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Consistency of objective Bayes factors for nonnested linea r
models and increasing model dimension

F. Javier Gir ón, Elı́as Moreno, George Casella and M. L. Martı́nez

Abstract Casella et al. [2, (2009)] proved that, under very general conditions, for normal linear models
the Bayes factor for a wide class of prior distributions, including the intrinsic priors, is consistent when
the number of parameters does not grow with the sample sizen. The special attention paid to the intrinsic
priors is due to the fact that they are nonsubjective priors,and thus accessible priors for complex models.

The case where the number of parameters of nested models grows asO(nα) for α ≤ 1 was considered
in Moreno et al. [13, (2010)], in which it was proved that the Bayes factor for intrinsic priors is consistent
for the case where both models are of orderO(nα) for α < 1, and forα = 1 is consistent except
for a small set of alternative models. The small set of modelsfor which consistency does not hold was
characterized in terms of a pseudo-distance between models.

The goal of the present article is to extend the above resultsto the case where the linear models are
nonnested. As the comparison of nonnested models calls for amethod of encompassing, for proving
consistency we use encompassing from below in this paper.

Consistencia de factores de Bayes objetivos para modelos li neales
anidados cuando la dimensi ón de los modelos crece

Resumen. En Casella et al. [2, (2009)] se demostró que, bajo condiciones muy generales,el factor
de Bayes para modelos lineales normales y para una amplia clase de distribuciones a priori, que incluı́a
a las a priori intrı́nsecas, es consistente cuando el número de parámetros no crece cuando lo hace el
tamaño muestraln. Se prestó especial atención a las distribuciones a priori intrı́nsecas debido a que son
distribuciones a priori no subjetivas y, por consiguiente,se pueden aplicar a modelos complejos.

El caso en que el número de parámetros de los modelos anidados crece del orden deO(nα) para
α ≤ 1 se ha considerado en Moreno et al. [13, (2010)], en el que se demuestra que el factor de Bayes
para distribuciones intrı́nsecas es consistente para el caso en que ambos modelos son de ordenO(nα)
paraα < 1 y, para el casoα = 1, también es consistente excepto para un conjunto pequeñode modelos
alternativos. Este conjunto, para el cual la consistencia no se da, se caracterizó en términos de una pseudo
distancia entre modelos.
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El objetivo del presente artı́culo es extender los resultados anteriores al caso en que los modelos li-
neales no estén anidados. Como la comparación de modelos no anidados requiere algún método deabar-
camiento, para demostrar la consistencia en el artı́culo usamos generalmente el método deabarcamiento
por abajo.

1 Introduction

A widely used objective quasi-Bayesian procedure for comparing pairs of nested models is the well-known
BIC (Bayesian Information Criterion) introduced by Schwarz [15, (1978)]. This procedure is based on
an approximation to the Bayes factor derived from the application of the Laplace approximation to the
marginals of the data under the competing models. In spite ofits simplicity, it is an accurate tool for
comparing normal linear models of low dimension when the available sample has a large size.

A recent objective Bayesian model selector competitor to the BIC is the Bayes factor for intrinsic priors.
The objective intrinsic prior distributions were introduced by Berger and Pericchi [1, (1996)], and formal-
ized in Moreno [9, (1997)] and Moreno et al. [10, (1998)]. For normal linear models the derivation of the
intrinsic priors and the corresponding Bayes factor was given in Casella and Moreno [4, (2006)] and Girón,
Martı́nez and Moreno [5, (2006)]. Later on, in Casella et al. [2, (2009)] it was proved that for normal linear
models the Bayes factor is a consistent model selector for a wide class of prior distributions including the
intrinsic priors. The Bayes factor for intrinsic priors wasalso proven to be a superior model selector than
the BIC for finite sample sizes, and equivalent to the BIC asymptotically. Throughout that paper it was
assumed that the dimension of the models did not grow with thesample size.

The problem of comparing nonnested models has also been considered in the literature; for instance,
in Girón, Martı́nez and Moreno [5, (2006)] two different encompassing criteria, namedencompassing from
aboveandencompassing from below, were analyzed. The idea behind the encompassing from belowwas
to compare each of the two nonnested models with a smaller fixed model which is encompassed in both,
and the idea behind the encompassing from above was to compare each of them with a larger common
model that encompasses both. A comparative analysis of bothprocedures of encompassing in the class of
normal linear regression model was given in Moreno and Girón [11, (2008)] and the conclusion was that
these encompassing methods behave extremely well for the important variable selection problem in which
nonnested models have to be compared.

On the other hand, change-point detection in time series —see Smith [14, (1975)], Moreno, Casella,
and Garcı́a-Ferrer [12, (2005)], and Girón, Moreno and Casella [6, (2007)]— or clustering (Hartigan [7,
(1990)], Casella, Girón and Moreno [3, (2010)]) are problems such that the dimension of the underlying
models grows as the sample size grows, and this suggests to inquiring about the consistency of the BIC
and the Bayes factor for intrinsic priors for this case. Thisquestion has been addressed in a recent paper
by Moreno, Girón and Casella [13, (2010)] where it was proved that, under very general conditions, for
comparing nested normal linear models both the BIC and the Bayes factor for intrinsic priors are consistent
when the number of parameters is of orderO(nα) with α < 1; when the dimension of the alternative model
is of orderO(n) the BIC is inconsistent and the Bayes factor for intrinsic priors is almost consistent, where
almost consistency is understood as consistency except fora small set of alternative models. The small set
of alternative models was also characterized in terms of a pseudo-distance from the alternative to the null
model.

In this paper we will extend some of the results obtained for the case of nested models when the dimen-
sion of the models grows with the sample size to the case of nonnested models. We note that in most of
the model selection problems, comparison among nested and nonnested models naturally appear, so that to
address the consistency issue for nonnested models is of theutmost importance.

In Section2 the consistency of the Bayes factor for intrinsic priors when the models are nonnested is
proved forα < 1. Likewise, the BIC is also proved to be consistent for nonnested models under the same
conditions. Almost consistency of the Bayes factor for intrinsic priors is proved for two models when one
is of orderO(na) for a < 1 and the other of otherO(n), and the set of models around the smallest one for
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which consistency does not hold is characterized. In this case, however, the BIC is proved to be consistent
under the smallest model but inconsistent under the largestmodel. We use an encompassing from below
procedure, although it seems that encompassing from above produces equivalent results in some cases.
Section3 provides a short concluding discussion.

2 Consistency for nonnested linear models

In this section we introduce some notation and some previousresults needed to prove the main theorems in
the paper. We begin with a statement of the problem of model comparison for nested linear normal models.

Let y = (y1, . . . , yn)
′

be a vector of independent responses,Xp a design matrix of dimensionn × p,
wherep is the number of deterministic explanatory variables, and letXi denote a submatrix ofXp whose
dimensions aren × i. We want to compare the reduced sampling modelMi : Nn(y|Xiαi, σ

2
i In), and the

full model Mp : Nn(y|Xpβp, σ
2
p In), whereNn(y|µ,Σ) denotes the multivariate normal distribution of

dimensionn with mean vectorµ and covariance matrixΣ. We assume that the regression parameter vectors
αi = (α1, . . . , αi)

′, βp = (β1, . . . , βp)
′, and the variance errorsσ2

i , σ2
p, are unknown. Note that with these

assumptions the reduced modelMi is nested in the full modelMp. The Bayes factor for comparing these
models —see, for instance, Moreno, Girón and Casella [13, (2010)]—, turns out to be

Bpi(y) =
2

π

∫ π/2

0

(

1 +
n

(p + 1) sin2 ϕ

)(n−p)/2(

1 +
nBip

(p + 1) sin2 ϕ

)

−(n−i)/2

dϕ.

where the statisticBip is

Bip =
RSSp

RSSi
=

y′(In − Hp)y

y′(In − Hi)y
,

andHj = Xj(X
′

jXj)
−1X′

j , for j = i, p, the hat matrix.
One important quantity in the study of consistency is the directed “distance” from the regression model

Mp to Mi, which is an extension of the one first introduced in Casella et al. [2, (2009)] to account for
models for which the number of parameters and the sample sizeincrease to infinity, which is defined for a
given sample sizen as

δpi =
1

σ2
p

β′

p

X′

p(In − Hi)Xp

n
βp.

Note that this pseudo-distance is defined for every pair of models not necessarily nested, and it is not
symmetric. Some useful properties ofδpi, which will be used in the sequel, are the following:

a) The distance from any modelMi to itself is always0.

b) If Mi is nested inMj , thenδij = 0.

c) If modelMi is nested inMj, thenδki ≥ δkj for any modelMk.

In the study of the asymptotic behavior of the Bayes factorBpi(y), we will have to consider the limit
of the distance asn grows to infinity. This limit, assuming it exists, will be denoted by

δ∗pi = lim
n→∞

1

σ2
p

β′

p

X′

p(In − Hi)Xp

n
βp.

In what followslimn→∞[M ]Zn will denote the limit in probability of the random sequence{Zn; n ≥1}
under the assumption that we are sampling from modelM . This modelM will have a fixed parameter
sequence. Further, we will need to use the doubly noncentralbeta distribution with parametersυ1/2, υ2/2
and noncentrality parametersλ1, λ2, which will be denoted byBe(υ1/2, υ2/2; λ1, λ2) (Johnson, Kotz and
Balakrishnan [8, (1995), pp. 502]).
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Next we state Lemma1, which is the basic tool used in this section for deriving thetheorems comparing
nonnested models. The proof is similar to that of Lemma 1 of Moreno et al. [13, (2010)], and therefore is
omitted.

Lemma 1

1) If modelMi is nested in modelMp, andMt is the true model, then the sampling distribution of the
statisticBip underMt is the noncentral beta distribution

Bip ∼ Be
(n − p

2
,
p − i

2
; nδtp, n(δti − δtp)

)

.

2) Let{Xn, n ≥ 1} be a sequence of random variables such that

Xn ∼ Be
(n − p

2
,
p − i

2
; nδtp, n(δti − δtp)

)

, n ≥ 1.

If i andp vary withn as i = O(na) andp = O(nb), where0 ≤ a ≤ b ≤ 1, then when sampling
fromMt we have,

(i) if a < b = 1 we have that

lim
n→∞

[Mt] Xn =
1 + δ∗tp − 1/r

1 + δ∗ti
,

wherer is a positive constant such thatr = limp→∞ n/p > 1.

(ii) If a = b = 1 we have that

lim
n→∞

[Mt] Xn =
1 + δ∗tp − 1/r

1 + δ∗ti − 1/s
,

where the positive constantsr ands are such thatr = lim
p→∞

n/p > 1 ands = lim
p→∞

n/i > 1.

(iii) If b < 1, then we have

lim
n→∞

[Mt] Xn =
1 + δ∗tp
1 + δ∗ti

.

The second tool we need is an asymptotic approximation to theBayes factor for intrinsic priors. We
derive this asymptotic approximation for the case wherei = O(na) andp = O(nb) and0 ≤ a ≤ b < 1,
using a similar approach as the one used in the proof of Theorem 2 in Moreno et al. [13, (2010)]. Note that
wheni andp are finite, the first two terms of the approximation is precisely the BIC criterion up to a finite
multiplicative constant.

Lemma 2 If modelMi is nested in modelMp, and b < 1, then for large values ofn the Bayes factor
Bpi(y) can be approximated by

Bpi(y) ≈ exp

{(

i − p

2

)

log
n

p + 1
−

(

n − i

2

)

logBip +

(

p + 1

2

)(

1 −
1

Bip

)}

.

PROOF. Factoring the integrand of the Bayes factorBpi(y) as

(

n

(p + 1) sin2 ϕ

)

n−p

2

(

nBip

(p + 1) sin2 ϕ

)
i−n

2

(

1 +
(p + 1) sin2

n

)

n−p

2
(

1 +
(p + 1) sin2

nBip

)

i−n

2

and, taking into account that
(p + 1)

n
and

(p + 1)

nBip
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go to zero asn tends to infinity, the third and fourth factors can be approximated by exponentials, and the
Bayes factor is approximately equal to

2

π

(

n

p + 1

)

i−p

2

B
−( n−i

2
)

ip

∫ π/2

0

sin ϕp−i exp

[(

p + 1

2n

)(

n − p +
i − n

Bip

)

sin2 ϕ

]

dϕ.

But the term in brackets is approximated by

p + 1

2

(

1 −
1

Bip

)

sin2 ϕ;

so that the new approximation is

2

π

(

n

p + 1

)

i−p

2

B
−( n−i

2
)

ip

∫ π/2

0

sin ϕp−i exp

[

p + 1

2

(

1 −
1

Bip

)

sin2 ϕ

]

dϕ.

By the mean value theorem, the integral above is equal toπ/2 times the value of the integrand at some
value ofϕ(p, i,Bip). It can be shown that, except for values nearBip = 1 or Bip = 0 where the integral
goes to infinity, and for large values ofp ani, the values ofϕ(p, i,Bip) converge toπ/2 and consequently
the values ofsin ϕ(p, i,Bip) approach to1, and thus the integral can be approximated by

π

2
exp

{

p + 1

2

(

1 −
1

Bip

)}

.

Substituting the integral by this expression, we finally getthe desired approximation for the Bayes factor of
this Lemma2. �

Under the conditions of Lemma1 and2, we provide a further approximation to the Bayes factor for
large values ofn, when sampling from the true model, as follows.

Lemma 3 If modelMi is nested in modelMp, b < 1, andMt is the true model, then for large values ofn
and under the sampling modelMt, the Bayes factor can be approximated by

Bpi(y) ≈ exp

{

(

i − p

2

)

log
n

p + 1

}

(

1 + δti

1 + δtp

)n/2

.

PROOF. First we note that whenb < 1, the third term in the expression of the approximation in Lemma2
is of orderO(nb), while the first and second are of orderO(n log n) andO(n), respectively; therefore, the
leading terms of the approximation are

Bpi(y) ≈ exp

{

(

i − p

2

)

log
n

p + 1
−

(

n − i

2

)

logBip

}

≈ exp

{

(

i − p

2

)

log
n

p + 1

}

(

1 + δti

1 + δtp

)n/2

.

�

As a curiosity we note that from this latter approximation itis very simple to give a simple direct proof
of the consistency of the Bayes factor for intrinsic priors in the nested case, which was stated as Corollary 4
in Moreno et al. [13, (2010)].
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2.1 Consistency when dim(Mi) = O(na) for a < 1 and dim(Mj) = O(nb)
for b < 1

We are now in a position to prove consistency of the Bayes factor for intrinsic priors for nonnested models
by encompassing them from below. Let us consider an arbitrary pair of nonnested modelsMi andMj

and letM0 denote a model nested in bothMi andMj . Depending on the model selection problem the
encompassing modelM0 is chosen in a different form. For instance, in the variable selection the intercept
only model is used as the encompasing modelM0; in the changepoint problemM0 is the no changepoint
model, and in clustering the modelM0 is the one cluster model.

Let us define the from below Bayes factor for comparingMj andMi, conditional onM0, as

B′

ji(y|M0) =
Bj0(y)

Bi0(y)
.

Next Theorem1 states the consistency when either of the two models is the true one.

Theorem 1 Let M0 be a model nested in both nonnested modelsMi and Mj , wherei = O(na) and
j = O(nb) anda, b < 1. If δ∗ij > 0 andδ∗ji > 0, then, the from below Bayes factor is consistent under both
models.

PROOF. If the true model isMi, then from Lemma3 and the fact thatδ∗ii = 0, discarding lower order
terms we have

B′

ji(y|M0) =
Bj0(y)

Bi0(y)
≈ exp

[

(

i − j

2

)

log n

]

·

(

1 + δi0

1 + δij

)n/2
/

(

1 + δi0

1 + δii

)n/2

≈ exp

[

(

i − j

2

)

log n

]

(1 + δij)
−n/2.

As δ∗ij > 0, we obtain thatlimn→∞[Mi] B′

ji(y) = 0, thus proving consistency under modelMi. In
the same way, by symmetry, we prove that ifδ∗ji > 0, thenlimn→∞[Mj ] B′

ji(y) = ∞. This completes the
proof of the theorem. �

Remark 1 Note that although the value of the from below Bayes factorB′

ji(y|M0) depends on the chosen
modelM0, this theorem demonstrates that from the consistency pointof view the selection of the modelM0

is irrelevant, provided it is nested in bothMi andMj .

Remark 2 We know that whenMi is nested inMj , then it follows thatδij = 0 for all n. Then, when
sampling from the reduced modelMi, the approximation of the from below intrinsic Bayes factoris

B′

ji(y) ≈ exp

[

(

i − j

2

)

log n

]

and, asi < j, we get consistency under the null. Consistency under the alternative is guaranteed when
δ∗ji > 0. The case where the distance from one model to the other, sayδ∗ji = 0, in the nonnested case is
much more involved and will be dealt with elsewhere.

Remark 3 In a similar fashion, it can be proved that if we encompass both modelsMi and Mj from
aboveby a modelMF the dimension of which is of orderO(nb) for b < 1, the resulting Bayes factor is
also consistent under the same assumptions as those of Theorem1, whatever the encompassing modelMF

should be.

From this theorem we can prove that the BIC is consistent for some nonnested models.
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Corollary 1 Under the condition of theorem1, the BIC is consistent under both models provided that
δ∗ij > 0 andδ∗ji > 0.

PROOF. The BIC or Schwarz [15, (1978)] criterion for linear models is defined as

Sji(y) = exp

{

(

i − j

2

)

log n −
n

2
logBij

}

,

whereBij = RSSj / RSSi ∈ (0,∞). Writing,

Bij =
RSSj / RSS0

RSSi / RSS0

whereRSS0 is the residual sum of squares of any encompassing modelM0, the Schwarz approximation
Sji(y) is written as

Sji(y) = exp

{

(

i − j

2

)

log n −
n

2
log

B0j

B0i

}

,

and from Lemma3 we get that underMi we have

Sji(y) ≈ exp

[

(

i − j

2

)

log n

]

(1 + δij)
−n/2,

which is exactly the same asymptotic approximation ofB′

ji(y|M0). By symmetry the same argument
applies toMj, and the corollary follows suit. �

2.2 Consistency when the dim(Mi) = O(na) for a < 1 and dim(Mj) = O(n)

Theorem1 studies consistency for the case where the modelMi is of orderO(na), a < 1, andMj of order
O(nb), b < 1. In this section we explore consistency when the dimension of one of the nonnested model is
of orderO(n). We note that now the dimension of the encompassing modelM0 should be of orderO(nα)
for α ≤ a. The next lemma will be needed for the proof of Theorem2.

Lemma 4 Suppose thatMi is nested inMp and i = O(na), p = O(n), with a < 1. LetMt denote the
true model. Then, the asymptotic approximation of the BayesfactorBpi(y) underMt is

Bpi(y) ≈

[

(1 + r)
r−1

r

(

1 +
r(1 + δtp) − 1

1 + δti

)

−1
]n/2

.

PROOF. The proof follows by using the same derivation of the asymptotic approximation of the Bayes
factor in Moreno et al. [13, (2010)] with the difference of using part(ii) of Lemma1 instead of part(i). �

The next theorem provides a sufficient condition for the consistency of the Bayes factor in the nonnested
case.

Theorem 2 Let M0 be any model nested in bothMi and Mj such thati = O(na) with a < 1, and
j = O(n), andr = limn→∞ n/j > 1.

i) If δ∗ij > 0, then the from below Bayes factor is consistent underMi.
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ii) If δ∗j0 > δ(r), where

δ(r) =
r − 1

(r + 1)(r−1)/r − 1
− 1,

and

δ∗ji ∈

(

r + δ∗j0

(1 + r)
r−1

r

− 1, δ∗j0

]

,

then, the from below Bayes factor is consistent underMj .

PROOF. We recall that the from below Bayes factorB′

ji(y) for comparingMi and Mj is defined as
B′

ji(y) = Bj0(y)/Bi0(y). Because modelM0 is of orderO(nα) for α < 1, the Bayes factorBi0(y) under
Mi is approximated by

Bi0(y) ≈ exp

{

−
i

2
log

n

i + 1

}(

1 + δi0

1 + δii

)n/2

,

and discarding the first factor —the lower order term— and recalling thatδii = 0, it is finally approximated
by

Bi0(y) ≈ (1 + δi0)
n/2.

On the other hand, by Lemma4 it follows thatBj0(y) underMi is approximated by

Bj0(y) ≈

[

(1 + r)
r−1

r

(

1 +
r(1 + δij) − 1

1 + δi0

)

−1
]n/2

.

Thus, the approximation to the from below Bayes factor turnsout to be

B′

ji(y) ≈

[

(1 + r)
r−1

r (r(1 + δij) + δi0)
−1

]n/2

,

but, from property c) of the pesudo-distance, we have thatδi0 ≥ δij . Therefore, the term in brackets of the
from below Bayes factor is smaller than

(1 + r)
r−1

r

r + (1 + r)δij
.

But this function of the two variablesr andδij , subject to the constraintsr ≥ 1 andδij ≥ 0, is a positive
function and bounded from above by1. As the maximum is attained atr = 1 andδij = 0, and since
δ∗ij > 0, the term in brackets of the from below Bayes factor is strictly smaller than1, so that the from
below Bayes factor tends to0 asn grows, and, consequently, consistency underMi is proved.

Consistency under modelMj, subject to the stated constraints, is proved as follows. Under Mj, the
Bayes factorBi0(y) is approximated by

Bi0(y) ≈

(

1 + δj0

1 + δji

)n/2

.

On the other hand, the Bayes factorBj0(y) underMj is approximated by

Bj0(y) ≈

[

(1 + r)
r−1

r

(

1 +
r(1 + δjj) − 1

1 + δj0

)

−1
]n/2

,

but, asδjj = 0, after some simplifications, the from below Bayes factor canbe written as

B′

ji(y) ≈

[

(1 + r)
r−1

r

(

1 + δji

r + δj0

)

]n/2

.
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For the from below Bayes factor to be consistent, it is sufficient that the term in brackets be strictly
larger than1 whenn tends to infinity. This is equivalent to

(1 + r)
r−1

r (1 + δji) > r + δj0,

which implies that

δji >
r + δj0

(1 + r)
r−1

r

− 1.

On the other hand, from property c) of the distance, we haveδji ≤ δj0.
In order for the interval where the distanceδji should lie

δji ∈

(

r + δj0

(1 + r)
r−1

r

− 1, δj0

]

to be nonempty, a necessary and sufficient condition is thatδj0 > δ(r) for all r ≥ 1. Thus, taking limits,
under the conditions stated in the theorem, the from below Bayes factor tends to infinity, and the theorem
is proved.

Remark 4 In the proof of the second part of Theorem2 it is interesting to note that the consistency under
Mj depends on the modelM0 through the distanceδj0 only. Further, it is easy to prove that, under the
conditions of Lemma1 part (ii) , the limit of the distanceδji of the large modelMj to the small modelMi,
whenn tends to infinity, also satisfies the conditionδ∗ji > δ(r). On the other hand, partii) of Theorem2
suggests that the encompasing modelM0 should be chosen as small as possible in order to maximize the
distanceδ∗j0.

This lower bound on the distancesδ∗j0 andδ∗ji is exactly the same that the one obtained in Theorem 2
of Moreno et al.[13, (2010)]. Moreover, assuming thatM0 = Mi, this latter theorem, which is valid when
Mi is nested inMj, can be now obtained as a particular case of our more general Theorem2.

The behavior of the BIC under the conditions of Theorem2 is shown to be such that, although it is
consistent under the smallest model, it is never consistentunder the largest model.

Theorem 3 Under the conditions of Theorem2, the BIC is always consistent underMi, and it is always
inconsistent underMj

PROOF. The BIC

Sji(y) = exp

{

(

i − j

2

)

log n −
n

2
logBij

}

,

under the stated conditions, implies thatj ≈ n/r, and thatBij converges in probability to a finite positive
number under both models, so that the leading term of the Schwarz approximation is the first one

Sji(y) ≈ exp
{

−
( n

2r

)

log n
}

,

because the first term in the exponent of the BIC is a non-random quantity of orderO(n log n), while the
second stochastic term is of orderO(n). As n goes to infinity,Sji(y) always goes to0. This implies that
the BIC is always consistent underMi and always inconsistent underMj.

Remark 5 The preceding argument is valid as far asδ∗ji is finite, a condition which is assumed in section2.
If δ∗ji is allowed to be infinite, thenBij tends to0 in probability, and we could obtain consistency under the
alternative depending on the rate of divergence of the limiting pseudo-distanceδ∗ji. This means that if the
distance of the largest model to the smallest one is enormous, then the BIC could choose the former model
with probability1.
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3 Discussion

We have extended previous results on the consistency of the Bayes factor for intrisic priors obtained for
the case of nested normal linear models to the case where the models are nonnested. We have considered
several scenarios depending on the order of magnitude of thedimensions of the models involved using
the from below way of encompassing. In some cases consistency of the from below Bayes factor for any
encompassing modelM0 can be obtained; in others, consistency may depend on the distance from the larger
model to the encompassing model.

The case where both models are of orderO(n) still remains an open problem, for in this case there
might be many candidates to be the encompassing model, whichshould have dimension of orderO(nα) for
α ≤ 1. Yet, we believe that to explore this case the basic tools arethose presented in Lemmas1 and2.

On the other hand, Lemma2 provides an approximation to the Bayes factor for intrinsicpriors for nested
model that it is worthwhile to be analyzed, since it gives surprising numerical accurate results that need to
be explored and will be addressed somewhere.
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