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THE GROWTH OF THE Ap CONSTANT ON CLASSICAL

ESTIMATES

CARLOS PÉREZ

Abstract. We survey on some recent results concerning weak and strong
weighted Lp estimates for Calderón-Zygmund operators with sharp bounds
when the weight satisfies the A1 condition. These questions are related to a
problem posed by Muckenhoupt and Wheeden in the seventies.

1. Introduction

In 1971, C. Fefferman and E.M. Stein [13] established the following extension of
the classical weak-type (1, 1) property of the Hardy-Littlewood maximal operator
M :

sup
λ>0

λw{x ∈ R
n : Mf(x) > λ} ≤ c

∫

Rn

|f |Mwdx, (1.1)

where a weight w is supposed to be a non-negative locally integrable function and
w(E) =

∫
E w(x)dx. This estimate yields some sort of duality for M . It was used in

[13] to derive the vector-valued extension of the classical estimates for the Hardy-
Littlewood maximal function which has many important applications: for every
1 < p, q <∞:

∥∥∥∥
( ∑

j

(Mfj)
q
) 1

q

∥∥∥∥
Lp(Rn)

≤ C

∥∥∥∥
(∑

j

|fj |
q
) 1

q

∥∥∥∥
Lp(Rn)

Assume now that T is a Calderón-Zygmund singular integral operator. It was
conjectured by B. Muckenhoupt and R. Wheeden [24] many years ago that the full
analogue of (1.1) holds for T , namely,

sup
λ>0

λw{x ∈ R
n : |Tf(x)| > λ} ≤ c

∫

Rn

|f |Mwdx. (1.2)

We will refer to this as the Muckenhoupt-Wheeden conjecture.
The question whether inequality (1.2) holds is still open even for the Hilbert

transform. Moreover, it is still unknown whether the following weaker variant of
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120 CARLOS PÉREZ

(1.2) is true: if w is an A1 weight, then

sup
λ>0

λw{x ∈ R
n : |Tf(x)| > λ} ≤ c[w]A1

∫

Rn

|f |wdx. (1.3)

Recall that w is an A1 weight if there is a finite constant c such that

Mw ≤ cw a.e.

and where [w]A1
denotes the smallest of these c.

We will refer to this new possible result as the weak Muckenhoupt-Wheeden

conjecture. In this notes we shall be concerned with this conjecture. We don´t
prove the conjecture, namely the linear growth but we prove a logarithmic growth
in (1.4) taken from [20] (see also[18].

As far as we know, the first result along these line was proved by S. Buckley [3]
as part of his PhD. Thesis. To estate this result we recall that a weight satisfy the
Muckenhoupt Ap condition if

[w]
Ap

≡ sup
Q

(
1

|Q|

∫

Q

w(x)dx

) (
1

|Q|

∫

Q

w(x)−1/(p−1)dx

)p−1

<∞.

[w]
Ap

is called the Ap constant (or characteristic or norm) of the weight The case

p = 1 is understood by replacing the right hand side by (infQw)−1 which is equiv-
alent to the one defined above.

Observe the duality relationship:

[w]
Ap

= [w1−p′ ]p−1

Ap′

We establish now the result (with an improvement in the constant)

Theorem 1.1. Let w ∈ Ap, then the Hardy-Littlewwod maximal function satisfies
the following operator estimate:

‖M‖
Lp(w)

≤ cp′ [w]
1

p−1

Ap

namely,

sup
w∈Ap

1

[w]
1

p−1

Ap

‖M‖
Lp(w)

≤ cp′ <∞ (1.4)

Furthermore the result is sharp in the sense that: for any θ > 0

sup
w∈Ap

1

[w]
1

p−1
−θ

Ap

‖M‖
Lp(w)

= ∞ (1.5)

In fact, we cannot replace the function ψ(t) = t
1

p−1 by a “smaller” function
ψ : [1,∞) → (0,∞) in the sense that

inf
t>1

ψ(t)

t
1

p−1

= 0

Rev. Un. Mat. Argentina, Vol 50-2



THE GROWTH OF THE Ap CONSTANT ON CLASSICAL ESTIMATES 121

(or limt→∞
ψ(t)
tβ = 0, or supt>1

tβ

ψ(t) = ∞ or limt→∞
tβ

ψ(t) = ∞) since then

sup
w∈Ap

1

ψ([w]Ap
)
‖M‖ = ∞ (1.6)

The original proof of Buckley is delicate because is based on sharp version of
the so called Reverse Hölder Inequality. However, very, recently, A. Lerner [17] has
found a very nice and simple proof of this result that we will given in section 3. It
is based on the Besicovich lemma but the dyadic case is even simpler.

This result should be compared with weak-type bound is

‖M‖Lp(w)→Lp,∞(w) ≤ c [w]
1/p
Ap
. (1.7)

We shall use several well-known facts about the Ap weights. First, it follows
from the definition of the A1 weights that if w1, w2 ∈ A1, then

w = w1w
1−p
2 ∈ Ap,

and furthermore

[w]Ap
≤ [w1]A1

[w2]
p−1
A1

(1.8)

This is the easy part of the celebrated P. Jones factorization theorem.
Another result we need is due Coifman-Rochberg [8], actually we need a quan-

titavive version of it:

Let µ be a positive Borel, then for each 0 < δ < 1

(Mµ)δ ∈ A1

and furthermore

[(Mf)δ]
A1

≤
cn

1 − δ
. (1.9)

In fact they proved that any A1 weight can be essentially written in this way.
These results and related ones (for instance for the square functions) have be-

come important after the work of S. Petermichl and A. Volberg [28] for the Ahlfors-
Beurling Transform. In this paper the authors proved a conjecture by Astala-
Iwaniec-Saksman related to the border line regularity of the solutions of the Bel-
trami equation and which is connected to the theory of Quasirregular mapppings
as can be found in [2]. [28] opens up the possibility of considering some other op-
erators such as the classical Hilbert Transform. Finally S. Petermichl [26, 27] has
proved the corresponing results for the Hilbert transform and the Riesz Transforms.

To more precise, in [28] [26, 27] it has been shown that if T is either the Ahlfors-
Beurling, Hilbert or Riesz Transforms and 1 < p <∞, then

‖T ‖
Lp(w)

≤ cp,n[w]
max{1, 1

p−1
}

Ap

. (1.10)

Furthermore the exponent max{1, 1
p−1} is best possible by examples similar to the

one related to Theorem 1.1.
The conjecture that we think should be true is the following:
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122 CARLOS PÉREZ

Conjecture 1.2 (the A2 conjecture). Let 1 < p < ∞ and let T be a Calderón-
Zygmund singular integral operator. Then, there is a constant c = c(n, T ) such
that for any Ap weight w,

‖T ‖
Lp(w)

≤ c p [w]
max

{
1, 1

p−1

}

Ap
. (1.11)

The concept of Calderón-Zygmund singular integral operator is the usual one as
can be found for instance in [15]. The maximum in the exponent reflects the duality
of T , namely that T ∗ is also a Calderón-Zygmund singular integral operator. In
fact it can be shown that if T is selfadjoint (or essentially like Calderón-Zygmund
operators) then if (1.11) is proved for p ≥ 2 then the case 1 < p < 2 is obtained
by duality. What it is more interesting is that by the sharp Rubio de Francia
extrapolation theorem obtained in [11] it is enough to prove (1.11) only for p = 2.
This is the reason why is called the A2 conjecture. Observe that in this case the
growth of the constant is simply linear!!.

The proofs in the papers [28, 26, 27] are based on the Bellman function technique,
and it is not clear whether they can be extended to the wider class of Calderón-
Zygmund operators.

In order to study inequality (1.3), it is natural to ask first about the dependence
of Lp(w) operator norms of T on [w]

A1
for p > 1. We discuss briefly the known

results in this direction.
Denote by α the best possible exponent in the inequality

‖T ‖
Lp(w)

≤ cn,p[w]α
A1

. (1.12)

In the case when p = 2 and T = H is the Hilbert transform, R. Fefferman and
J. Pipher [12] established that α = 1. The proof is based on sharp A1 bounds
for appropriate square functions on L2(w) from the works [4, 5], in particular, the
following celebrated inequality of Chang-Wilson-Wolff was used:

∫

Rn

(Sf)2 w dx ≤ C

∫

Rn

|f |2M(w) dx

One can show that this approach yields α = 1 also for p > 2. However, for 1 < p < 2
the same approach gives the estimate α ≤ 1/2 + 1/p. Also, that approach works
only for classical singular integrals.

Recall that A1 ⊂ Ap, and

[w]
Ap

≤ [w]
A1
.

Therefore, (1.10) clearly gives that α = 1 in (1.12) when p ≥ 2. However, (1.10)
cannot be used in order to get the sharp exponent α in the range 1 < p < 2,
becoming the exponent worst when p gets close to 1.

In [18] and [20] we use a different approach to show that for any Calderón-
Zygmund operator, the sharp exponent in (1.12) is α = 1 for all 1 < p < ∞. Our
method is more closely related to the classical Calderón-Zygmund techniques but
refining some known estimates.

We hope that some of these ideas may lead to a proof of the A2 conjecture 1.2.
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We state now our main theorems. From now on T will always denote any
Calderón-Zygmund operator.

Theorem 1.3. [the linear growth theorem] Let T be a Calderón-Zygmund operator.
Then

‖Tf‖Lp(w) ≤ c pp′ [w]A1
‖f‖Lp(w) (1 < p <∞) (1.13)

where c = c(n, T ).

Theorem 1.4. [the logarithmic growth theorem] Let T be a Calderón-Zygmund
operator. Then

‖Tf‖L1,∞(w) ≤ c[w]A1
(1 + log[w]A1

)‖f‖L1(w), (1.14)

where c = c(n, T ).

The result in (1.13) is best possible. However, we don´t know about the second
result.

If we could improve (1.14) by removing the log term, namely if the weak Muckenhoupt-
Wheeden conjecture were true then we had the following following result.

Conjecture 1.5. Let 1 < p < ∞ and let T be a Calderón-Zygmund singular
integral operator. There is a constant c = c(n, T ) such that for any Ap weight w,

‖T ‖
Lp,∞(w)

≤ c p [w]
Ap
. (1.15)

This result would be the best possible.
In section 4 we prove this conjecture assuming the weak Muckenhoupt-Wheeden

conjecture is true. The same argument yields the following result

Corollary 1.6. Let 1 < p < ∞ and let T be a Calderón-Zygmund operator. Also
let w ∈ Ap, then

‖Tf‖Lp,∞(w) ≤ cp[w]Ap
(1 + log[w]Ap

)‖f‖Lp(w), (1.16)

where c = c(n, p, T ).

Observe that for p close to one, the behaviour of the constant is much better
than the one in Pettermichl result (1.10). Our advantage is that our method works
for any Calderón-Zygmund operator.

2. The fractional integral case

It is a very natural question weather similar results mentioned in the introduction
would hold for Fractional Integral Operators. In this small section we survey some
result recently obtained in collaboration with M. Lacey, K. Moen and R. Torres in
[22] and will be part of K. Moen PhD’s thesis at the University of Kansas.

For 0 < α < n, the fractional integral operator or Riesz potential Iα is defined
by

Iαf(x) =

∫

Rn

f(y)

|x− y|n−α
dy,
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124 CARLOS PÉREZ

while the related fractional maximal operator Mα is given by

Mαf(x) = sup
Q∋x

1

|Q|1−α/n

∫

Q

|f(y)| dy.

These operators play an important role in analysis, particularly in the study of
differentiability or smoothness properties a functions. See Grafakos [14] for the
basic properties of these operators.

Weighted inequalities for these operators and more general potential operators
have been studied in depth. See e.g. the works of Muckenhoupt and Wheeden [23],
Sawyer [29], and Pérez [9], [10]. Such estimates naturally appear in many problems
of mathematics.

In [23], B. Muckenhoupt and R. Wheeden characterized the weighted strong-
type inequality for fractional operators in terms of the so-called Ap,q condition.
For 1 < p < n/α and q defined by 1

q = 1
p −

α
n , they showed that for all f ≥ 0,

(∫

Rn

(wTαf)q dx

)1/q

≤ c

(∫

Rn

(wf)p dx

)1/p

, (2.1)

where Tα = Iα or Mα, if and only if w ∈ Ap,q. That is,

[w]Ap,q
≡ sup

Q

(
1

|Q|

∫

Q

wq dx

) (
1

|Q|

∫

Q

w−p′ dx

)q/p′
<∞.

It is not obvious a priori what the analogous of (1.10) should be for Iα. A
possible guess is

‖w Iαf‖Lq(Rn) ≤ C [w]
max{1, p′

q
}

Ap,q
‖w f‖Lp(Rn). (2.2)

That was the first estimate we were able to obtain when we started our investiga-
tions. Note that if we formally put α = 0 in (2.2), then we obtain (1.10) suggesting
that (2.2) could be sharp as well. Simple examples, however, show that this is not
the case. In fact, we prove in [22] the estimate

‖wIαf‖Lq0(Rn) ≤ c [w]Ap0,q0
‖wf‖Lp0(Rn) (2.3)

for an appropriate pair of exponents (p0, q0) such that q0
p′
0

= 1− α
n . This result com-

bined with an appropriate off diagonal extrapolation theorem immediately yields

‖w Iαf‖Lq(Rn) ≤ c [w]
max (1,(1−α

n
) p′

q
)

Ap,q
‖w f‖Lp(Rn). (2.4)

Note that this new estimate also yields (1.10) if we formally put α = 0 obtaining a
better result than (2.2). The end of this search is given by the following theorem.

Theorem 2.1. Let 1 < p < n/α and q be defined by the equation 1/q = 1/p−α/n,
and let w ∈ Ap,q. Then,

‖wIαf‖Lq(Rn) ≤ c [w]
(1− α

n
)max{1, p′

q
}

Ap,q
‖wf‖Lp(Rn), (2.5)

where η(x) = min{max(1−α/n, x),max(1, (1−α/n)x)}. Furthermore this estimate
is sharp.
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This result can be found in [22] where some examples are given proving the
sharpness of the exponent range.

Our method in [22] avoids completely the good–lambda method used by Muck-
enhoupt and Wheeden [23]. We prove first a sharp weak type estimate in the spirit
of (2.5) and then we use a characterization of two-weight norm inequalities for Iα
which is a deep result due to E. Sawyer [29]. We also use a procedure to discretize
the operator which is interesting on its own right. We combine ideas from the work
of Sawyer and Wheeden in [30], together with some techniques from [10] (see also
[9]).

We do not know if our results in [22] could be derived avoiding the deep result
from Sawyer [29] using other techniques. As we already mentioned, even in the
Calderón-Zygmund case the known results for full range of exponents are obtained
via extrapolation from one estimate. Our results illustrate again the power of
extrapolation techniques, this time in an off-diagonal setting.

3. The maximal function

In this section we give a proof of Theorem 1.1, but first we will show the result
for the weak type case that can be derived very easily from standard methods.

For the ”proof” we try we will use the following result for the maximal function.

Lemma 3.1. Let w ∈ Ap, 1 < p <∞.There is a constant c = cn such that for any
Ap weight w,

‖M‖
Lp,∞(w)

≤ cn [w]
1
p

Ap

, (3.1)

Observe the constant is better than in (1.15). Also observe that if we consider
the dual estimate, the constant is essentially the same, namely:

‖M‖
Lp′,∞(σ)

≤ cn [σ]
1

p′

Ap′

= cp′ [w]
1

p−1
1

p′

Ap

= cp′ [w]
1
p

Ap

. (3.2)

where recal σ = w1−p′ .

Proof of the Lemma. Since w ∈ Ap for each cube Q and nonnegative function f
(

1

|Q|

∫

Q

f(y) dy

)p
w(Q) ≤ [w]

Ap

∫

Q

f(y)pw(y)dy

and hence

Mf(x) ≈M cf(x) ≤ [w]
1
p

Ap

M c
w(fp)(x)

1
p ,

and Besicovtich:

‖Mf‖
Lp,∞(w)

≤ cn[w]
1
p

Ap

‖M c
w(fp)

1
p ‖
Lp,∞(w)

≤ cn[w]
1
p

Ap

‖M c
w(fp)‖

1
p

L1,∞(w)

≤ cn[w]
1
p

Ap

(∫

Rn

fpw dx
)1/p

�
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126 CARLOS PÉREZ

We remark that there is another proof of this theorem without appealing the
besicovitch lemma, just by a Vitali type covery lemma. We leave the proof to the
interested reader.

We now give Lerner´s proof of Buckley’s improvement Theorem 1.1.

Proof of Theorem 1.1. To prove (1.4) we set

Ap(Q) =
w(Q)

|Q|

(σ(3Q)

|Q|

)p−1

then, we have using that
Ap(Q) ≤ 3np [w]Ap

and that for any x ∈ Q then Q ⊂ Q(x, 2ℓ(Q)) ⊂ 3Q

1

|Q|

∫

Q

|f | = Ap(Q)
1

p−1

{
|Q|

w(Q)

( 1

σ(3Q)

∫

Q

|f |
)p−1

} 1
p−1

≤ 3np
′

[w]
1

p−1

Ap

{
1

w(Q)

∫

Q

M c
σ(fσ

−1)p−1dx

} 1
p−1

.

where M c
σ is the weighted centered maximal function.

Using again that
Mf(x) ≤ 2nM cf(x)

we get

Mf(x) ≤ 2n 3np [w]
1

p−1

Ap

{
M c
w

(
M c
σ(fσ

−1)p−1w−1
)
(x)

} 1
p−1

We conclude using that both

‖M c
w‖Lp′

w
and ‖M c

σ‖Lp
σ

are finite with constants uniformly in w. This follows from the Besicovitch
covering Lemma.

For the sharpness we consider n = 1 and 0 < ε < 1. Let

u(x) = |x|(1−ε)(p−1).

It is easy to check that

[w]
1

p−1

Ap
≈

1

ε
and hence as in Buckley´s paper

f(y) = y−1+ε(p−1) χ(0,1)(y)

Observe that:

‖f‖pLp(w) ≈
1

ε
To estimate now ‖Mf‖Lp(w) we pick 0 < x < 1, hence

Mf(x) ≥
1

x

∫ x

0

f(y) dy = cp
1

ε
f(x)

and hence

‖Mf‖Lp(w) ≥ cp
1

ε
‖f‖Lp(w)
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From which the rest follows easliy.
�

4. weak (1, 1) implies weak (p, p)

We need the following lemma which is a variation of the Rubio de Francia

iteration scheme.

Lemma 4.1. Let 1 < q < ∞ and let w ∈ Aq. Then there exists a nonnegative

sublinear operator D bounded on Lq
′

(w) such that for any nonnegative h ∈ Lq
′

(w):
(a) h ≤ D(h)
(b) ‖D(h)‖Lq′(w) ≤ 2 ‖h‖Lq′(w)

(c) D(h) · w ∈ A1 with

‖D(h) · w‖
A1

≤ c q [w]
Aq

where the constant c is a dimensional constant.

The sharpness of the constant q in (c) it is not needed for the theorem.

Proof. To define D we consider the operator

Sw(f) =
M(fw)

w

and observe that for any 1 < q <∞, by Muckenhoupt’s theorem

Sw : Lq
′

(w) → Lq
′

(w) w ∈ Aq

However we need the sharp version in both the constant and the Aq constant (1.4):

‖Sw‖Lq′ (w)
≤ cq [w1−q′ ]q−1

Aq′

= cq [w]
Aq

Define now for any nonnegative h ∈ Lq
′

(w)

D(h) =

∞∑

k=0

1

2k
Skw(h)

‖Sw‖kLq′ (w)

Hence properties (a) and (b) are immediate and for (c) simply observe that

Sw(D(h)) ≤ 2 ‖Sw‖Lq′(w)D(h) ≤ 2c q [w]
Aq
D(h)

or what is the same D(h) · w ∈ A1 with

‖D(h) · w‖
A1

≤ 2 c q [w]
Aq

�

We know prove Conjecture 1.5 assuming that the weak Muckenhoupt-Wheeden
conjsture holds.
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128 CARLOS PÉREZ

Proof of Conjecture 1.5. Let w ∈ Ap and let f ∈ C∞(Rn) with compact support.
For each t > 0, let

Ωt = {x ∈ R
n : |Tf(x)| > t}.

This set is bounded, so w(Ωt) <∞. By duality, there exists a non-negative function

h ∈ Lp
′

(w) such that ‖h‖Lp′(w) = 1 and

w(Ωt)
1/p = ‖χΩt

‖Lp(w) =

∫

Ωt

hwdx.

We consider now the operator D associated to this weight from Lemma 4.1.
Hence the operator D satisfies

(a) h ≤ D(h)
(b) ‖Dh‖Lp′(w) ≤ 2 ‖h‖Lp′(w) = 2

(c) ‖D(h)w‖A1
≤ c p [w]Ap

hence assuming that the weak Muckenhoupt conjecture holds, then

w(Ωt)
1/p ≤

∫

Ωt

D(h)w dx = (D(h)w)(Ωt)

≤ c ‖D(h)w‖A1

∫

Rn

|f |

t
D(h)w dx

≤
c

t
p[w]Ap

( ∫

Rn

|f |pw dx
)1/p( ∫

Rn

D(h)p
′

w dx
) 1

p′

≤
cp

t
[w]Ap

( ∫

Rn

|f |pw dx
)1/p

.

This completes the proof.
�

5. The sharp Reverse Hölder inequality for A1 weights

In the classical situation, if w ∈ A1, then there is a constnat r > 1 such that
(

1

|Q|

∫

Q

wr
)1/r

≤
c

|Q|

∫

Q

w

However there is a bad dependence on the constant c = c(r, [w]A1
). To prove our

results we need a more precise estimate.

Lemma 5.1. Let w ∈ A1, and let rw = 1 + 1
2n+1[w]A1

. Then for each Q

(
1

|Q|

∫

Q

wrw

)1/rw

≤
2

|Q|

∫

Q

w

i.e.

Mrw
w(x) ≤ 2 [w]A1

w(x). (5.1)

Recall that Mrw = M(wr)1/r
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Proof. Let wQ = 1
|Q|

∫
Q
w, we have by the converse weak-type estimate for M that

for λ > wQ,

w
{
x ∈ Q : Md

Qw(x) > λ
}

≤ 2nλ |{x ∈ Q : Md
Qw(x) > λ}|

where Md
Q is the dyadic maximal operator restricted to a cube Q. Multiplying both

parts of this inequality by λδ−1 and then integrating and using Fubini’s theorem,
we get ∫

Q

(Md
Qw)δwdx ≤ (wQ)δ

∫

Q

wdx +
2nδ

δ + 1

∫

Q

(Md
Qw)δ+1dx

Setting here δ = 1
2n+1[w]A1

, we obtain

1

|Q|

∫

Q

wδ+1dx ≤
1

|Q|

∫

Q

(Md
Qw)δwdx ≤ 2(wQ)δ+1

�

6. The key (tricky) lemma

Recall the classical situation: by the Theorem of Coifman-Fefferman Let 0 <
p <∞ and w ∈ A∞, there is a constant c depending of the A∞ constant of w
such that

‖Tf‖
Lp(w)

≤ c ‖Mf‖
Lp(w)

However, we need a more precise result for very specific weights

Lemma 6.1 (the tricky lemma). Let w be any weight and let 1 ≤ p < ∞.
Then, there is a constant c = c(n, T ) such that:

‖Tf‖
Lp(Mrw)1−p)

≤ cp ‖Mf‖
Lp(Mrw)1−p)

This is the main improvement in [20] of [18] where we had obtained logarithmic
growth on p

The classical proof by good λ Coifman-Fefferman is not sharp i.e gives:

C(p) ≈ 2p

because

[(Mrw)1−p)]
Ap

≈ (r′)p−1

There is another proof by Bagby-Kurtz (using rearrangements) given in the mid
80’s that is more optimal from the point of view of the Lp constant but NOT in
terms of the weight constant.

The proof of this lemma is tricky, it combines another variation the of Rubio de

Francia algorithm together with a sharp L1 Coifman-Fefferman estimate:

Let w ∈ Aq, 1 ≤ q <∞. Then, there is a dimensional constant c such that:

‖Tf‖L1(w) ≤ c[w]Aq
‖Mf‖L1(w)

The original proof we had in [20] of last estimate was based on an idea by
Fefferman-Pipher from [12] using a sharp version of the good-λ inequality of S.
Buckley together with a sharp reverse Holder property of the weights. Both results
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are interesting on its own. However we have found a better proof based on the
following estimate:

Lemma 6.2 (sharp Bagby-Kurtz). Let 0 < p < ∞, 0 < δ < 1 and let w ∈ Aq,
1 ≤ q <∞, then

‖f‖Lp(w) ≤ c p[w]Aq
‖M#

δ (f)‖Lp(w)

for any function f such that |{x : |f(x)| > t}| <∞.

Here,

M#
δ f(x) = M#(|f |δ)(x)1/δ

and M# is the usual sharp maximal function of Fefferman-Stein:

M#(f)(x) = sup
Q∋x

1

|Q|

∫

Q

|f(y) − fQ| dy,

fQ = 1
|Q|

∫
Q
f(y) dy

To prove the final result for singular integrals we will use the following pontwise
estimate [1]:

Lemma 6.3. Let T be any Calderón-Zygmund singular integral operator and let
0 < δ < 1 then there is a constant c such that

M#
δ (T (f ))(x) ≤ cMf(x)

Theorem 6.4. Let 0 < p <∞ and let w ∈ Aq. Then

‖Tf‖Lp(w) ≤ c [w]Aq
‖Mf‖Lp(w)

for any f such that |{x : |Tf(x)| > t}| <∞.

Assuming this result we prove the tricky lemma

Proof of Lemma 6.1. We need a sublemma whose proof is based on using another
variant of the “Rubio de Francia iteration scheme”.

Sublemma: Let 1 < s < ∞ and let w be a weight. Then there exists a
nonnegative sublinear operator R satisfying the following properties:
1) h ≤ R(h)
2) ‖R(h)‖Ls(w) ≤ 2‖h‖Ls(w)

3) R(h)w1/s ∈ A1 with

[R(h)w1/s]A1
≤ cs′

We consider the operator

S(f) =
M(f w1/s)

w1/s

Since ‖M‖Ls ∼ s′, we have

‖S(f)‖Ls(w) ≤ cs′‖f‖Ls(w).

Now, define the Rubio de Francia operator R by

R(h) =

∞∑

k=0

1

2k
Sk(h)

(‖S‖Ls(w))k
.
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It is very simple to check that R satisfies the required properties.
We are now ready to give the proof of the “tricky” Lemma, namely to prove

∥∥∥∥
Tf

Mrw

∥∥∥∥
Lp(Mrw)

≤ cp

∥∥∥∥
Mf

Mrw

∥∥∥∥
Lp(Mrw)

By duality we have,
∥∥∥∥
Tf

Mrw

∥∥∥∥
Lp(Mrw)

= |

∫

Rn

Tf h dx| ≤

∫

Rn

|Tf |h dx

for some ‖h‖Lp′(Mrw) = 1. By the sublemma with s = p′ and v = Mrw there

exists an operator R such that
1) h ≤ R(h)
2) ‖R(h)‖Lp′(Mrw) ≤ 2‖h‖Lp′(Mrw)

3) [R(h)(Mrw)1/p
′

]A1
≤ cp.

We want to make use of property 3) combined with the following two facts:

First, if w1, w2 ∈ A1, and w = w1w
1−p
2 ∈ Ap, then by (1.8)

[w]Ap
≤ [w1]A1

[w2]
p−1
A1

Second, if r > 1 then (Mf)
1
r ∈ A1 by Coifman-Rochberg theorem, furthermore

we need to be more precise (1.9)

[(Mf)
1
r ]
A1

≤ cn r
′.

Hence combining we obtain

[R(h)]
A3

= [R(h)(Mrw)1/p
′(

(Mrw)1/2p
′)−2

]
A3

≤ [R(h)(Mrw)1/p
′

]A1
[(Mrw)1/2p

′

]2
A1

≤ cp.

�

7. The main lemma and the linear growth theorem

Lemma 7.1. Let w be any weight and let 1 < p <∞ and 1 < r < 2.
Then, there is a c = cn such that:

‖Tf‖
Lp(w)

≤ cp′
( 1

r − 1

)1−1/pr

‖f‖
Lp(Mrw)

These three lemmas combined give the linear growth theorem 1.3. Indeed, if we
choose w ∈ A1 with sharp Reverse Holder´s inequality r = rw = 1 + 1

2n+1[w]A1

and

plug this in the inequality we prove the linear growth theorem:

‖T ‖
Lp(w)

≤ c p′ [w]
A1

Proof. We consider to the equivalent dual estimate:

‖T ∗f‖
Lp′(Mrw)1−p′)

≤ cp′
( 1

r − 1

)1−1/pr

‖f‖
Lp′(w1−p′)
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Then use the key lemma since T ∗ is also a Calderón-Zygmund operator

‖
T ∗f

Mrw
‖
Lp′(Mrw))

≤ p′ c ‖
Mf

Mrw
‖
Lp′(Mrw))

Next we note that by Hölder’s inequality with exponent pr,

1

|Q|

∫

Q

fw−1/pw1/p ≤

(
1

|Q|

∫

Q

wr
)1/pr (

1

|Q|

∫

Q

(fw−1/p)(pr)
′

)1/(pr)′

and hence,

(Mf)p
′

≤ (Mrw)p
′−1M

(
(fw−1/p)(pr)

′

)p′/(pr)′

From this, and by the classical unweighted maximal theorem with the sharp
constant,

∥∥∥∥
Mf

Mrw

∥∥∥∥
Lp′(Mrw)

≤ c
( p′

p′ − (pr)′

)1/(pr)′
∥∥∥∥
f

w

∥∥∥∥
Lp′(w)

= c
(rp− 1

r − 1

)1−1/pr
∥∥∥∥
f

w

∥∥∥∥
Lp′(w)

≤ cp
( 1

r − 1

)1−1/pr
∥∥∥∥
f

w

∥∥∥∥
Lp′(w)

.

�

8. Proof of the logarithmic growth theorem:

Proof of Theorem 1.4. The proof is based on ideas from [25]. Applying the Calderón-
Zygmund decomposition to f at level λ, we get a family of pairwise disjoint cubes
{Qj} such that

λ <
1

|Qj |

∫

Qj

|f | ≤ 2nλ

Let Ω = ∪jQj and Ω̃ = ∪j2Qj . The “good part” is defined by

g =
∑

j

fQj
χQj

(x) + f(x)χΩc(x)

and the “bad part” b as

b =
∑

j

bj

where

bj(x) = (f(x) − fQj
)χ
Qj

(x)

Then, f = g + b.
However, it turns out that b is “excellent” and g is really “ugly”.
It is so good the b part that we have the full Muckenhoupt-Wheeden conjecture:

w{x ∈ (Ω̃)c : |Tb(x)| > λ} ≤
c

λ

∫

Rn

|f |Mwdx

by a more or less well known argument using the cancelation of the bj.

Also the term w(Ω̃) is the level set of the maximal function and the Fefferman-
Stein applies (again we have the full Muckenhoupt conjecture).
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Combining we have

w{x ∈ R
n : |Tf(x)| > λ} ≤ w(Ω̃) + w{x ∈ (Ω̃)c : |Tb(x)| > λ/2}

+ w{x ∈ (Ω̃)c : |Tg(x)| > λ/2}.

and the first two terms are already controlled:

w(Ω̃) + w{x ∈ (Ω̃)c : |Tb(x)| > λ/2} ≤
c

λ

∫

Rn

|f |Mwdx ≤
c[w]A1

λ

∫

Rn

|f |wdx

Now, by Chebyschev and the Lemma, for any p > 1 we have

w{x ∈ (Ω̃)c : |Tg(x)| > λ/2}

≤ c(p′)p
( 1

r − 1

)p− 1
r 1

λp

∫

Rn

|g|pMr(wχ(eΩ)c)dx

≤ c(p′)p
( 1

r − 1

)p− 1
r 1

λ

∫

Rn

|g|Mr(wχ(eΩ)c)dx.

By more or less standard arguments we have
∫

Rn

|g|Mr(wχ(eΩ)c)dx ≤ c

∫

Rn

|f |Mrwdx.

Combining this estimate with the previous one, and then taking the sharp reverse
Holder’s exponent r = 1 + 1

2n+1[w]A1

, by the RHI Lemma we get

w{x ∈ (Ω̃)c : |Tg(x)| > λ/2} ≤
c(p′[w]A1

)p

λ

∫

Rn

|f |wdx.

Setting here

p = 1 +
1

log(1 + [w]A1
)

gives

w{x ∈ (Ω̃)c : |Tg(x)| > λ/2} ≤
c[w]A1

(1 + log[w]A1
)

λ

∫

Rn

|f |wdx.

This estimate combined with the previous one completes the proof.
�
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