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JORDAN GRADINGS ON

EXCEPTIONAL SIMPLE LIE ALGEBRAS

ALBERTO ELDUQUE

(Communicated by Gail R. Letzter)

Abstract. Models of all the gradings on the exceptional simple Lie algebras
induced by Jordan subgroups of their groups of automorphisms are provided.

1. Introduction

Given a simple Lie algebra g and a complex Lie group G with Int(g) ≤ G ≤
Aut(g) (here Int(g) denotes the group of inner automorphisms and Aut(g) the
group of all the automorphisms of g), an abelian subgroup A of G is a Jordan
subgroup if [Ale74]:

(i) its normalizer NG(A) is finite,

(ii) A is a minimal normal subgroup of its normalizer, and

(iii) its normalizer is maximal among the normalizers of those abelian subgroups
satisfying (i) and (ii).

The Jordan subgroups are shown in [Ale74] to be elementary (that is, isomorphic
to Zp×· · ·×Zp for some prime number p), and they induce gradings, called Jordan
gradings, on the Lie algebra g.

The classification of Jordan subgroups is given in [Ale74] in two tables. Table 1
deals with the classical Lie algebras. Detailed models of the corresponding Jordan
gradings are given in [OV91, Chapter 3, §3.12]. On the other hand, Table 2 in
[Ale74] gives the classification of the Jordan subgroups for the exceptional Lie
algebras (see also [OV91, Chapter 3, §3.13]). Table 1 below summarizes some
properties of these Jordan subgroups and of the corresponding Jordan gradings. In
all of them, the zero homogeneous subspace is trivial.

It turns out that the Jordan gradings on the exceptional simple complex Lie
algebras, with the exception of a Z3

5-grading on E8, look like the gradings recently
obtained (see [Eld08, Remark 5.30]) from gradings on an octonion algebra and
from gradings on a different type of (nonunital) composition algebra: the Okubo
algebras.
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g A dim gα (α �= 0)

G2 Z
3
2 2

F4 Z
3
3 2

E8 Z
3
5 2

D4 Z3
2 4

E8 Z5
2 8

E6 Z3
3 3

Table 1. The exceptional Jordan gradings

The first purpose of this paper is to check that those gradings induced by octonion
and Okubo algebras are indeed Jordan gradings.

However, checking that a given subgroup of the automorphism group of a simple
Lie algebra is a Jordan subgroup is not an easy task, so a different approach will be
followed which consists of proving the next result, which is of independent interest:

Main Theorem. Let F be an algebraically closed ground field of characteristic 0.
Then, up to equivalence:

(i) There is a unique Z3
2-grading on the simple Lie algebra of type G2 over F

such that dim gα = 2 for any 0 �= α ∈ Z
3
2.

(ii) There is a unique Z3
3-grading on the simple Lie algebra of type F4 over F

such that dim gα = 2 for any 0 �= α ∈ Z
3
3.

(iii) There is a unique Z3
5-grading on the simple Lie algebra of type E8 over F

such that dim gα = 2 for any 0 �= α ∈ Z
3
5.

(iv) There is a unique Z3
2-grading on the simple Lie algebra of type D4 over F

such that dim gα = 4 for any 0 �= α ∈ Z3
2.

(v) There is a unique Z5
2-grading on the simple Lie algebra of type E8 over F

such that dim gα = 8 for any 0 �= α ∈ Z5
2.

(vi) There is a unique Z3
3-grading on the simple Lie algebra of type E6 over F

such that dim gα = 3 for any 0 �= α ∈ Z3
3.

Recall that two gradings g =
⊕

g∈G gg and g =
⊕

γ∈Γ gγ are said to be equivalent
if there is an automorphism ϕ of g such that for any g ∈ G with gg �= 0, there is a
γ ∈ Γ with ϕ(gg) = gγ .

As mentioned above, in the recent paper [Eld08], some natural gradings on either
octonion algebras or Okubo algebras over fields of characteristic �= 2, 3 have been
used to construct some nice gradings on the exceptional simple Lie algebras. Okubo
algebras constitute a class of eight dimensional nonunital composition algebras.
They are then endowed with a nondegenerate quadratic multiplicative form n (so
that n(x ∗ y) = n(x)n(y) for any x, y), and this form is such that the associated
polar form n(x, y) = n(x+ y)− n(x)− n(y) is associative: n(x ∗ y, z) = n(x, y ∗ z)
for any x, y, z. These algebras were introduced by S. Okubo [Oku78] and have some
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remarkable features (see for instance [KMRT98, Chapter 8]). Actually, over fields
of characteristic �= 2, 3, Okubo algebras are precisely the forms of the so-called
pseudo-octonion algebra, which is the algebra defined over the subspace of traceless
3 × 3 matrices over a field containing the cubic roots of 1 with multiplication and
norm given by

x ∗ y = ωxy − ω2yx− ω − ω2

3
trace(xy)1, n(x) = −1

2
trace(x2)

for any x, y, where ω �= 1 = ω3. It is an interesting fact that in this way a
nonassociative composition algebra appears inside the associative algebra of 3 × 3
matrices.

More precisely, the following gradings on exceptional simple Lie algebras were
obtained in [Eld08]:

(1) A Z3
2-grading on any octonion algebra O induces a Z3

2-grading on the simple
Lie algebras g of derivations of O (of type G2) and also a Z

3
2-grading on the

orthogonal simple Lie algebra ĝ of the skew-symmetric maps relative to the
norm of O (of type D4), with g0 = 0 = ĝ0 and such that gα (respectively
ĝα) is a Cartan subalgebra of g (resp. ĝ) for any 0 �= α ∈ Z3

2. (See [Eld08,
Subsection 5.2], and note that in many respects D4 is exceptional.)

(2) A Z2
3-grading on any Okubo algebra O induces a Z3

3-grading on some at-
tached simple Lie algebras g and ĝ of types F4 and E6, with g0 = 0 = ĝ0

and such that gα (respectively ĝα) is a two dimensional subalgebra of g (re-
spectively a three dimensional subalgebra of ĝ) with gα⊕g−α (respectively
ĝα ⊕ ĝ−α) being a Cartan subalgebra of g (resp. ĝ) for any 0 �= α ∈ Z3

3.
(See [Eld08, Subsection 5.3].)

(3) A Z3
2-grading on each of two octonion algebras induces a Z5

2-grading on some
attached simple Lie algebra g of type E8, with g0 = 0 and such that gα is a
Cartan subalgebra of g for any 0 �= α ∈ Z5

2. (See [Eld08, Subsection 5.4].)

An immediate corollary of the Main Theorem is that indeed the gradings above
obtained from gradings on octonion or Okubo algebras are Jordan gradings.

Actually, parts (i), (iv) and (v) of the Main Theorem follow from results by
Hesselink. In fact, by [Hes82, Proposition 3.6], any grading of a simple Lie algebra
g over F with the properties of the gradings in the Main Theorem satisfies the
property that for any 0 �= α in the grading group (which is Zr

p for p = 2, 3 or 5 and
r = 3 or 5) the subspace

(1.1) g[α] =

p−1⊕
i=0

giα

is always a Cartan subalgebra of g. Now, by [Hes82, Theorem 6.2], these gradings
are unique (up to equivalence) in cases (i), (iv) and (v) of the Main Theorem, where
gα is a Cartan subalgebra for any α �= 0. For E8 this was proved earlier in [Tho76],
where it was shown that there is a unique (up to conjugation by automorphisms)
Dempwolff decomposition of E8.

Moreover, the gradings in parts (i), (iv) and (v) are all obtained from the natural
Z3
2-grading on the algebra of octonions O (see [Eld98] and [Eld08]). The Z3

2-gradings
on G2 = derO and on D4 = so(O) are just the gradings induced from the one in
O, while the Z5

2-grading on E8 is obtained from the model of E8 as a direct sum
of two copies of the triality Lie algebra of the octonions (which is isomorphic to
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so(O)) and three copies of the tensor product of two copies of the octonions:

E8 =
(
tri(O)⊕ tri(O)

)
⊕ ι0(O⊗O)⊕ ι1(O⊗O)⊕ ι2(O⊗O)

(see [Eld08] and the references therein). This model of E8 is naturally Z
2
2-graded,

with the zero homogeneous part given by the direct sum of the two copies of the
triality Lie algebra and the nonzero homogeneous parts given by the three copies of
the tensor product of two copies of O. And this Z2

2-grading is now refined by means
of the Z

3
2-grading of O to get a Z

5
2-grading of E8 with the required properties (see

[Eld08, §5.4] for the details).
Therefore, the rest of this paper will be devoted to proving parts (ii), (iii), and

(vi) of the Main Theorem. In the process, very concrete models of the corresponding
Jordan gradings will emerge.

As a consequence, detailed models of all the Jordan gradings in Table 2 of [Ale74]
(the exceptional Jordan gradings) are obtained.

To finish this introduction, note that all these gradings are related to the so-called
orthogonal decompositions introduced in [KKU81] (see [KP94] and the references
therein). For any of these gradings, if we denote by P(Zr

p) the projective space
of dimension r − 1 over the finite field Zp and if for 0 �= α ∈ Zr

p, [α] denotes
the corresponding point in P(Zr

p), then the subalgebras g[α] in (1.1) are Cartan
subalgebras of g, and the decomposition

(1.2) g =
⊕

[α]∈P(Zr
p)

g[α]

is a decomposition of g into a direct sum of Cartan subalgebras which are orthogonal
relative to the Killing form (as the homogeneous subspaces gα and gβ are always
orthogonal unless β = −α). That is, the decomposition in (1.2) is an orthogonal
decomposition of g.

The next section will be devoted to proving the Main Theorem for the Z
3
5-

gradings on E8 (part (iii)), and then Section 3 will deal with parts (vi) and (ii).

2. Z3
5-grading on E8

The purpose of this section is to prove part (iii) of the Main Theorem, that is:

Theorem 2.1. Let F be an algebraically closed field of characteristic 0 and let g be
the simple Lie algebra of type E8 over F. Then up to equivalence there is a unique
Z3
5-grading of g such that dim gα = 2 for any 0 �= α ∈ Z3

5.

Proof. First note that by a dimension count g0 = 0 holds. The proof will follow
several steps.

Step 1. The construction of a suitable model of the simple Lie algebra of type E8.

Let V1 and V2 be two vector spaces over F of dimension 5, and consider the
Z5-graded vector space

(2.2) g =

4⊕
i=0

gı̄,
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where

g0̄ = sl(V1)⊕ sl(V2),

g1̄ = V1 ⊗
∧2

V2,

g2̄ =
∧2

V1 ⊗
∧4

V2,

g3̄ =
∧3V1 ⊗ V2,

g4̄ =
∧4V1 ⊗

∧3V2.

(2.3)

(All the tensor products are considered over the ground field F.) This is a Z5-
graded Lie algebra, with the natural action of the semisimple algebra g0̄ on each
of the other homogeneous components and where the brackets between elements in
different components are given by suitable scalar multiples of the only g0̄-invariant
possibilities. In this way, g is the exceptional simple Lie algebra of type E8. The
details of the Lie multiplication have been computed in [Dra05]. This decomposition
has received some attention lately [Kos08].

Step 2. Up to conjugation in Aut g, there is a unique order 5 automorphism of the
simple Lie algebra g of type E8 such that the dimension of the subalgebra of fixed
elements is 48.

Actually, as shown in [Kac90, §8.6], up to conjugation, the finite order automor-
phisms of E8 are in one-to-one correspondence with subsets of nodes of the affine

Dynkin diagram E
(1)
8 :

(2.4)
� � � � � � � ��

�

1 2 3 4 5 6 4 2

3

such that the sum of the integers that label the nodes in the subset is exactly 5.
Given such a subset of, say, r nodes, the fixed subalgebra is the direct sum of the
semisimple Lie algebra whose Dynkin diagram is obtained by removing from (2.4)
the nodes in the subset and a center of dimension r− 1. Now it is easy to see that
the only possibility is the automorphism σ obtained when considering the subset
that consists exactly of the node with label 5. In this case, one gets a Z5-grading
of g where g0̄ is a direct sum of two copies of the simple Lie algebra of type A4.
The uniqueness shows us that, up to conjugation, σ is the automorphism of g such
that its restriction to gı̄ (with notation as in Step 1) is ξi times the identity, where
ξ is a fixed primitive fifth root of unity.

Step 3. Assume that g =
⊕

0�=α∈Z
3
5
gα is a Z3

5-graded simple Lie algebra of type

E8 with dim gα = 2 for any 0 �= α ∈ Z3
5. The homogeneous spaces are given by the

common eigenspaces of three commuting order 5 automorphisms σ1, σ2, and σ3 of
g which generate a subgroup of Aut g isomorphic to Z

3
5.

3.1 (σ1): Step 2 shows us that, without loss of generality, we may assume that σ1

is the automorphism such that σ1(x) = ξix for any x ∈ gı̄ (notation as in Step 1).
3.2 (σ2): Consider now the order 5 automorphism σ2. As it commutes with σ1,
the restriction σ2|g0̄

is an automorphism of g0̄. Its order is then either 1 or 5. Given
a subset of automorphisms of g, let us denote by Fix(S) the subset of elements that
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are fixed by all the elements in S. Note that

Fix(σ2|g0̄
) = Fix(σ1, σ2) =

4⊕
i=0

giα

for some 0 �= α ∈ Z3
5 and that this subspace has dimension 8. We conclude that

σ2|g0̄
has order 5. Since sl(V1) and sl(V2) are the only ideals of g0̄ and σ2 induces

a permutation of these two ideals of order 1 or 5, it follows that both sl(V1) and
sl(V2) are invariant under the action of σ2; and since dimFix(σ1, σ2) is 8, it turns
out that the restriction of σ2 to sl(Vi) has order 5 (i = 1, 2).

Recall (see [Jac62, Chapter IX]) that Int(sl(Vi) is the group generated by the set
{exp ada : a ∈ sl(Vi), a nilpotent} and that the quotient Aut(sl(Vi))/ Int(sl(Vi))
is a cyclic group of order 2. Since the order of the restriction σ2|sl(Vi) is 5, this
restriction belongs to Int(sl(Vi)), i = 1, 2.

Therefore, there are nilpotent endomorphisms aij ∈ sl(Vi), j = 1, . . . ,mi, i =
1, 2, such that

σ2|sl(Vi) = exp adai1
· · · exp adaimi

.

Hence, the restriction σ2|g0̄
extends to the automorphism σ̂2 of g given by the

formula

σ̂2 = exp ada11
· · · exp ada1m1

exp ada21
· · · exp ada2m2

.

Note that σ̂2 leaves invariant the subspaces gı̄, for 0 ≤ i ≤ 4. Thus the automor-
phism σ̂−1

2 σ2 leaves invariant all the subspaces gı̄ and its restriction to g0̄ is the
identity. But each g1̄ is an irreducible module for g0̄, so Schur’s Lemma shows that
there is a nonzero scalar λ ∈ F such that

σ̂−1
2 σ2|g1̄

= λ1;

and, as g1̄ generates g as a Lie algebra, it follows that the restriction of σ̂−1
2 σ2 to gı̄

is λi times the identity map, where λ5 = 1. Also note that given any endomorphism
a ∈ sl(Vi), exp ada = Adexp a on sl(Vi) (Adg(x) = gxg−1 for any g ∈ GL(Vi) and

a ∈ sl(Vi)), while ada acts on each
∧j Vi in the natural way, so that exp ada acts

on
∧j

Vi as ∧j exp a (where (∧jf)(w1 ∧ · · · ∧ wj) = f(w1) ∧ · · · ∧ f(wj)).
Consider the elements bij = exp aij ∈ SL(Vi), and let bi = bi1 · · · bimi

. Then

the restrictions of σ̂2 to sl(Vi) (i = 1, 2) and g1̄ = V1 ⊗
∧2 V2 are, respectively,

the automorphism Adbi and the linear isomorphism b1 ⊗ ∧2b2. If b1 is changed
to λb1, then we get a new automorphism σ̃2 such that σ̃2|g0̄

= σ̂2|g0̄
= σ2|g0̄

and
σ̃2|g1̄

= λσ̂2|g1̄
= σ2|g1̄

. It follows that σ̃2 = σ2 (recall that g1̄ generates g).
Summarizing the previous arguments, it has been proven that there are elements

bi ∈ SL(Vi), i = 1, 2, such that

(2.5) σ2|sl(Vi) = Adbi (i = 1, 2), σ2|g1̄
= b1 ⊗ ∧2b2.

Moreover, the order of σ2 is 5, so (σ2|g0̄
)5 = 1, which implies that b5i = λi1Vi

for
some 0 �= λi ∈ F, i = 1, 2. But also (σ2|g1̄

)5 = 1, whence λ1λ
2
2 = 1. Since F is

algebraically closed, we can take scalars µ1, µ2 ∈ F such that µ5
1 = λ−1

1 , µ5
2 = λ−1

2

and µ1µ
2
2 = 1. We may replace bi by µibi, i = 1, 2, in (2.5) and hence assume that

b5i = 1Vi
, i = 1, 2.

Besides, for i = 1, 2, since b5i = 1, bi is a diagonalizable endomorphism of Vi whose
eigenvalues are fifth roots of unity. Note that the subspace {x ∈ sl(Vi) : bixb

−1
i = x}

has dimension at least 4, because the endomorphisms which act diagonally on a basis
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of eigenvectors of bi commute with bi. But if an eigenvalue of bi has multiplicity
≥ 2, then the dimension above is strictly greater than 4, and this contradicts the
dimension of Fix(σ1, σ2) = Fix(σ2|g0̄

) being exactly 8. Therefore, all the eigenvalues
of bi have multiplicity 1, and therefore a basis {vi1, . . . , vi5} of Vi can be taken with
bi(vij) = ξjvij (i = 1, 2, j = 1, 2, 3, 4, 5). That is, the matrix of bi in this basis is
precisely

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 ξ 0 0 0
0 0 ξ2 0 0
0 0 0 ξ3 0
0 0 0 0 ξ4

⎞
⎟⎟⎟⎟⎠

.

3.3 (σ3): Finally, let us consider the automorphism σ3. Using the same arguments
as in 3.2, elements ci ∈ SL(Vi) (i = 1, 2) can be found, with c5i = 1 and no repeated
eigenvalues, such that

σ3|sl(Vi) = Adci , σ3|g1̄
= c1 ⊗ ∧2c2.

As σ2 and σ3 commute, it follows in particular that Adbi Adci = Adci Adbi in sl(Vi)
or that bici = µicibi for some 0 �= µi ∈ F. Since b5i = 1, we have µ5

i = 1, i = 1, 2.
But if µi were equal to 1, then ci would belong to {x ∈ gl(Vi) : xbi = bix} =

span
{
bji : j = 0, . . . , 4

}
and so the subspace {x ∈ sl(Vi) : σ2(x) = σ3(x) = x} =

{x ∈ sl(Vi) : xbi = bix} would have dimension 4, while we have

{x ∈ sl(Vi) : σ2(x) = σ3(x) = x} ⊆ Fix(σ1, σ2, σ3) = g0 = 0,

a contradiction. Therefore, µi �= 1, i = 1, 2.
We may change σ3 to σj

3 for 1 ≤ j ≤ 4, which implies changing ci to the corre-
sponding power, and in this way we may assume that µ1 = ξ, the fixed primitive
fifth root of unity we have been using so far. (Note that the grading induced by

σ1, σ2, σ3 is induced also by σ1, σ2 and σj
3.)

Moreover, the commutativity of σ2 and σ3 on g1̄ gives

b1c1 ⊗ ∧2(b2c2) = c1b1 ⊗ ∧2(c2b2) = µ1µ
2
2b1c1 ⊗ ∧2(b2c2)

so that µ1µ
2
2 = 1, and thus we may assume that µ1 = ξ and µ2 = ξ2.

Since b1c1 = ξc1b1, we have b1c1(v1j) = ξjc1(v1j) (j = 1, . . . , 5), and hence we
may scale the basic vectors v1j so that c1(v1j) = v1(j+1) for j = 1, 2, 3, 4. In other
words, a basis can be taken in V1 such that the coordinate matrices of b1 and c1
are

(2.6) b1 ↔

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 ξ 0 0 0
0 0 ξ2 0 0
0 0 0 ξ3 0
0 0 0 0 ξ4

⎞
⎟⎟⎟⎟⎠

, c1 ↔

⎛
⎜⎜⎜⎜⎝

0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎞
⎟⎟⎟⎟⎠

.

In the same vein, since b2c2 = ξ2c2b2, by permuting and scaling the previous basic
vectors on V2 a new basis can be taken in V2 such that the coordinate matrices of
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b2 and c2 are

(2.7) b2 ↔

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 ξ2 0 0 0
0 0 ξ4 0 0
0 0 0 ξ 0
0 0 0 0 ξ3

⎞
⎟⎟⎟⎟⎠

, c2 ↔

⎛
⎜⎜⎜⎜⎝

0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎞
⎟⎟⎟⎟⎠

.

In conclusion, up to equivalence, the only Z3
5-grading of g such that dim gα = 2

for any 0 �= α ∈ Z3
5 is given by the automorphisms σ1, σ2, σ3 such that

σ1(x) = ξix for any x ∈ gı̄ and 0 ≤ i ≤ 4,

σ2|g1̄
= b1 ⊗ ∧2b2,

σ3|g1̄
= c1 ⊗ ∧2c2,

(2.8)

where the gı̄’s are the homogeneous components in (2.3) and, on fixed bases of V1

and V2, b1 and c1 (respectively b2 and c2) are the endomorphisms of V1 (respectively
V2) in (2.6) (respectively (2.7)). �
Remark 2.9. The proof of the previous theorem gives a precise model for the Z3

5

Jordan grading of E8.

3. Z
3
3-gradings on E6 and F4

In this section parts (ii) and (vi) of the Main Theorem will be proved. Many
arguments are quite similar to the ones used for E8, so they will just be sketched.

We start with E6:

Theorem 3.1. Let F be an algebraically closed field of characteristic 0 and let g be
the simple Lie algebra of type E6 over F. Then up to equivalence there is a unique
Z
3
3-grading of g such that dim gα = 3 for any 0 �= α ∈ Z

3
3.

Proof. The same steps as for E8 will be followed.

Step 1. The construction of a suitable model of the simple Lie algebra of type E6.

Here the model appears in [Ada96, Chapter 13] (see also [Dra08, §3]). Let V1,
V2 and V3 be three vector spaces of dimension 3 over F and consider the Z3-graded
Lie algebra

(3.2) g = g0̄ ⊕ g1̄ ⊕ g2̄,

where

g0̄ = sl(V1)⊕ sl(V2)⊕ sl(V3),

g1̄ = V1 ⊗ V2 ⊗ V3,

g2̄ = V ∗
1 ⊗ V ∗

2 ⊗ V ∗
3 .

(3.3)

This is a Z3-graded Lie algebra, with the natural action of the semisimple algebra
g0̄ on each of the other homogeneous components and where the brackets between
elements in different components are given by suitable scalar multiples of the only
g0̄-invariant possibilities. In this way, g is the exceptional simple Lie algebra of
type E6.

Step 2. Up to conjugation in Aut g, there is a unique order 3 automorphism of the
simple Lie algebra g of type E6 such that the dimension of the subalgebra of fixed
elements is 24.
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Actually, this automorphism σ is the one that corresponds to the only node

labeled by 3 in the affine Dynkin diagram E
(1)
6 :

� � � � ��

�

�

1 2 3 2 1

2

1

The uniqueness shows us that, up to conjugation, σ is the automorphism of g such
that its restriction to gı̄ (with notation as in Step 1) is ωi times the identity, where
ω is a fixed primitive third root of unity.

Step 3. Assume that g =
⊕

0�=α∈Z
3
3
gα is a Z3

3-graded simple Lie algebra of type

E6 with dim gα = 3 for any 0 �= α ∈ Z
3
3. The homogeneous spaces are given by the

common eigenspaces of three commuting order 3 automorphisms σ1, σ2, and σ3 of
g which generate a subgroup of Aut g isomorphic to Z3

3.

3.1 (σ1): Step 2 shows us that, without loss of generality, we may assume that σ1

is the automorphism such that σ1(x) = ωix for any x ∈ gı̄ (notation as in Step 1).
3.2 (σ2): As for E8, the restriction σ2|g0̄

is an order 3 automorphism (otherwise
the dimension of Fix(σ1, σ2) would be > 6). Now, σ2 induces a permutation of the
three simple ideals of g0̄ of order 1 or 3, but if the order were 3, then the eight
dimensional subspace {x+σ2(x)+σ2

2(x) : x ∈ sl(V1)} would be contained in the six
dimensional subspace Fix(σ1, σ2), a contradiction. Therefore, σ2 leaves invariant
sl(Vi) for all i.

Now the same arguments as for E8 show that one may find elements bi ∈ SL(Vi),
i = 1, 2, 3, such that b3i = 1 and

σ2|sl(Vi) = Adbi (i = 1, 2, 3), σ2|g1̄
= b1 ⊗ b2 ⊗ b3.

Moreover, the minimal polynomial of bi ∈ SL(Vi) is exactly X3− 1 (its eigenvalues
have multiplicity 1).
3.3 (σ3): In the same vein, there are endomorphisms ci ∈ SL(Vi), i = 1, 2, 3, with
minimal polynomial X3 − 1 such that

σ3|gsl(Vi) = Adci , σ3|g1̄
= c1 ⊗ c2 ⊗ c3.

As for E8, the commutation of σ2 and σ3 and a dimension count show that bici =
µicibi, with 1 �= µi ∈ F and µ3

i = 1 (i = 1, 2, 3). Hence µi ∈ {ω, ω2}. Replacing σ3

by σ2
3 if necessary, it can be assumed that µ1 = ω.

Moreover, the commutativity of σ2 and σ3 on g1̄ forces the equality µ1µ2µ3 = 1
or µ2µ3 = ω2. We conclude that µ1 = µ2 = µ3 = ω. Hence, a basis can be chosen
on each Vi such that the coordinate matrices of bi and ci are

(3.4) bi ↔

⎛
⎝
1 0 0
0 ω 0
0 0 ω2

⎞
⎠ , ci ↔

⎛
⎝
0 0 1
1 0 0
0 1 0

⎞
⎠ .
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In conclusion, up to equivalence, the only Z3
3-grading of g such that dim gα = 3

for any 0 �= α ∈ Z3
3 is given by the automorphisms σ1, σ2, σ3 such that

σ1(x) = ωix for any x ∈ gı̄ and i = 0, 1, 2,

σ2|g1̄
= b1 ⊗ b2 ⊗ b3,

σ3|g1̄
= c1 ⊗ c2 ⊗ c3,

where the gı̄’s are the homogeneous components in (3.3) and, on fixed bases of V1,
V2 and V3, bi and ci are the endomorphisms of Vi in (3.4). �

The corresponding result for F4 is the following:

Theorem 3.5. Let F be an algebraically closed field of characteristic 0 and let g be
the simple Lie algebra of type F4 over F. Then up to equivalence there is a unique
Z3
3-grading of g such that dim gα = 2 for any 0 �= α ∈ Z3

3.

Proof. Here we will be even more sketchy, since the situation is simpler.
Just consider the model of E6 obtained above, and consider the order 2 auto-

morphism τ which permutes V2 and V3. The subalgebra g of elements fixed by τ
is a simple Lie algebra of type F4 (see [Dra08, §3]). Therefore, g appears as the
Z3-graded Lie algebra

g = g0̄ ⊕ g1̄ ⊕ g2̄,(3.6)

g0̄ = sl(V1)⊕ sl(V2),

g1̄ = V1 ⊗ S2(V2),(3.7)

g2̄ = V ∗
1 ⊗ S2(V ∗

2 ).

Here S2(V ) denotes the subspace of symmetric tensors in V ⊗ V .
Up to conjugation in Aut g, there is a unique order 3 automorphism of the simple

Lie algebra g of type F4 such that the dimension of the subalgebra of fixed elements
is 16. Actually, this automorphism σ is the one that corresponds to the only node

labeled by 3 in the affine Dynkin diagram F
(1)
4 :

� � � � �� >
1 2 3 4 2

Now, the same types of arguments as for E6 give the result. �

Again, the proofs of Theorems 3.1 and 3.5 give precise models of the correspond-
ing Jordan gradings. In [DM07, §7] it was shown that for F4 this grading is fine.
These models are different from those obtained in [Eld08, §5.3], which were based
on a Z2

3-grading of the Okubo algebra over F, complemented by an extra order three
automorphism induced by the triality automorphism associated to the Okubo alge-
bra. For E6, this unique Z3

3-grading is not fine, as the construction of E6 in terms
of an Okubo algebra requires the use of another two dimensional symmetric com-
position algebra, which in turn can be graded over Z3 and used to get a Z4

3-grading
on E6 (see [Eld08] for details).
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ciones, Universidad de Zaragoza, 50009 Zaragoza, Spain

E-mail address: elduque@unizar.es

http://www.ams.org/mathscinet-getitem?mr=1428422
http://www.ams.org/mathscinet-getitem?mr=1428422
http://www.ams.org/mathscinet-getitem?mr=0379748
http://www.ams.org/mathscinet-getitem?mr=0379748
http://www.ams.org/mathscinet-getitem?mr=2416591
http://www.ams.org/mathscinet-getitem?mr=2416591
http://www.ams.org/mathscinet-getitem?mr=1643126
http://www.ams.org/mathscinet-getitem?mr=1643126
http://www.ams.org/mathscinet-getitem?mr=643052
http://www.ams.org/mathscinet-getitem?mr=643052
http://www.ams.org/mathscinet-getitem?mr=0143793
http://www.ams.org/mathscinet-getitem?mr=0143793
http://www.ams.org/mathscinet-getitem?mr=1104219
http://www.ams.org/mathscinet-getitem?mr=1104219
http://www.ams.org/mathscinet-getitem?mr=1632779
http://www.ams.org/mathscinet-getitem?mr=1632779
http://www.ams.org/mathscinet-getitem?mr=0631924
http://www.ams.org/mathscinet-getitem?mr=0631924
http://www.ams.org/mathscinet-getitem?mr=1308713
http://www.ams.org/mathscinet-getitem?mr=1308713
http://www.ams.org/mathscinet-getitem?mr=510100
http://www.ams.org/mathscinet-getitem?mr=510100
http://www.ams.org/mathscinet-getitem?mr=1349140
http://www.ams.org/mathscinet-getitem?mr=1349140
http://www.ams.org/mathscinet-getitem?mr=0399193
http://www.ams.org/mathscinet-getitem?mr=0399193

	1. Introduction
	2. Z53-grading on E8
	3. Z33-gradings on E6 and F4
	References

