
Statistics & Operations Research Transactions

SORT 33 (2) July-December 2009, 159-170

Statistics &
Operations Research

Transactions
c© Institut d’Estadı́stica de Catalunya

sort@idescat.esISSN: 1696-2281

www.idescat.net/sort

Nonparametric estimation of the expected

accumulated reward for semi-Markov chains

Guglielmo D’Amico

Abstract

In this paper a nonparametric estimator of the expected value of a discounted semi-Markov
reward chain is proposed. Its asymptotic properties are established and as a consequence of the
asymptotic normality the confidence sets are obtained. An application in quality of life modelling
is described.
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1 Introduction

Homogeneous semi-Markov chains (HSMC) have been recognized as a flexible and

efficient tool in the modelling of stochastic systems. Recent results and applications are

retrievable in Barbu, Boussemart and Limnios (2004) and Janssen and Manca (2007).

The idea to link rewards to the occupancy of a semi-Markov state led to the

construction of semi-Markov reward processes. These processes have been analyzed

and applied by many authors; see Howard (1971), De Dominicis and Manca (1986),

Limnios and Oprişan (2001), Khorshidian and Soltani (2002), Janssen and Manca

(2006), Stenberg, Manca and Silvestrov (2006, 2007) and Janssen and Manca (2007).
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The inferential problems related to reward processes are seldom considered. Gar-

diner, Luo, Bradley, Sirbu and Given (2006) considered an estimator of the expected

accumulated reward for non-homogeneous Markov reward processes with deterministic

reward functions. D’Amico (2009) proposed Markov reward processes, with stochas-

tic rate and impulse rewards, to study accumulated measure of the quality of life. In

that paper the asymptotic properties of the nonparametric estimator of the higher order

moments of the reward process have been established.

In this paper we face the nonparametric inference problems related to a discrete

time semi-Markov reward process. We define an estimator of the expected accumulated

reward and we prove that it is uniformly strongly consistent, and if properly centralized

and normalized that it converges in distribution to a normal random variable. The goal

is achieved developing the techniques of estimation for HSMC presented in Barbu and

Limnios (2006).

The paper is divided in this way: first, the semi-Markov reward model is briefly

depicted and the definition of the functional to which we are interested is given. Next,

the asymptotic properties of the nonparametric estimator of the expected accumulated

reward process are assessed. Finally, the practical usefulness of the results is shown by

exposing a possible application to measure the quality of life.

2 The semi-Markov reward model

Homogeneous semi-Markov chains are a generalization of discrete time Markov chains

allowing the times between transitions to occur at random times distributed according

to any kind of distribution function which may depend on the current and the next state.

Let us consider a finite set of states E = {1,2, . . . ,S} in which the system can be into

and a complete probability space (Ω,F,P) on which we define the following random

variables:

Xn : Ω → E, Tn : Ω → N. (2.1)

They denote the state occupied at the n-th transition and the time of the n-th transition

respectively.

Suppose that the process (Xn,Tn)n∈N is a discrete time homogeneous Markov renewal

process of kernel q = (qi j(t)); see Barbu et al. (2004). Elements of the kernel represent

the following probabilities

qi j(t) = P[Xn+1 = j,Tn+1 −Tn = t|Xn = i]. (2.2)
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From these quantities it is possible to define

Qi j(t) = P[Xn+1 = j,Tn+1 −Tn ≤ t|Xn = i] =
t

∑
τ=1

qi j(τ), (2.3)

the probability to join, with next transition, state j within time t given the starting, at

time zero, from the state i.

The process {Xn} is a Markov chain with state space E and transition probability

matrix P = Q(∞). We shall refer to it as the embedded Markov chain.

The unconditional waiting time distribution function in state i is

Hi(t) = P[Tn+1 −Tn ≤ t|Xn = i] = ∑
j∈E

Qi j(t). (2.4)

Now it is possible to define the conditional cumulative distribution functions of the

waiting time in each state, given the state subsequently occupied:

Gi j(t)=P{Tn+1 −Tn ≤ t|Xn = i,Xn+1 = j}= 1

pi j

t

∑
s=1

qi j(s) ·1{pi j 6=0}+1{pi j=0} (2.5)

Define {N(t)} by N(t) = sup{n : Tn ≤ t} ∀t ∈ N. The discrete time process Z =

(Z(t), t ∈N) defined by Z(t) = XN(t) is a semi-Markov process of kernel q. It represents,

for each waiting time, the state occupied by the process Xn.

We define, ∀i, j ∈ E, and t ∈ N, the semi-Markov transition probabilities:

φi j(t) = P[XN(t) = j|X0 = i]. (2.6)

They are obtained by solving the system of equations:

φi j(t) = δi j(1−Hi(t))+ ∑
k∈E

t

∑
τ=1

qik(τ)φk j(t −τ). (2.7)

Algorithms to solve equations (2.7) are well known, see for example Janssen and Manca

(2007).

To introduce a reward structure, we consider the score function g : E →R. This func-

tion assigns a reward (score) g( j) when the process visits state j ∈ E. Define {Y (t)} by

Y (t) = ∑
t
s=1 dsg(Z(s)). It represents the discounted accumulated semi-Markov reward

process. The quantity d ∈ [0,1] is a discount factor introduced to compare present scores

with future scores. The process Y (t) is of interest, for example, in insurance mathemat-

ics see e.g. Stenberg et al. (2006, 2007) as well as in quality of life measurement – see

D’Amico (2009) in which Z(t) is considered to be a finite and ergodic Markov chain

and g a stochastic score function.
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The expected value of Y (t) is of interest to synthesize the process behaviour. Let us

denote Mi(t) = E[Y (t)|X0 = i]. Then it results that

Mi(t) = E[
t

∑
s=1

dsg(Z(s))|X0 = i]

=
t

∑
s=1

dsE[g(Z(s))|X0 = i] =
t

∑
s=1

ds ∑
j∈E

g( j)φi j(s)

=
t

∑
s=1

∑
j∈E

dsg( j)φi j(s).

(2.8)

Mi(t) represents the functional we wish to estimate.

3 The estimation of the expected accumulated reward

Let us suppose now that we have a right-censored history of the HSMC until the

observation time L:

H(L) = {X0,T1,X1,T2,X2, . . . ,TN(L),XN(L),uL} (3.1)

where N(L) = max{n ∈ N|Tn ≤ L} and uL = L−TN(L).

Following the line of research in Barbu and Limnios (2006, 2008), to estimate the

semi-Markov kernel, we use the empirical estimator:

q̂i j(k,L) =

N(L)

∑
n=1

1{Xn−1=i,Xn= j,Tn−Tn−1=k}

N(L)

∑
n=1

1{Xn=i}

(3.2)

To estimate the functional (2.8) we propose the estimator

M̂i(t;L) =
t

∑
s=1

∑
j∈E

dsg( j)φ̂i j(s;L). (3.3)

Estimator φ̂i j(s;L) is the (i, j)-th element of the transition probability matrix Φ̂

which satisfies the matrix equation Φ̂(t) = I− Ĥ(t) + q̂ ∗ Φ̂(t), where ∗ denotes the

matrix convolution product – see Barbu and Limnios (2006) for more details.

The following asymptotic property holds true:
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Proposition 3.1 For all i ∈ E and θ ∈ N the estimator M̂i(θ ,L) is uniformly strongly

consistent, that is

max
i∈E

max
0≤θ≤L

|M̂i(θ ,L)−Mi(θ )| a.s.−→ 0 as L → ∞. (3.4)

Proof. We use the following inequalities:

max
i∈E

max
0≤θ≤L

|M̂i(θ ,L)−Mi(θ )|=max
i∈E

max
0≤θ≤L

|
θ

∑
s=1

∑
j∈E

dsg( j)
(
φ̂i j(s,L)−φi j(s)

)

≤ max
i∈E

max
0≤θ≤L

θ

∑
s=1

∑
j∈E

dsg( j)|φ̂i j(s,L)−φi j(s)|

≤
θ

∑
s=1

∑
j∈E

dsg( j)max
i∈E

max
0≤θ≤L

|φ̂i j(s,L)−φi j(s)|

(3.5)

and this last quantity goes to zero almost surely as a consequence of the uniform strongly

consistency of the estimators φ̂i j(s,L) given in Barbu and Limnios (2006).

To prove the asymptotic normality of estimator M̂i(t;L) we need to introduce the

following variables:

q
(n)
i j (t) = P[Xn = j,Tn = t|X0 = i], (3.6)

ψi j(t)
.

=
t

∑
n=0

q
(n)
i j (t), (3.7)

Ψi j(t)
.

= Ei[N j(t)] =
t

∑
n=0

Q
(n)
i j (t). (3.8)

Finally, with µii and µ∗ii we shall denote the mean recurrence time of state i for the

Markov renewal process (Xn,Tn)n∈N and the mean recurrence time of state i for the

embedded Markov chain (Xn)n∈N, respectively.

The following theorem describes the asymptotic normality of the estimator M̂i(t;L).

Theorem 3.2 For any fixed time h ∈ N and state i ∈ E, it results that

√
L(M̂i(h,L)−Mi(h))

d−→ N(0,σ2
Mi
(h)) as L −→ ∞ (3.9)

where

σ2
Mi
(h)=

µ∗ii
µii

∑
m∈E

µ2
mm

µ∗mm

{
∑
r∈E

h

∑
s=1

d2s
[
Cimr−g(m)Ψim

]2 ∗qmr(s)−
( h

∑
s=1

dsDim(s)
)2
}

(3.10)
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and

Cimr = ∑
j∈E

g( j)[1−H j]∗ψim ∗ψr j (3.11)

Dim(s) = ∑
l∈E

(
Cml ∗qml(s)−g(m)ψim ∗Qml(s)

)
(3.12)

Proof.

√
L
(
M̂i(h,L)−Mi(h)

)
=
√

L
( h

∑
s=1

∑
j∈E

dsg( j)(φ̂i j(s,L)−φi j(s))
)

(3.13)

In Barbu and Limnios (2006) it was proved that
√

L(φ̂i j(k,L)−φi j(k)) has the same

asymptotic behaviour as

√
L{

m

∑
n=1

m

∑
u=1

[(1−H j)∗ψin ∗ψu j ∗∆qnu](k)−
m

∑
u=1

ψi j ∗∆Q ju(k)}, (3.14)

where ∆qi j(k)
.

= q̂i j(k,L)−qi j(k) and ∆Qi j(k)
.

= Q̂i j(k,L)−Qi j(k).

Applying this result to our functional we obtain that
√

L
(
M̂i(h,L)−Mi(h)

)
has the

same asymptotic distribution as

√
L

h

∑
s=1

∑
v∈E

∑
l∈E

[
∑
j∈E

ds(g( j)(1−H j)∗ψiv ∗ψl j)∗∆qvl

]
(s)

−
√

L
h

∑
s=1

∑
l∈E

∑
j∈E

dsg( j)ψi j ∗∆Q jl(θ )

(3.15)

Let us denote Civl = ∑ j∈E g( j)[1−H j] ∗ψiv ∗ψl j, then by substitution of the kernel

estimator (3.2) in formula (3.15) we get

=
1√
L

N(L)

∑
n=1

(

∑
v∈E

∑
l∈E

L

Nn(L)

{ h

∑
s=1

[
dsCvl ∗

(
1{Xn−1=v,Xn=l,Tn−Tn−1=·}

−qvl(·)1{Xn−1=v}
)
(s)−dsg(v)ψiv ∗

(
1{Xn−1=v,Xn=l,Tn−Tn−1≤·}

−Qvl(·)1{Xn−1=v}
)
(s)
]}
)

=
1√
L

N(L)

∑
n=1

f (Xn−1,Xn,Tn −Tn−1)

(3.16)

where the function f : E ×E ×N−→ R is defined as follows:



Guglielmo D’Amico 165

f (m,r,z)≡ ∑
v∈E

∑
l∈E

L

Nn(L)

{ h

∑
s=1

[
dsCivl ∗

(
1{Xn−1=v,Xn=l,Tn−Tn−1=·}−qvl(·)

·1{Xn−1=v}
)
(s)−dsg(v)ψiv∗

(
1{Xn−1=v,Xn=l,Tn−Tn−1≤·}−Qvl(·)1{Xn−1=v}

)
(s)
]}

=
L

Nn(L)

{ h

∑
s=1

[
dsCimr ∗ (1{z=·}(s)− ∑

l∈E

dsCml ∗qml(s))

−dsg(m)ψim ∗1{z≤·}(s)
s

∑
l=1

dsg(m)ψim ∗Qml(s)
]}

=
L

Nn(L)

{ h

∑
s=1

ds
[
Cimr ∗1{z=·}−g(m)ψim ∗1{z≤·}(s)

− ∑
l∈E

(
Ciml ∗qml(s)−g(m)ψim ∗Qml(s)

)]}

(3.17)

Pyke and Schauffele (1964) provide a central limit theorem for expressions of the

type (3.16). Then, its application, as suggested by Barbu and Limnios (2006) for

reliability indicators, will give us the asymptotic variance of M̂i(t). The application of

this theorem requires the computation of several quantities marked below in bold.

Let

Aimr
.

=
∞

∑
z=1

f (m,r,z)qmr(z)

=
( L

Nn(L)

){ h

∑
s=1

ds
[
Cimr ∗qmr(s)−g(m)ψim ∗Qmr(s)

− ∑
l∈E

(
Ciml ∗qml(s)−g(m)ψim ∗Qml(s)

)
pmr

]}
(3.18)

consequently we have

Aim
.

= ∑
r∈E

Aimr = 0 (3.19)

Let

Bimr
.

=
∞

∑
z=1

f 2(m,r,z)qmr(z)

=
∞

∑
z=1

( L

Nm(L)

)2{ h

∑
s=1

ds
[
Cimr ∗1{z=·}(s)−g(m)ψim ∗1{z≤·}(s)

− ∑
l∈E

(
Ciml ∗qml(s)−g(m)ψim ∗Qml(s)

)]}2

qmr(z)

(3.20)
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Denoting Dim(s) = ∑l∈E [Ciml ∗qml(s)−g(m)ψim ∗Qml(s)] and developing the square

we get

Bimr =
( L

Nm(L)

)2

{
∞

∑
z=1

[( h

∑
s=1

ds
[
Cimr ∗1{z=·}(s)−g(m)ψim ∗1{z≤·}(s)

])2

+
( h

∑
s=1

dsDim(s)
)2

−2
( h

∑
a=1

daDim(a)
)( h

∑
s=1

ds
[
Cimr ∗1{z=·}(s)

−g(m)ψim ∗1{z≤·}(s)
])]

qmr(z)

}
(3.21)

Then

Bimr =
( L

Nm(L)

)2

{
h

∑
s=1

ds
[
C2

imr ∗qmr(s)+g(m)Ψ2
im ∗qmr(s)

−2g(m)CimrΨim ∗qmr(s)
]
+
( h

∑
s=1

dsDim(s)
)2

pmr

−2
( h

∑
a=1

daDim(a)
)( h

∑
s=1

ds
[
Cimr ∗qmr(s)−g(m)ψim ∗Qml(s)

])
}

(3.22)

=
( L

Nm(L)

)2( h

∑
s=1

d2s
[
Cimr −g(m)Ψim

]2 ∗qmr(s)+
( h

∑
s=1

dsDim(s)
)2

pmr

−2
( h

∑
a=1

daDim(a)
)( h

∑
s=1

ds
[
Cimr ∗qmr(s)−g(m)ψim ∗Qml(s)

])
(3.23)

Now let us compute

Bim
.

= ∑
r∈E

Bimr =
( L

Nm(L)

)2

{(
∑
r∈E

h

∑
s=1

d2s
[
Cimr −g(m)Ψim

]2 ∗qmr(s)
)

+
( h

∑
s=1

dsDim(s)
)2

−2
( h

∑
a=1

daDim(a)
)( h

∑
s=1

dsDim(s)
)}

=
( L

Nm(L)

)2

{(
∑
r∈E

h

∑
s=1

d2s
[
Cimr−g(m)Ψim

]2∗qmr(s)
)
−
( h

∑
s=1

dsDim(s)
)2

}
(3.24)

Since Ai j = 0, mi
.

= ∑
s
j=1 Ai j

µ∗ii
µ∗j j

= 0 and then m f
.

= mi

µii
= 0. Consequently in the

Pyke-Schaufele’s central limit theorem
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σi
2 .

= ∑
m∈E

Bim

µ∗ii
µ∗mm

= µ∗ii ∑
m∈E

( L

Nm(L)

)2 1

µ∗mm

{(
∑
r∈E

h

∑
s=1

d2s
[
Cimr −g(m)Ψim

]2 ∗qmr(s)
)

−
( h

∑
s=1

dsDim(s)
)2

}
(3.25)

Moreover B f
.

=
σ2

i

µii
and since

Nm(L)
L

a.s.−→ 1
µmm

as L −→ ∞, then we get

σ2
(M)(h) = B f

=
µ∗ii
µii

∑
m∈E

µ2
mm

µ∗mm

{

∑
r∈E

h

∑
s=1

d2s[Cimr−g(m)Ψim]
2 ∗qmr(s)−

( h

∑
s=1

dsDim(s)
)2

}
(3.26)

Note that at this time it is an easy task to construct the confidence intervals for

this estimate, in fact at first we have to estimate the variance σ2
M(h) by replacing in

expression (3.26) each element with its corresponding estimator then, since σ̂2
M(h) is a

consistent estimator, the resulting confidence interval for Mi(t) still has asymptotic level

100(1−α)% and is given by:

M̂i(t)− zα
2
× σ̂M(t)√

L
≤ Mi(t)≤ M̂i(t)+ zα

2
× σ̂M(t)√

L
(3.27)

4 Application in quality of life estimation

The results can be applied in order to solve many real life problems which require

semi-Markov processes, such as disability insurance models, see D’Amico, Guillén and

Manca (2009). Here, we discuss a possible application in the modelling and estimation

of the quality of life evolution of a person.

One of the most recent approaches in the quality of life modelling and estimation

is to assume that the observed quality of life of a person is, at any time, a discrete

variable which can be assessed through a self-rated questionnaire or by an interviewer,

see Limnios, Mesbah and Sadek (2004).

The use of Markov chains to describe the longitudinal process of the quality of life

of a person has been suggested by Chen and Sen (2001, 2004), Limnios et al. (2004)
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and more recently by D’Amico (2009). In particular in D’Amico (2009), Markov reward

processes have been proposed to study accumulated measure of the quality of life of a

person.

As already stated, semi-Markov chains have sojourn time distributions (2.5) of any

type, this is why they are more appropriate to applications than the Markov chains. For

this reason we suppose that, at any time, the quality of life of a person is described by a

discrete variable (state) and that its evolution in time is described by a HSMC.

Following D’Amico (2009), we give the following definition:

Definition 4.1 The accumulated quality of life index at time t is

AIQLi(t) = Yi(t) (4.1)

where Yi(t) is the discounted accumulated semi-Markov reward process given that

X0 = i.

The functional (2.8) represents the expected value of the accumulated quality of life

index and is an important indicator for comparing different quality of life policies.

To illustrate the results obtained in the previous section we adopt a simulation

strategy. In general we do not know the true form of the semi-Markov kernel which

should be estimated via historical data. Unfortunately we are not in possession of real

data, so we assume that data are generated by the unknown kernel Q̃ identified by the

following embedded Markov chain:

P =




1 2 3

1 0.70 0.30 0.00

2 0.50 0.00 0.50

3 0.00 0.35 0.65




and the following conditional waiting time distribution functions:

G1,1(·) = cd f (Lognormal)(4,2);G1,2(·) = cd f (Lognormal)(2,1)

G2,1(·) = cd f (Exponential)(3);G2,3(·) = cd f (Exponential)(5.8)

G3,2(·) = cd f (Lognormal)(4,0.5);G3,3(·) = cd f (Exponential)(2)

Thus, when the process is in state i = 1, the next state is sampled from the prob-

ability distribution (0.70,0.30,0.00). If, for example, the state j = 2 is selected then

a waiting time in state i = 1 has to be sampled from the distribution G1,1(·) which is

a Lognormal with parameters (4,2). At this time a new state is sample from the dis-

tribution (0.50,0.00,0.50) and so on. We construct a trajectory of length L = 2000 of

the semi-Markov process generated by the assumed kernel Q̃. From this trajectory we

estimate the quantity of interest by using the proposed estimators.
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In Figure 1 we show the estimation of the transition probabilities (dashed lines) with

starting state i= 1 and we compare them with those obtained assuming as true the kernel

Q̃ (continuous lines). The lower rigt hand plot shows the estimation of the expected value

of the accumulated quality of life (dashed line) and the true value calculated by using

kernel Q̃ (continuous line) assumed to generate the data.

Finally, notice that it could be possible and interesting to construct estimators of

the higher order moments of a semi-Markov chain with rewards. To this end, we shall

estimate the renewal type equations established by Stenberg et al. (2006, 2007) since no

explicit expression, as simple and manageable as formula (2.8), exists for higher order

moments.

Figure 1: Comparison between true and estimated values.



170 Nonparametric estimation of the expected accumulated reward for semi-Markov chains

Acknowledgments

The author would like to thank Profs. Nikolaos Limnios and Vlad Barbu for discussions

and suggestions he had during his period as visiting researcher at the Université de
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