Available on line atvww.rac.es/racsam REVISTA DE LA REAL ACADEMIA DE CIENCIAS
Statistics and Operations Research EXACTAS, FISICAS Y NATURALES.
SERIE A: MATEMATICAS

Madrid (Espaha / Spain)

RACSAM 104 (1), 2010,57-67. DOI:10.5052/RACSAM.2010.06

Consistency of objective Bayes factors for nonnested linea r
models and increasing model dimension
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Abstract Casella et al., (2009)] proved that, under very general conditions, formad linear models
the Bayes factor for a wide class of prior distributions Juldéing the intrinsic priors, is consistent when
the number of parameters does not grow with the sampleisizée special attention paid to the intrinsic
priors is due to the fact that they are nonsubjective primmgl, thus accessible priors for complex models.
The case where the number of parameters of nested models gs@n“ ) for « < 1 was considered
in Moreno et al. 3, (2010)], in which it was proved that the Bayes factor foriimgic priors is consistent
for the case where both models are of ordEm®) for o < 1, and forae = 1 is consistent except
for a small set of alternative models. The small set of mofiglsvhich consistency does not hold was
characterized in terms of a pseudo-distance between models
The goal of the present article is to extend the above reguitse case where the linear models are
nonnested. As the comparison of nonnested models calls fieethod of encompassing, for proving
consistency we use encompassing from below in this paper.

Consistencia de factores de Bayes objetivos para modelos li neales
anidados cuando la dimensi  6n de los modelos crece

Resumen. En Casella et al.Z, (2009)] se demostrd que, bajo condiciones muy genereldactor
de Bayes para modelos lineales normales y para una ampia @éadistribuciones a priori, que incluia
a las a priori intrinsecas, es consistente cuando el riuhemparametros no crece cuando lo hace el
tamafio muestrat. Se presto especial atencion a las distribuciones ai pmoinsecas debido a que son
distribuciones a priori no subjetivas y, por consiguiestepueden aplicar a modelos complejos.

El caso en que el nUmero de parametros de los modelos asidaeice del orden d@(n®) para
a < 1 se ha considerado en Moreno et al3,[(2010)], en el que se demuestra que el factor de Bayes
para distribuciones intrinsecas es consistente parsselaaque ambos modelos son de ord&mn®)
parac < 1Yy, para el casa = 1, también es consistente excepto para un conjunto peqieefimdelos
alternativos. Este conjunto, para el cual la consistenzigerda, se caracterizd en terminos de una pseudo
distancia entre modelos.
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El objetivo del presente articulo es extender los resoftahteriores al caso en que los modelos li-
neales no estén anidados. Como la comparacion de modetsdados requiere algiin métodoater-
camientg para demostrar la consistencia en el articulo usamosaerente el método debarcamiento
por abaja

1 Introduction

A widely used objective quasi-Bayesian procedure for caingaairs of nested models is the well-known
BIC (Bayesian Information Criterion) introduced by Schwt5, (1978)]. This procedure is based on
an approximation to the Bayes factor derived from the apfibo of the Laplace approximation to the
marginals of the data under the competing models. In spitésafimplicity, it is an accurate tool for
comparing normal linear models of low dimension when thélalke sample has a large size.

A recent objective Bayesian model selector competitoredtC is the Bayes factor for intrinsic priors.
The objective intrinsic prior distributions were introdgtby Berger and Pericchl[(1996)], and formal-
ized in Moreno 9, (1997)] and Moreno et all1]), (1998)]. For normal linear models the derivation of the
intrinsic priors and the corresponding Bayes factor wasmyin Casella and Morend [(2006)] and Giron,
Martinez and Morendd, (2006)]. Later on, in Casella et ak,[(2009)] it was proved that for normal linear
models the Bayes factor is a consistent model selector fada @ass of prior distributions including the
intrinsic priors. The Bayes factor for intrinsic priors walso proven to be a superior model selector than
the BIC for finite sample sizes, and equivalent to the BIC gstytically. Throughout that paper it was
assumed that the dimension of the models did not grow witlsdineple size.

The problem of comparing nonnested models has also beeideosd in the literature; for instance,
in Girbn, Martinez and Morend[ (2006)] two different encompassing criteria, naneedompassing from
aboveandencompassing from belowvere analyzed. The idea behind the encompassing from hedsv
to compare each of the two nonnested models with a smallet fa@del which is encompassed in both,
and the idea behind the encompassing from above was to cerepah of them with a larger common
model that encompasses both. A comparative analysis ofdvottedures of encompassing in the class of
normal linear regression model was given in Moreno andiGjid, (2008)] and the conclusion was that
these encompassing methods behave extremely well for thertemt variable selection problem in which
nonnested models have to be compared.

On the other hand, change-point detection in time seriese-Sseith [L4, (1975)], Moreno, Casella,
and Garcia-Ferrerlp, (2005)], and Giron, Moreno and Caselfa [2007)]— or clustering (Hartigan/[
(1990)], Casella, Girobn and Moren8,[(2010)]) are problems such that the dimension of the upiheyl
models grows as the sample size grows, and this suggestguiitg about the consistency of the BIC
and the Bayes factor for intrinsic priors for this case. Tduestion has been addressed in a recent paper
by Moreno, Giron and Casella. §, (2010)] where it was proved that, under very general caombt for
comparing nested normal linear models both the BIC and tlye8actor for intrinsic priors are consistent
when the number of parameters is of ordgn®) with o < 1; when the dimension of the alternative model
is of orderO(n) the BIC is inconsistent and the Bayes factor for intrinsiofgris almost consistent, where
almost consistency is understood as consistency exceptdioall set of alternative models. The small set
of alternative models was also characterized in terms okaghs-distance from the alternative to the null
model.

In this paper we will extend some of the results obtainedHerdase of nested models when the dimen-
sion of the models grows with the sample size to the case afiesiad models. We note that in most of
the model selection problems, comparison among nestedamtested models naturally appear, so that to
address the consistency issue for nonnested models is ofitfust importance.

In Section2 the consistency of the Bayes factor for intrinsic priors wiiee models are nonnested is
proved forae < 1. Likewise, the BIC is also proved to be consistent for notetemodels under the same
conditions. Almost consistency of the Bayes factor foriirgic priors is proved for two models when one
is of orderO(n®) for a < 1 and the other of othe?(n), and the set of models around the smallest one for
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which consistency does not hold is characterized. In thég daowever, the BIC is proved to be consistent
under the smallest model but inconsistent under the largesgel. We use an encompassing from below
procedure, although it seems that encompassing from aboeripes equivalent results in some cases.
Section3 provides a short concluding discussion.

2 Consistency for nonnested linear models

In this section we introduce some notation and some previsidts needed to prove the main theorems in
the paper. We begin with a statement of the problem of modapawison for nested linear normal models.
Lety = (y1,-.- ,yn)' be a vector of independent responség,a design matrix of dimension x p,
wherep is the number of deterministic explanatory variables, an&l; denote a submatrix aX,, whose
dimensions are x i. We want to compare the reduced sampling mddet N, (y|X;«a;, 07 L,), and the
full model M, : N, (y|X,08,,07 I,), whereN,,(y|u, 2) denotes the multivariate normal distribution of
dimensiom with mean vector:, and covariance matriX. We assume that the regression parameter vectors
a; = (a1,...,0;), By =(61,...,8), and the variance erroes, af,, are unknown. Note that with these
assumptions the reduced modé} is nested in the full model/,. The Bayes factor for comparing these
models —see, for instance, Moreno, Giron and Caséia(R010)]—, turns out to be

— N (np)/2 B, ~(n—i)/2
Bm'(y) = —/ (1 + 72) (1 + 71)2) d(p.
T Jo (p+1)sinp (p+1)sin” ¢

where the statistis;,, is

RSS, y'(I.—Hy)y
RSS, y/(I,-H,)y’
andH; = X;(X/X;)~'X/, for j = i, p, the hat matrix.

One important quantity in the study of consistency is theat&d “distance” from the regression model
M, to M;, which is an extension of the one first introduced in Casaillal.e[2, (2009)] to account for
models for which the number of parameters and the samplénsizease to infinity, which is defined for a
given sample size as

By, =

1, X, —Hy)X,

2 Fp
o, n

5pi = Bp'

Note that this pseudo-distance is defined for every pair adet®onot necessarily nested, and it is not
symmetric. Some useful properties®f, which will be used in the sequel, are the following:

a) The distance from any moda; to itself is alway<).
b) If M; is nested iV, thend;; = 0.
c) If modelM; is nested inM/;, thendy; > d,; for any modelM,.

In the study of the asymptotic behavior of the Bayes faéigi(y), we will have to consider the limit
of the distance as grows to infinity. This limit, assuming it exists, will be deted by

In what followslim,, .. [M]Z,, will denote the limit in probability of the random sequeAdcg,; n > 1}
under the assumption that we are sampling from mddel This modelM will have a fixed parameter
sequence. Further, we will need to use the doubly noncdmetaldistribution with parametets /2, vo/2
and noncentrality parameteks, A2, which will be denoted b¥Be(v; /2, v2/2; A1, A2) (Johnson, Kotz and
Balakrishnan§, (1995), pp. 502]).
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Next we state Lemma, which is the basic tool used in this section for derivingttiheorems comparing
nonnested models. The proof is similar to that of Lemma 1 ofévo et al. .3, (2010)], and therefore is
omitted.

Lemma 1

1) If model}; is nested in model/,,, and M, is the true model, then the sampling distribution of the
statistic3;, under M, is the noncentral beta distribution

n—p p—i
5 ;nétp7n(5ti—5tp))-

Bip ~ Be(

2) Let{X,,n > 1} be a sequence of random variables such that

X, ~ Be (n;p,]%;nétp,n(&i—étp)), n>1.

If i andp vary withn asi = O(n®) andp = O(n’), where0 < a < b < 1, then when sampling
from M; we have,

(i) if @ < b= 1we have that

1405, —1/r
lim [M] X, = ——2_——— /

)

wherer is a positive constant such that= lim, .., n/p > 1.
(i) If @ = b= 1we have that

1+6 —1/r
lim [M] Xn:’f?”i/7
n—00 1465 —1/s

where the positive constant@ands are such that = lim n/p > 1 ands = lim n/i > 1.
p—00 p— 00

(i) If b < 1, then we have

lim [M] X, = L+ 05
n—oo 1+ 6y
The second tool we need is an asymptotic approximation t@#yes factor for intrinsic priors. We
derive this asymptotic approximation for the case where O(n®) andp = O(n®) and0 < a < b < 1,
using a similar approach as the one used in the proof of The@ria Moreno et al. 13, (2010)]. Note that
wheni andp are finite, the first two terms of the approximation is prelgisiee BIC criterion up to a finite
multiplicative constant.

Lemma 2 If modelM; is nested in moded,,, andb < 1, then for large values of the Bayes factor
B,i(y) can be approximated by

i= n n—i +1 1
Bpi(ymGXp{( 2p)10gp+1_( 2 )bg&ﬁ(pT) (1_B->}'
ip

PrRoOFR  Factoring the integrand of the Bayes facRy;(y) as

n—p i—mn n—p 3

( n i >T< nBip. i )T<1+(p+1)sin2) z <1+(p+1)sin2) 2
(p+1)sin® p (p+1)sin“p n nBip

and, taking into account that
1 1
P+l g @D
n nBip,
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go to zero a% tends to infinity, the third and fourth factors can be appreated by exponentials, and the
Bayes factor is approximately equal to

2 n = (o /2 _ p+1 i—n\ .,
;(m) B, * /0 sin ™" exp [(W n—p-+ B, sin” | de.

But the term in brackets is approximated by

1 1
]% (1 — Bip) sin?

so that the new approximation is

2( n N ey [P [p4l 1y
- (p+1> B, * /0 sin P 7" exp T(I—Bip)sm | de.

By the mean value theorem, the integral above is equal/ftimes the value of the integrand at some
value ofy(p, i, B;,). It can be shown that, except for values nBgy = 1 or B;, = 0 where the integral
goes to infinity, and for large values pfans, the values ofy(p, i, 3;;,) converge tar/2 and consequently
the values ofin ¢(p, i, B;,) approach td, and thus the integral can be approximated by

Gl pt1/f 1
2exp 5 B, .

Substituting the integral by this expression, we finallythetdesired approximation for the Bayes factor of
this Lemma2. H

Under the conditions of Lemmhand?2, we provide a further approximation to the Bayes factor for
large values of., when sampling from the true model, as follows.

Lemma 3 If model}/; is nested in model,, b < 1, and M, is the true model, then for large values:of
and under the sampling modgl;, the Bayes factor can be approximated by

. n/2
i—p n 1464
pi (¥) exp{< 5 >0gp+1}(1+5w>

PROOF  First we note that wheh < 1, the third term in the expression of the approximation in bea2
is of orderO(n®), while the first and second are of orde(n logn) andO(n), respectively; therefore, the
leading terms of the approximation are

1—0p n n—1
Bm-(y)zexp{( 5 )1ogp+1—< 5 >logBip}
oy (52 gt} (15)
~ ex .
p 2 ) ¥ pr1(\1+0,

As a curiosity we note that from this latter approximatiois ivery simple to give a simple direct proof
of the consistency of the Bayes factor for intrinsic prior$fie nested case, which was stated as Corollary 4
in Moreno et al. 1.3, (2010)].
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2.1 Consistency when dim(M;) = O(n") for a < 1 and dim(M;) = O(n")
for b <1

We are now in a position to prove consistency of the Baye®fdot intrinsic priors for nonnested models
by encompassing them from below. Let us consider an arpipair of nonnested model&/; and A;
and letM, denote a model nested in boMi; and A/;. Depending on the model selection problem the
encompassing modél/, is chosen in a different form. For instance, in the variakledion the intercept
only model is used as the encompasing madg] in the changepoint problem, is the no changepoint
model, and in clustering the modgl, is the one cluster model.

Let us define the from below Bayes factor for compardgandM;, conditional on}M, as

B(v13o) = 2.

Next Theorend states the consistency when either of the two models is tiesotne.

Theorem 1 Let M, be a model nested in both nonnested modé|sand M;, wherei = O(n®) and
j = O(n?) anda, b < 1. If 6;; > 0 andd?; > 0, then, the from below Bayes factor is consistent under both
models. '

PROOF  If the true model isV/;, then from LemméB and the fact thas;; = 0, discarding lower order
terms we have

; ; n/2 n/2
BiulylMo) = Boly) " g )losn 1+ 8y / 1+ 64

zexp[(z;])logn

As §7; > 0, we obtain thatim,, ..[M;] B};(y) = 0, thus proving consistency under modet. In
the same way, by symmetry, we prove thatjif > 0, thenlim,, . [M;] B};(y) = co. This completes the
proof of the theorem. B

(1 + 61']')7”/2.

Remark 1 Note that although the value of the from below Bayes fablo(y|M,) depends on the chosen
modelM,, this theorem demonstrates that from the consistency pbinéw the selection of the model,
is irrelevant, provided it is nested in boftf; and ).

Remark 2 We know that whefl/; is nested in);, then it follows that;; = 0 for all n. Then, when
sampling from the reduced mod#;, the approximation of the from below intrinsic Bayes faésor

Bj;(y) ~ exp [ (%) log n]

and, asi < j, we get consistency under the null. Consistency under tieenaltive is guaranteed when
¢7; > 0. The case where the distance from one model to the othed’say 0, in the nonnested case is
much more involved and will be dealt with elsewhere.

Remark 3 In a similar fashion, it can be proved that if we encompassibobdels); and A; from
aboveby a modelM  the dimension of which is of ordé?(n®) for b < 1, the resulting Bayes factor is
also consistent under the same assumptions as those ofefhgowrhatever the encompassing modéf
should be.

From this theorem we can prove that the BIC is consistentdoresnonnested models.
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Corollary 1  Under the condition of theorerh, the BIC is consistent under both models provided that
67, > 0ands;; > 0.

PrROOFE The BIC or Schwarz]5, (1978)] criterion for linear models is defined as

72— 7 n
Sji(y) = exp{ (Tj> logn — 3 IOgBij},

whereB;; = RSS; /RSS; € (0, 00). Writing,

5 _ RSS;/RSS
Y 7RSS, /RSS,

whereRSS is the residual sum of squares of any encompassing mdgethe Schwarz approximation

S;i(y) is written as
7 —j n Bo'
Sii(y) = exp{ <T) logn — §1og Boji },

and from Lemma& we get that undeM; we have

i
S;i(y) =~ exp [ (Tj> logn|(1+ 51_3_),”/27

which is exactly the same asymptotic approximation®f(y|Mo). By symmetry the same argument
applies toM;, and the corollary follows suit. W

2.2 Consistency when the dim(M;) = O(n®) for a < 1 and dim(M;) = O(n)

Theoreml studies consistency for the case where the médigk of orderO(n®), a < 1, andM; of order
O(n®), b < 1. In this section we explore consistency when the dimensi@me of the nonnested model is
of orderO(n). We note that now the dimension of the encompassing mbfjeshould be of orde®(n*)
for a < a. The next lemma will be needed for the proof of Theo2m

Lemma4 Suppose thad/; is nested inM,, andi = O(n®), p = O(n), witha < 1. Let M, denote the
true model. Then, the asymptotic approximation of the Bégaer B,,;(y) underM, is

_1n/2
1+ (Hw) ]

Bi ~
P (y) 1+ 6y

PrROOFE The proof follows by using the same derivation of the asytiptapproximation of the Bayes
factor in Moreno et al.13, (2010)] with the difference of using pdii) of Lemmal instead of par(). W

The next theorem provides a sufficient condition for the iaacy of the Bayes factor in the nonnested
case.

Theorem 2 Let M, be any model nested in boftf; and M; such thati = O(n®) with a < 1, and
j =0(n),andr = lim,_,,n/j > 1.

i) If §7; > 0, then the from below Bayes factor is consistent under
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i) 1f 8%, > o(r), where
r—1 _
(r+1)r=1/r -1

T+ 0
5;’2’6 7JP—1_15 ;O )
' (I+7r)—=

then, the from below Bayes factor is consistent under

o(r) =

L,

and

PrROOF  We recall that the from below Bayes factsY, (y) for comparing); and M is defined as
B (y) = Bjo(y)/Bio(y)- Because modéll, is of orderO(n®) for a < 1, the Bayes factoB;o(y) under

M; is approximated by
) n 1+ dio n/2
Bio(y) ~ ——log —— ,
ol¥) eXp{ 2 ng’+1} <1+6ii>

and discarding the first factor —the lower order term— andltgny thato;; = 0, it is finally approximated
by

Bio(y) &~ (14 6:i9)">.

On the other hand, by Lemnit follows that B, (y) underl; is approximated by
-1

@ (1 20 ]

n/2

B; ~

Thus, the approximation to the from below Bayes factor tutso be

2
r—1 n/

Bii(y) ~ [(1 L) (145 +5i0)1] ,

but, from property c) of the pesudo-distance, we havedfhat J;;. Therefore, the term in brackets of the
from below Bayes factor is smaller than
147+
T4+ (L+7)0i;

But this function of the two variablesandd;;, subject to the constraints> 1 andd;; > 0, is a positive
function and bounded from above By As the maximum is attained at= 1 andd;; = 0, and since
6;; > 0, the term in brackets of the from below Bayes factor is dfrismaller thanl, so that the from
below Bayes factor tends tbasn grows, and, consequently, consistency undeis proved.

Consistency under modal/;, subject to the stated constraints, is proved as followsdeUn/;, the
Bayes factoB;(y) is approximated by

1+ 5'0 n/2
Bi ~ J .

o(y) <1+5ji>
On the other hand, the Bayes fac®y, (y) underl/; is approximated by

n/2

r—1 T(l + 6jj) — 1 -1
(1+7) (1+ T+ o0 ;

Bijo(y) =~

but, asy;; = 0, after some simplifications, the from below Bayes factorlsamvritten as

1o\ "
7‘;1 77{
(1+7) <—T+6j0)‘|

B;'i(Y) ~
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For the from below Bayes factor to be consistent, it is sufitithat the term in brackets be strictly
larger thanl whenn tends to infinity. This is equivalent to

(14+7r)+ (1—|—§”) > 7460,
which implies that
r—+ 5j0 B
(1+47) =

On the other hand, from property c) of the distance, we lgve § ;.
In order for the interval where the distangg should lie

J (1—|—T) 7‘1 J

7t

to be nonempty, a necessary and sufficient condition iséthat- 6(r) for all » > 1. Thus, taking limits,
under the conditions stated in the theorem, the from beloyeBd#actor tends to infinity, and the theorem
is proved.

Remark 4 In the proof of the second part of Theor@nt is interesting to note that the consistency under
M; depends on the model, through the distancé;, only. Further, it is easy to prove that, under the
conditions of Lemma part (ii), the limit of the distancé;; of the large model; to the small moded/;,
whenn tends to infinity, also satisfies the conditi®p > §(r). On the other hand, pait) of Theoren?
suggests that the encompasing matlgl should be chosen as small as possible in order to maximize the
distance’,.

This lower bound on the distancéf, andd7; is exactly the same that the one obtained in Theorem 2
of Moreno et al[13, (2010)] Moreover, assuming that/, = M, this latter theorem, which is valid when
M; is nested inM;, can be now obtained as a particular case of our more genenabien?.

The behavior of the BIC under the conditions of Theor2iis shown to be such that, although it is
consistent under the smallest model, it is never consistehér the largest model.

Theorem 3 Under the conditions of Theore®y the BIC is always consistent undgf;, and it is always

inconsistent unded/;
Siily) = exp{ ( ;]) logn — = long}

under the stated conditions, implies thiat: n/r, and that;; converges in probability to a finite positive
number under both models, so that the leading term of the &@happroximation is the first one

S;i(y) ~ exp{ — (%) logn},

because the first term in the exponent of the BIC is a non-mramgleantity of ordeiO(n logn), while the
second stochastic term is of ord@(n). Asn goes to infinity,S;;(y) always goes td. This implies that
the BIC is always consistent und&f; and always inconsistent undf;.

Proor The BIC

Remark 5 The preceding argumentis valid as far@gis finite, a condition which is assumed in sectibn

If 67, is allowed to be infinite, theB;; tends ta) in probability, and we could obtain consistency under the
alternat|ve depending on the rate of divergence of the iingipseudo-distancé;;. This means that if the
distance of the largest model to the smallest one is enornptioeis the BIC could choose the former model
with probability 1.
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3 Discussion

We have extended previous results on the consistency of algesBfactor for intrisic priors obtained for
the case of nested normal linear models to the case wheredtelsrare nonnested. We have considered
several scenarios depending on the order of magnitude afithensions of the models involved using
the from below way of encompassing. In some cases consystéribe from below Bayes factor for any
encompassing modél, can be obtained; in others, consistency may depend on tlaadésfrom the larger
model to the encompassing model.

The case where both models are of ordén) still remains an open problem, for in this case there
might be many candidates to be the encompassing model, whazhd have dimension of ordéx(n®) for
a < 1. Yet, we believe that to explore this case the basic toolsharge presented in Lemmasind?2.

On the other hand, Lemn®gprovides an approximation to the Bayes factor for intriqsiors for nested
model that it is worthwhile to be analyzed, since it givegsising numerical accurate results that need to
be explored and will be addressed somewhere.
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