = 0, i, j = 1, . . . , n. (1)

2. Almostg-compatibility condition,

dgij − gkjw
k
i − gikwk

j = 2Aijk

δyk

F
, i, j, k = 1, . . . , n,

whereAijk are the components of the Cartan tensor.

A coordinate invariant characterization of Chern’s connection is given by the following two proposi-
tions,

Proposition 1 Let (M, F ) be a Finsler structure. Then the almostg-compatibility condition of the
Chern’s connection is equivalent to the conditions

∇ch
V (X̃)

π∗g = 2A(X, · , · ), (2)

∇ch
H(X̃)

π∗g = 0, (3)

whereV (X̃) is the vertical component andH(X̃) the horizontal component of̃X ∈ TuN.

PROOF. We write the above equations in local coordinates,

∇chπ∗g = d(gij(x, y)) dxi ⊗ dxj + gij∇
ch(dxi) ⊗ dxj + gij dxi ⊗∇ch dxj

=
∂gij

∂yk
δyk ⊗ dxi ⊗ dxj + (−gljω

l
ik − gliω

l
jk +

δgij

δxk
) dxk ⊗ dxi ⊗ dxj .

�
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Proposition 2 Let (M, F ) be a Finsler structure. The torsion-free condition of the Chern connection is
equivalent to the following conditions

1. Null vertical covariant derivative of sections ofπ∗
TM: let X̃ ∈ TuN andY ∈ ΓM, then

∇ch
V (X̃)

π∗Y = 0. (4)

2. Let us considerX , Y ∈ TM and their horizontal liftsX̃ andỸ . Then

∇ch
X̃

π∗Y −∇ch
Ỹ

π∗X − π∗([X, Y ]) = 0. (5)

PROOF. The expression (5) defines a section of the bundleπ∗
TM due to the commutator term, as well

as (4). Therefore, it is only necessary to write the above equations in local coordinates: the commutator
term is zero when the vectors areX = ∂

∂xi , Y = ∂
∂xj . Then

∇ch
∂

∂xi |u
π∗ ∂

∂xj
−∇ch

∂

∂xj |u
π∗ ∂

∂xi
= (Γl

ij − Γl
ji)π

∗ ∂

∂xl
= 0,

because due to equation (1), one hasΓi
jk = Γi

kj ([1, p. 39]). The result follows from the characterization of
the Chern connection. �

Definition 3 A Berwald space is a Finsler structure such that the coefficients of the Chern’s connection
live onM.

The non-linear connection of the Cartan type is constructedin the following way ([7]). By Finsler
geodesic we mean the parameterized curves inM that are extremal of the Finsler functional arc-length.
They are solutions of the differential equations (in the case of unit parameterized Finslerian geodesics)

d
2
xi

ds2
+ γi

jk(x, y)
dxk

ds

dxj

ds
= 0, i, j, k = 1, . . . , n.

The associated spray coefficients are

Gi := (γi
sk(x, y)ykys), i, s, k = 1, . . . , n.

The connection coefficients of the non-linear Cartan connection are given by the derivative of the spray
coefficients,

CN i
j =

1

2

∂2

∂yj
(γi

sk(x, y)ykys).

Using this non-linear connection onTN −→ N we can define the linear Berwald connection through the
following propositions:

Proposition 3 Let (M, F ) be a Finsler structure. Then theg-compatibility condition of the Berwald
connection is:

∇b
V (X)π

∗g = 2A(X, · , · ),

∇b
H(X)π

∗g = −2∇b
l A(· , · , X), l =

yi

F

∂

∂xi
.

Proposition 4 Let (M, F ) be a Finsler structure. Then the Berwald connection is torsion free:

1. Null vertical covariant derivative of sections ofπ∗(TM): let X̃ ∈ TuN andY ∈ π∗(ΓM), then

∇b
V (X̃)

π∗Y = 0.

2. Let us considerX , Y ∈ TM and the associated vector fields with horizontal componentsX i and
Y i, X̃ andỸ . Then

∇b
X̃

π∗Y −∇b
Ỹ

π∗X − π∗([X, Y ]) = 0.

In the case of Berwald structures, the Chern’s connection and the Berwald connection coincide.
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3 Averaged Connection

We introduced in [2] a method to obtain a linear connection overM from the Chern connection onπ∗
TM.

The structure of this averaged is natural: it is defined usingonly canonical maps and the given Finsler struc-
ture. It is not unique because depend on the measured used andalso the sub-manifoldΣx where we perform
the integration. Also one can see that the covariant derivative associated with the averaged connection is the
limit of a convex sum of covariant derivatives in different directions of the tangent spaceTxM. However,
since they are all points on the fiverπ−1(x) ⊂ N, the convex sum of covariant derivatives is still covariant
under the structure groupGL(2,R). Therefore the averaged operation can be seen as a homomorphism
betweenConn(π∗

TM), the space of linear connections onπ∗
TM andConn(TM), the space of affine

connections onTM,

〈·〉 : Conn(π∗
TM) −→ Conn(TM)

∇ −→ 〈∇〉.

The averaged connection was introduced in reference [2]. We review briefly this construction. The proof
can be found in the original reference [2], although for convenience of the reader we indicate the basics
steps here too.

Let π∗, π1, π2 be the canonical projections of the pull-back bundleπ∗
ΓM, beingΓM a tensor bundle

overM:

π∗
ΓM

π1

��

π2
// ΓM

π

��

N π
// M

π∗
uΓM denotes the fiber overu ∈ N of the bundleπ∗

ΓM andΓxM are the tensors overx ∈ M, being
Sx ∈ ΓxM a generic element ofΓxM. Su is the evaluation of the sectionS of the bundleπ∗

ΓM at the
pointu ∈ N. The indicatrix at the pointx ∈ M is the compact submanifold

Ix := { y ∈ TxM | F (x, y) = 1 } ⊂ TxM.

Let us consider the elementSu∈π∗
uΓM and the tangent vector field̃X of the horizontal path̃γ : [0, 1] →

N connecting the pointsu ∈ Ix andv ∈ Iz. The parallel transport of the Chern connection alongγ̃ of a
sectionS ∈ π∗

TM is denoted byτγ̃S; the parallel transport along̃γ of the pointu ∈ Ix is by definition
τγ̃(u) = γ̃(1) ∈ π−1(z); the horizontal lift of a path is defined using the non-linearconnection inN.

The following is a standard result, although a simpler proofcan also be found in [2],

Proposition 5 Let (M, F ) be a Finsler structure and let̃γ : [0, 1] → N be the horizontal lift of a path
γ : [0, 1] → M joining x andz points inM. ThenF (x, y) is invariant by the horizontal parallel transport
of the Chern’s connection. In particular, let us consider the indicatrixes overx and z Ix ⊂ TxM and
Iz ⊂ TzM. Thenτγ̃π∗(Ix) = π∗

Iz . Therefore the horizontal parallel transport mapsIx into Iz as
submanifolds ofN.

PROOF. Let X̃ be the horizontal lift inTN of the tangent vector fieldX along the pathγ ⊂ M joining
x andz, S1, S2 ∈ π∗(TxM). Then proposition1 implies∇X̃g(S1, S2) = 2A(X̃, S1, S2) = 0 because the
vector fieldX̃ is horizontal and the Cartan tensor is evaluated in the first argument. Therefore the value of
the Finslerian normF (x, y) =

√

gij(x, y)yiyj , y ∈ TxM, Y with Y = π∗y is conserved by horizontal
parallel transport,

∇X̃(F 2(x, y)) = ∇X̃(g(x, y))(Y, Y ) + 2g(x,∇X̃Y ) = 0,

beingX̃ ∈ TN an horizontal vector. The first term is zero because the abovecalculation. The second term
is zero because of the definition of parallel transport of sections∇X̃Y = 0. In particular the indicatrixIx is
mapped toIz because parallel transport is a diffeomorphism.�
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Remark 1 A similar statement also holds for the linear Cartan connection∇c because it is ag-compatible
connection. For the linear Berwald connection∇b the result is not true for general Finsler structure,
because it is notg-compatible. However, in the case of Berwald structure Proposition 4 holds for∇b

because both Cartan and Berwald connections coincide.

Let us considerπ∗
vΓM a fiber overv ∈ N and the tensor space overx, the fiberΓxM. For each

Sx ∈ ΓxM andv ∈ π−1(z), z ∈ U we consider the isomorphisms

π2|v : π∗
vΓM −→ ΓzM, Sv −→ Sz

π∗
v : ΓzM −→ π∗

vΓM, Sz −→ π∗
vSz.

Definition 4 Let (M, F ) be a Finsler structure,π(u) = x and f ∈ FM. Thenπ∗f ∈ F(π∗
TM) is

defined by
π∗

uf = f(x), ∀u ∈ Ix ⊂ π−1(x) ⊂ N.

Let us denote the horizontal lifted operator in the following way:

ι : TM −→ TN, X = X i ∂

∂xi
|x −→ ι(X) = X i δ

δxi
|u := X iδi, u ∈ Ix ⊂ π−1(x) ⊂ N,

and the horizontal lift, defined by the non-linear connection N i
j ,

ι : TM −→ TN, ι(X) = X̃, | X̃ ∈ H,

such that ifρ : TN → N is the canonical projection,π · ρ(ι(X)) = X for X 6= 0.

Definition 5 Consider a family of operatorsAw := {Aw : π∗
wTM −→ π∗

wTM} with w ∈ π−1(x) ⊂ N.
The average of this family is another operatorAx : TxM → TxM with x ∈ M given by the action on
arbitrary sectionsS ∈ ΓTM by the point-wise formula

〈Aw〉 := 〈π2|uAπ∗
u〉uSx =

1

vol(Ix)

(
∫

Ix

π2|uAuπ∗
u dvol

)

Sx, u ∈ π−1(x), Sx ∈ ΓxM. (6)

The volume form ondvol is the standard volume form induced from the indicatrixIx from the Rieman-
nian volume of the Riemannian structure(TxM − {0}, gx).

Proposition 6 (Averaged connection of a Finsler connection [2]) Let(M, F ) be a Finsler struc-
ture and let us consider a linear connection∇ on π∗

TM. Then, there is defined onM a linear covariant
derivative alongX , ∇̃X characterized by the conditions:

1. ∀X ∈ TxM and Y ∈ ΓTM, the covariant derivative ofY in the directionX is given by the
following average operation:

∇̃XY = 〈∇〉XY := 〈π2|u∇ιu(X)π
∗
uY 〉u, u ∈ Ix ⊂ π−1(x) ⊂ N,

2. For every smooth functionf ∈ F(M) the covariant derivative is given by the following average:

∇̃Xf = 〈∇〉Xf := 〈π2|u∇ιu(X)π
∗
uf〉u, u ∈ Ix ⊂ π−1(x) ⊂ N.

PROOF. There is a complete proof in reference [2, section 4] of this fact. It consists on checking that
effectively〈∇〉 is a covariant derivative. Here we provide a different argument. This argument also holds
for different averages, like the one used in [9] or the one used more recently in [5].

The argument follows in the following way. Consider a convexsum of linear connectionst1∇1 + · · ·+
tp∇p such thatt1 + · · · + tp = 1; the connections are linear connections onM. It is well known that
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t1∇1 + · · · + tp∇p is also a linear connection. Now, consider a compact manifold Σx ⊂ π−1(X) ⊂ N

and a set of connections onM, all of them labelled by points onΣ, so there is a mapΘ: M → Mod(TM)
such that

∫

Σ
Θ = 1 and thatΘ ≥ 0. Then, using a limit argument of the convex sum of linear connections

onM, we have that the averaged of the family of connections{∇u} defines also a linear connection onM.
To apply to our case this argument, we only need to specify that Σx = Ix and thatΘ(u) = π2|u∇ιu

π∗,
where the right hand side must be understood for fixedu ∈ Ix and as acting on sections ofΓM. �

Let ∇ be a linear connection onπ∗
TM. Then the generalized torsion operator acting on the vector

fieldsX , Y ∈ TM is
Toru(∇) : TxM × ΓTM −→ π∗

uTM

Toru(∇)(X, Y ) = ∇ιu(X)π
∗
uY −∇ιu(Y )π

∗
uX − π∗

u[X, Y ], ∀u ∈ N.

Since this definition is point-wised, we can define globally theTor(∇) as the family of maps defined as
before.

Proposition 7 Let (M,F) be a Finsler structure and let us define a linear connection∇ with Tor(∇) = 0.
Then the torsionTor(∇̃) of the average connection is zero.

PROOF. As with the proposition before, there is a proof in [2, section 4]; it is just a calculation. However,
one can see that the proof is rather direct from the definitionof torsion and from the fact that convex sum
of linear connections define a linear connection.�

4 A rigidity property of Berwald Spaces

We start considering a generalization of some well known properties of linear connections overM ([4,
section 5.4]) to linear connections defined on the bundleπ∗

TM → N.
Given two linear connections∇1 and∇2 on the bundleπ∗

TM → N, the difference operator

B : HN⊗ π∗
ΓTM −→ π∗

ΓTM

B(ιu(X), π∗
uY ) = 1∇ιu(X)π

∗
uY − 2∇ιu(X)π

∗Y, ∀u ∈ N, X, Y ∈ ΓTM

is an homomorphism that holds the Leibnitz rule. It is essential in this definition that we have to our
disposition a non-linear connection to define the horizontal lift ιuX .

The symmetric and skew-symmetric partsS andA of B are defined in the following way

Su : TxM × ΓTM −→ π∗
uTM

Su(X, Y ) :=
1

2

(

B(ιuX, π∗
uY ) + B

(

ιuY, π∗
uX)

)

. ∀u ∈ π−1(x), X ∈ TxM, Y ∈ ΓTM.

The antisymmetric partA is defined in a similar way,

Au : TxM × ΓTM −→ π∗
uTM

Au(X, Y ) :=
1

2

(

B(ιuX, π∗Y ) − B(ιuY, π∗X)
)

, ∀u ∈ π−1(x), X ∈ TxM, Y ∈ ΓTM.

As for the torsion, one can define the symmetric and skew-symmetric partsS andA as a family of operators,
because the above definitions are point-wise.

Consider to vector fieldsX andY onM such that[X, Y ] = 0. Then, the following relation holds:

2Au(X, Y ) = ∇1(ιu(X))π
∗
uY −∇2(ιu(X))π

∗
uY − (∇1(ιu(Y ))π

∗
uX −∇2(ιu(Y ))π

∗
uX)

= Toru(∇1)(X, Y ) − Toru(∇2)(X, Y ).

Since this relation holds point-wise for allu ∈ π−1(x) ⊂ N we can write

2A(X, Y ) = Tor(∇1)(X, Y ) − Tor(∇2)(X, Y ).
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Definition 6 Let ∇ be a linear connection on the vector bundleπ∗
TM −→ N with connection coeffi-

cientsΓi
jk. The geodesics of∇ are the solutions of the differential equations

d
2
xi

ds2
+ Γi

jk

(

x,
dx

ds

)

dxj

ds

dxk

ds
= 0, i, j, k = 1, . . . , n,

whereΓi
jk are the connection coefficients of∇.

This differential equation can be written as

∇ιu(X)π
∗
uX = 0, u =

dx

dt

beingX the unit tangent vector to the solution in the given point. Inorder to check equation (6) one uses
local coordinates.

The following propositions are direct generalizations of the analogous results for affine connections
overM ([4]).

Proposition 8 Let us consider two linear connections∇1 and∇2 on the vector bundleπ∗
TM → N

such that the covariant derivative along vertical directions are zero. Then the following conditions are
equivalent:

1. The connections∇1 and∇2 have the same geodesic curves inM.

2. B(X, X) = 0, whereB = ∇1 −∇2.

3. S = 0.

4. B = A.

The proof follows the lines of reference [3, pp. 64–65] and it is omitted here. However we should
mention that the equivalence of the first statement and the other requires that the covariant derivative of
sections along vertical directions must be zero. This condition allows to define geodesics in the way we did,
being independent of the derivative of sections ofπ∗

TM along vertical directions inTN and in this sense
being independent of type of lift, as soon as we have a complete horizontal lift.

Proposition 9 Let∇1 and∇2 be linear connections on the vector bundleπ∗
TM → N such that they

have null covariant derivative in vertical directions. Then ∇1 = ∇2 if and only if they have the same
parameterized geodesics andTor(∇1) = Tor(∇2).

PROOF. If ∇1 and∇2 have the same geodesics, they have the same symmetric part (the geodesic flow
determines the symmetric part of a connection). If they havethe same torsion, thenA = 0. �

Let us consider the bundlesπ∗
TM → N and the tangent bundleTM → M endowed with a linear con-

nection∇. The horizontal lift of∇ (or pull-back connection, ([8, p. 57])) is a connection onπ∗
TM → N

defined by
(π∗∇)ι(X)π

∗S = π∗(∇XS), X̃ ∈ TM.

One can show, writing the geodesic equation in local coordinates, that the parameterized geodesics of both
connectionsπ∗∇ and∇ are the same,

(π∗∇)ιu(X)π
∗
uX = 0 ⇐⇒ ∇XX = 0,

because the possibly non-zero connection coefficients are the same:

∇∂j
∂k = Γi

jk∂i ⇒ π∗∇δj
π∗∂k = π∗(Γi

jk∂i) = (Γi
jkπ∗∂i).
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Proposition 10 Let∇ch be the Chern connection of a Finsler structure(M, F ), ∇b the linear Berwald
connection and consider the average connection〈∇ch〉. Then

1. The structure is Berwald if and only ifπ∗〈∇ch〉 = ∇ch.

2. If π∗〈∇b〉 = ∇b, the structure is Berwald.

PROOF. If π∗〈∇ch〉 = ∇ch, since the induced horizontal connectionπ∗〈∇ch〉 has the same coefficients
that〈∇ch〉 and they live onM, the structure(M, F ) is Berwald.

Let us suppose that the structure is Berwald. Thenπ∗〈∇ch〉 = π∗〈1〉∇ch = ∇ch. This relation is
checked writing the action of the average covariant derivative on arbitrary vector sections.

An alternative proof of is the following. We know thatTor(∇ch) = Tor(〈∇ch〉) = 0. On the other
hand, the parameterized geodesics ofπ∗〈∇ch〉 are the same than the geodesics of〈∇ch〉. But if the space is
Berwald, the geodesic equation of〈∇ch〉 are the same than the geodesic equation of∇ch. From this fact it
follows π∗〈∇ch〉 = ∇ch.

To proof the second statement we follow a similar reasoning.If π∗〈∇b〉 = ∇b, the Berwald connection
lives onM and therefore the structure is Berwald.�

Proposition 11 Let (M, F ) be a Finsler structure. Then there is an affine equivalent Riemannian struc-
ture (M, h) if and only if the structure is Berwald.

PROOF. If there is an affine equivalence Riemannian structureh such that its Levi-Civita connection∇h

has the same parameterized geodesics as the linear Berwald connection∇b and both connection have also
null torsion, then both connections are the same ([4, section 5.4]) and since the connection coefficients
hΓi

ij live in M, the structure is Berwald. Conversely, if(M, F ) is Berwald, its Berwald connection is
metrizable ([9]). �.

Recall that for Berwald spaces∇b = ∇ch. Then,

Proposition 12 Let(M, F ) be a Berwald structure. Then any Riemannianh onM such that∇bπ∗h = 0
then∇h leaves invariant the indicatrix under horizontal paralleltransport.

PROOF. If the Riemannian structure is conserved by the Berwald connection,∇bπ∗h = 0. This implies
that 〈∇b〉h = 0. In addition,〈∇b〉 is torsion free. Therefore,〈∇b〉 = ∇h. If ∇b leaves invariant the
indicatrix, alsoπ∗〈∇b〉 = ∇h leaves invariant the structure.�

There is a converse of this result,

Proposition 13 Let (M, F ) be a Finsler structure. Then if there is a Riemannian metrich that leaves
invariant the indicatrix under the parallel transport pull-back of its Levi-Civita connectionπ∗∇h, the struc-
ture is Berwald.

PROOF. Let us consider such Riemannian metrich and the associated Levi-Civita connection∇h. The
induced connectionπ∗∇h is torsion free and its connection coefficients in natural coordinates live onM.
In addition, the averaged connection〈π∗∇h〉 coincides with∇h, soπ∗∇h = π∗〈π∗∇h〉 = ∇b, the last
equality becauseπ∗〈π∗∇h〉 leaves invariant the indicatrix and it is torsion-free. Therefore the result follows
because the connectionπ∗〈π∗∇h〉 has coefficients living onM. �

78



On a rigidity condition for Berwald spaces

5 A corollary on pure Landsberg spaces

Let us consider a metrich such that its parallel Riemannian transport leaves invariant the indicatrix of the
Finsler metricF , following proposition5. Then, let us consider the interpolating set of metrics

Ft(x, y) = (1 − t)F (x, y) + t
√

h(x)ijyiyj, i, j = 1, . . . , n, t ∈ [0, 1]

and their indicatrix,
Ix(t) := {Ft(x, y) = 1, y ∈ TxM}.

Since the metricF is Berwald, all the above interpolating metrics define indicatrix that are invariant under
the Levi-Civita connection ofh.

Let us consider the hypothesis that each of these indicatrixdefines a submanifold ofTxM of co-
dimension1 and that they are non-intersecting. Therefore the union of indicatrix{Ix(t), ∈ [0, 1]} defines a
submanifold ofTxM of codimension0 that is invariant under the holonomy of the metrich. This conditions
are interesting for us because it help to provided a necessary criteria for pure Landsberg spaces,

Definition 7 A Finsler structure(M, F ) is a Landsberg space if thehv-curvatureP is such thatȦijk =
Pn

ijk = 0, where the vector field is defined asen = y/F (y). A pure Landsberg space is such that it is
Landsberg and it is not Berwald or locally Minkowski.

This definition that we take of Landsberg space is a bit unusual, although can be obtained from the
standard characterizations straightforward. In particular, Landsberg space is such that ([1, section 3.4]).

0 = Ȧikl = −lj Pjikl = l̃j P j
ikl := Pn

ikl.

Theorem 2 Let (M, F ) be a Landsberg space and suppose that the averaged connection 〈∇ch〉 does not
leave invariant any compact submanifoldsIx(t) ⊂ TxM of codimension zero. Then the structure(M, F )
is a pure Landsberg space.

PROOF. Suppose that the Landsberg space is Berwald. Then we know from a theorem of Szabo that this
linear Berwald connection is metrizable ([9]). Then, there is a Riemannian connection∇h that is identified
with the average connection〈∇ch〉 and this is in contradiction with the hypothesis of the theorem because
π∗∇h = π∗〈∇ch〉 = ∇h leaves invariant the set of indicatrixIx(t), ∀t ∈ [0, 1] as we show before, the
union defining a submanifold of codimension zero ofTxM. �

In this theorem, the hypothesis of Landsberg metricF can be substituted by a general Finsler metric.
Therefore, Theorem2 is essentially a criterion for not being Berwald.

Application of the Theorem 2 in dimension 2. Let us consider the set of possible holonomy groups
of affine free-torsion connections ([6]). Then we look for the holonomy groups that can leave invariant
a compact, foliated manifold of dimension2. The possible holonomy groups for averaged connection
of pure Landsberg spaces should be excluded from this list. In particular, Riemannian holonomies are
excluded. Since the torsion of the averaged connection is zero, the only candidates for the holonomy of the
averaged connection in dimension2 are of the formTR·SL(2,R) for real representations, whereTR denotes
any connected Lie subgroup ofR. The second possibility is the whole general groupGL(2,R). From
this family of groups,SL(2,R) andGL(2,R) are the candidate that can supply the additional Landsberg
condition,

Corollary 1 Let(M, F ) be a two-dimensional Finsler structure such that the average connection is〈∇ch〉.
Then if the space is pure Landsberg, the holonomy group of〈∇ch〉 is SL(2,R) or GL(2,R).
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This result provides a strategy to solve the problem of the existence of pure Landsberg spaces in dimen-
sion 2. We hope that future research could reveal the existence of pure Landsberg spaces, following the
direction of Corollary 2.10 (see reference [3] for a suggestion of realization of this strategy).

A generalization of this strategy to higher dimensions can also be fruitful, but additional techniques are
required, due to the growth of the possible holonomies.
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