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Barrelled spaces and mean ergodicity

Krzysztof Piszczek

Abstract We characterize quasi-reflexive barrelled and complete locally convex Hausdorff spaces with
a basis in terms of the properties of this basis. Moreover we prove that a complete, barrelled lcHs with a
basis is quasi-reflexive of order one if and only if for every power bounded operatorT , eitherT or T

′ is
mean ergodic.

Espacios tonelados y ergodicidad en media

Resumen. Se caracterizan los espacios localmente convexos Hausdorff casi-reflexivos, tonelados y
completos con base en función de las propiedades de la base.Además se prueba que un espacio localmente
convexo Hausdorff completo y tonelado con base es casi-reflexivo de orden1 si y sólo si para cada
operadorT de potencias acotadas,T o T

′ es ergódico en media.

1 Introduction

In his very well known paper [9] R. C. James constructed an example of a non-reflexive BanachspaceX
such that its isometric embeddingπ(X) into its second dual has a codimension1, that isdim

(

X ′′/π(X)
)

=
1. This led to the following generalization of reflexivity, introduced in [4]: a Banach spaceX is calledquasi-
reflexive (of ordern) if codimX′′π(X) < +∞ (codimX′′π(X) = n). Properties of these spaces have been
studied in [5, 8, 10, 19, 20]. It is well known that ifX is a barrelled and complete locally convex Hausdorff
space (shortlylcHs) thenπ(X) is a closed subset ofX ′′, whereX ′′ denotes the bidual ofX endowed
with the strong topology. Therefore we say that a barrelled and complete lcHs isquasi-reflexiveif the
codimension ofπ(X) in X ′′ is finite. Since every Banach space is barrelled and completeand we have an
example of James’ quasi-reflexive spaceJ then giving examples of barrelled and complete quasi-reflexive
spaces is rather easy: for every reflexive barrelled and complete spaceY the spaceY ×J is quasi-reflexive.
In [15] there are also examples of barrelled and complete quasi-reflexive spaces without Banach subspaces
of infinite dimension.
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The aim of this paper is to continue the research of the authorstarted in [17]. The motivation comes from
the very important and beautiful paper [7] by Fonf, Lin and Wojtaszczyk where the authors characterize
mean ergodic operators in reflexive Banach spaces with bases. Their work is then continued in the Fréchet
space setting by Albanese, Bonet and Ricker in [1]. The authors answer, in particular, a question posed
almost 40 years ago by Kalton in [11, p. 265]. Namely they prove that a barrelled and complete lcHs with
a basis is reflexive iff every basis is shrinking iff every basis is boundedly complete.

The paper is divided into four parts. In Section2 we extend the characterization of quasi-reflexive
spaces with bases to the class of barrelled and complete lcHs’. The methods are analogous to the ones used
in [17] therefore we often omit the proofs. Section3 is devoted to the duality theorems for quasi-reflexive
Fréchet and (DF)-spaces. To do this we rely on the original Singer’s approach for Banach spaces used
in [20]. In Section4 we characterize quasi-reflexive barrelled and complete lcHs’ with bases in terms of
mean ergodicity of power bounded operators acting on this space. This is done exactly as in [17] (compare
also [7, Th. 5]).

The general reference for functional analysis is [14] and for ergodic theory we refer the reader to [13].

2 Quasi-reflexive barrelled and complete lcHs’ with bases

Recall that the topology of a locally convex space is determined by the basis of zero neighbourhoods which
may always be chosen to be absolutely convex and closed. We will often use this fact without explicit
mentioning. For such a zero neighbourhoodU we denote bypU its Minkowski functional. IfX is a locally
convex Hausdorff space then byX ′ we mean the linear spaceX∗ of all continuous and linear functionals
with the strong topologyb(X∗, X). A basisin a locally convex Hausdorff spaceX is a sequence(xj)j∈N

of elements with the following property: for everyx ∈ X there exists a unique sequence(αj)j of scalars
such that the series

∑

j αjxj converges tox in the topology ofX . The linear functionalsfj(x) := αj form
theassociated sequence of coefficient functionals. If they all are continuous then(xj)j is called aSchauder
basis. Recall that every basis in an barrelled lcHs is always a Schauder basis. We will use in the sequel
the following notation: the symbolπ will stand for the canonical embedding of a locally convex Hausdorff
spaceX into its topological bidualX ′′ and for a Schauder basis(xj)j in X we will denote by[fj ] the
closed linear subspace ofX ′ spanned by the associated sequence(fj)j of coefficient functionals. Moreover
byBCB we denote the class of all barrelled and complete locally convex Hausdorff spaces with a Schauder
basis.

In [17] we prove the following result which, for Banach spaces, is due to Singer [20, Th. 3].

Theorem 1 A Fréchet spaceX with a basis(xj)j is quasi-reflexive of ordern if and only if there exists
an integerk, 0 ≤ k ≤ n, such that the basis(xj)j is (n − k)-boundedly complete andk-shrinking.

The aim of this Section is to extend this result ontoBCB spaces. It turns out that the original proof uses
the fact that a Fréchet space is barrelled and complete and therefore may be easily adapted to our setting.
Consequently we present only those modifications which are necessary.

Theorem 2 Let X be aBCB space andπ : X →֒X ′′ the canonical embedding. Letφ : X → [fj ]
′ be the

map defined byφ(x) := π(x)|[fj ]. The spaceφ(X) is a closed subspace of[fj ]
′ andπ(X) ⊕ [fj ]

⊥ is a
closed subspace ofX ′′.

SKETCH OF THE PROOF For arbitrary zero neighbourhoodsU , V we denoteF := [fj ] and define num-
bers:

rU,V := sup
{

t > 0 : tU◦ ⊂ V ◦ ∩ F
σ(X′,X)

}

,

sU,V := inf
pU (x) 6=0

sup
f∈V ◦∩F

∣

∣

∣

∣

∣

f

(

x

pU (x)

)

∣

∣

∣

∣

∣

,

RU,V := sup
{

pU (x) : x ∈ V
σ(X,F )

}
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and proceed exactly as in the proof of [17, Th. 1]. �

The definitions below of ak-boundedly complete and ak-shrinking basis in aBCB space are analogous
to the ones in Banach spaces, given in [20]. Let X be aBCB space with a basis(xj)j∈N. We define the
following linear space of sequences of scalars

X :=

{

(aj)j :

( m
∑

j=1

ajxj

)+∞

m=1

is bounded

}

.

By [17, Lemma 2] the map
J : [fj ]

′ → X , J(W ) :=
(

W (fj)
)

j

is a linear isomorphism therefore we endowX with the topology inherited from[fj ]
′.

Definition 1 Let X be aBCB space with a basis(xj)j . We shall say that this basis isk-boundedly
complete if:

(i) in every(k +1)-dimensional subspace ofX there exists a non-zero element(aj)j such that the series
∑+∞

j=1 ajxj is convergent;

(ii) there exists a(k + 1)-dimensional subspace ofX for which the above element(aj)j is unique up to
a homothety.

Remark 1 For k = 0 we obtain the definition of a boundedly complete basis which is due to James
(see[9]) for Banach spaces and Dubinsky and Retherford (see[6] and [18]) for locally convex Hausdorff
spaces.

Theorem 3 Let X be aBCB space with a basis(xj)j , let [fj] be the closed subspace ofX ′ spanned by
the sequence(fj)j of coefficient functionals and letk be a non-negative integer. The following conditions
are equivalent:

(1) (xj)j is k-boundedly complete.

(2) codimX′′(π(X) ⊕ [fj ]
⊥) = k.

(3) codim[fj ]′φ(X) = k, whereφ(x) := π(x)|[fj ].

Definition 2 LetX be aBCB space with a basis(xj)j . We shall say that this basis isk-shrinking if:

(i) in every(k + 1)-dimensional subspace ofX ′ there exists a non-zero elementf such that

lim
n→+∞

sup
x∈B∩[xn+1,xn+2,...]

|f(x)| = 0

for every bounded setB ⊂ X .

(ii) there exists a(k + 1)-dimensional subspace ofX ′ for which the above elementf is unique up to a
homothety.

Remark 2 For k = 0 we obtain the definition of a shrinking basis which is due to James (see[9]) for
Banach spaces and Dubinsky and Retherford (see[6] and [18]) for locally convex Hausdorff spaces.

Theorem 4 Let X be aBCB space with a basis(xj)j , let [fj] be the closed subspace ofX ′ spanned by
the sequence(fj)j of coefficient functionals and letk be a non-negative integer. The following assertions
are equivalent:

(1) (xj)j is k-shrinking.
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(2) codimX′ [fj] = k.

The proof of the next result requires only linear isomorphisms of the considered spaces therefore is just
a repetition of the proof of [17, Lemma 9].

Lemma 1 LetX be a lcs andV a total subspace ofX ′. Then

V ⊥ ∩ π(X) = {0}.

If eitherdim V ⊥ < +∞ or codimX′V < +∞ then

dimV ⊥ = codimX′V.

If, in addition,X is quasi-reflexive of ordern, then:

0 ≤ codimX′V = dimV ⊥ ≤ n,

0 ≤ codimX′′(π(X) ⊕ V ⊥) ≤ n,

codimX′′(π(X) ⊕ V ⊥) = n − codimX′V.

Now we are ready to state and prove the main result of this section which generalizes [17, Th. 10].

Theorem 5 A BCB spaceX is quasi-reflexive of ordern if and only if for every basis there exists an
integerk, 0 ≤ k ≤ n, such that this basis is(n − k)-boundedly complete andk-shrinking.

PROOF. Assume thatX is quasi-reflexive of ordern. Since[fj ] is a total subspace ofX ′, by Lemma1
we obtain

n = codimX′′(π(X) ⊕ [fj ]
⊥) + codimX′ [fj ]

and the conclusion follows by Theorems3 (2) and4 (2). If the converse holds, then by Theorem3 (2) we
have

X ′′ = π(X) ⊕ [fj ]
⊥ ⊕ F

with dimF = n − k and by Lemma1
dim[fj]

⊥ = k.

ThereforecodimX′′π(X) = n and the proof is complete. �

Corollary 1 A BCB spaceX is quasi-reflexive if and only if every basis inX is k1-shrinking andk2-
boundedly complete for some non-negative integersk1, k2. In this caseX is quasi-reflexive of order
n = k1 + k2.

3 Duality theorems.

Recall that by [14, Prop. 23.23] every Fréchet space is barrelled which is notthe case for arbitrary (DF)-
space. But ifX is a complete (DF)-space with a Schauder basis then by [16, Prop. 8.3.12] and [14, 23.21]
X is aBCB space. Therefore we may apply to such spaces results from theprevious Section. The following
theorems are generalizations of [20, Th. 4,5]. The proofs are analogous but at that same time short, therefore
we include them below. All the bases are assumed to be Schauder.

Theorem 6 LetX be a Fŕechet space or a complete (DF)-space with a basis(xj)j . Denote byF := [fj ]
the closed subspace ofX ′ spanned by the sequence(fj)j of coefficient functionals.

(1) (xj)j is k-boundedly complete if and only if(fj)j is ak-shrinking basis inF .
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(2) (xj)j is k-shrinking if and only if(fj)j is ak-boundedly complete basis inF .

PROOF. (1) Definewj := φ(xj) and observe that(wj)j is a sequence of coefficient functionals for the
basis(fj)j in F . By Theorem3 (xj)j is k-boundedly complete if and only ifcodimF ′φ(X) = k while by
Theorem4 (fj)j is k-shrinking if and only ifcodimF ′ [wj ] = k. Here we have to know thatF is barrelled.
In caseX is a (DF)-space, the spaceF is clearly barrelled as a closed subspace of the Fréchet spaceX ′. In
caseX is Fréchet, barrelledness ofF follows by [12, Th. 6.3]. Since by Theorem2 [wj ] = φ(X), we are
done.

(2) Since[wj ] = φ(X), (xj)j is k-shrinking inX if and only if (wj)j is k-shrinking inφ(X). By (1)
(applied to the basis(fj)j of F ) this happens if and only if(fj)j is k-boundedly complete inF . �

Theorem 7 Let X be Fŕechet space or a complete (DF)-space. Suppose it is quasi-reflexive of ordern
and let0 ≤ k ≤ n.

(1) X has ak-boundedly complete basis if and only ifX ′ has ak-shrinking basis.

(2) X has ak-shrinking basis if and only ifX ′ has ak-boundedly complete basis.

(3) X has a basis if and only ifX ′ has a basis.

PROOF. (1) If (xj)j is a k-boundedly complete basis inX then by Theorem5 it is (n − k)-shrinking
whence by Theorem4 codimX′ [fj] = n − k. ConsequentlyX ′ has a basis(gi)i consisting of allfj ’s
together with suitablen − k elements. Since by Theorem6 (fj)j is k-shrinking, the same is true for(gi)i.
Assume now that(fj)j is k-shrinking inX ′. By Theorem4 codimX′′ [wj ] = k, wherewi(fj) = δij , and
henceX ′′ has a basis(vi)i consisting of allwj ’s together with suitablek elements. Since by Theorem6
(wj)j is k-boundedly complete, the same holds for(vi)i. By assumptioncodimX′′π(X) = n and all closed
subspaces of codimensionn are isomorphic (the proof for arbitrary lcs’ is analogous to[3]) therefore we
can find an isomorphismu : [vi]

+∞
i=n+1 → π(X) and, consequently,(π−1 ◦ u(vi))

+∞
i=n+1 is ak-boundedly

complete basis inX .
(2) By Theorem5 X has ak-shrinking basis if and only if it has a(n − k)-boundedly complete basis.

By (1) this happens if and only ifX ′ has a(n − k)-shrinking basis and again by Theorem5 if and only if
X ′ has ak-boundedly complete basis.

(3) By Theorem5 X has a basis if and only if it has ak-boundedly complete basis with0 ≤ k ≤ n.
By (1) this happens if and only ifX ′ has ak-shrinking basis and again by Theorem5 if and only if X ′ has
a basis. �

4 Quasi-reflexivity and mean ergodicity

Recall that a continuous and linear operatorT on a locally convex spaceX is calledmean ergodic(see
e.g. [13, Ch. 2,§2.1, p. 73]) if the limits

Px := lim
n→+∞

1

n

n
∑

k=1

T kx

exist for every elementx ∈ X . It is calledpower boundedif the orbits{T kx : k ∈ N } of all elements
are bounded sets. If a space is barrelled this is equivalent to the equicontinuity of the set(T k)k ⊂ L(X).
If every power bounded operator is mean ergodic then the space X is calledmean ergodic. In 1931 J. von
Neumann proved that unitary operators on (complex) Hilbertspaces are mean ergodic and in 1938 F. Riesz
showed that allLp-spaces (1 < p < +∞) are mean ergodic. A year later E. R. Lorch proved that reflexive
Banach spaces are mean ergodic and the question arose whether the converse of Lorch’s result is also
true. In [7] the authors obtain a positive answer for Banach spaces withbases and also characterize finite
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dimensional Banach spaces by mean ergodicity of power bounded operators. These results have been
extended onto the Fréchet space setting in [1] and to barrelled lcHs’ in [2]. Our aim is to characterize
quasi-reflexiveBCB spaces in terms of mean ergodicity. Originally such a characterization is obtained for
Banach spaces in [7, Th. 5] and later on extended by the author onto Fréchet spaces in [17, Th. 12].

The proof of the following result is similar to the one of [17, Th. 14] (compare [1, Section 3] and [21,
Th. 1]) therefore we omit it.

Theorem 8 Let k be a non-negative integer and letX be a barrelled and complete lcHs which is not
quasi-reflexive of orderk. If X has ak-shrinking basis then it has a(k + 1)-shrinking basis as well.

The proof of the main result of this Section is similar to the original one given in [7] and its sketch is
also presented in [17] therefore we state it without proof.

Theorem 9 LetX be a non-reflexiveBCB space. Then the following assertions are equivalent:

(1) X is quasi-reflexive of order one,

(2) for every power bounded operatorT ∈ L(X), T or T ′ : X ′ → X ′ is mean ergodic.
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Ministry of Science and Higher Education, Poland, grant no.N N201 2740 33.
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Acad. Sci. Fenn. Math., 34, 401–436.

[2] A LBANESE, A. A.; BONET, J., RICKER, W. J., On mean ergodic operators, In G .P. Curbera et. al. (Eds),Vector
Measures, Integration and Related Topics, Proc. of Conf. on ‘Vector Measures, Integration and Applications’,
Eichstätt, Sept. 2008, Birkhäuser Verlag, (to appear).
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