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Abstract

A coupled model describing the evolution of the topographic elevation and the

depth of the overland water film is here studied when considering the overland flow

of water over an erodible sediment. We complete the previous modelling of the

problems by SMITH and BRETHERTON (1972) and FOWLER et al. (2007), ob-

taining a model which involves a degenerate nonlinear parabolic equation (satisfied

on the interior of the support of the solution) with a super-linear source term and

a prescribed constant mass. The degeneracy of the equation causes the channel

width to be self-selecting. We propose here a global formulation of the problem,

formulated in the whole space, beyond the support of the solution. An important

feature of the model proposed here is that despite of the presence of the superlinear

forcing term at the equation, a solution to it can not blow up thanks to the mass

constraint.

Key words: River Models, Landscape Evolution, Nonlinear parabolic equations,

Free boundaries, singular free boundary flux.

1 Introduction

The understanding of the mechanisms whereby river channels form and which governs

their size and transport capacity is challenging. In this work we shall consider the de-

duction and mathematical analysis of a model describing the river channel formation and

the evolution of its depth. A proper model should consider the description of two main

process, which are the water flow and the sediment transport. The model here proposed

does not need extra conditions at the channel margin in order to determine the channel

width, it is the evolving channel which determines its own width. The positive feedback,
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consisting on increased flow causing increased erosion, which in turn increases the flow,

gives place to the existence of an instability which triggers the mechanism of river channel

formation.

The starting point of the model here proposed is the model presented by MEYER-

PETER and MÜLLER (1948) and the studies carried out by SMITH and BRETHERTON

(1972). Their model consists of a set of partial differential equations describing s(x, y, t),

the hillslope elevation, and h(x, y, t), the water depth. Smith and Bretherton found the

instability to arise in an ill possed way. The water surface elevation η is related to the

hillslope elevation s and the water film thickness h by η = s + δh, where the parameter δ

is very small. LOEWENHERZ-LAWRENCE (1994) observed that uniform overland flow

is unstable to y–dependent perturbations of small wavelength, and we can examine the

nonlinear evolution of these by directly seeking asymptotic expansions in terms of δ. This

observation allowed a progress in the modelling. It is supposed that the channels which

form are aligned in the X direction, and (sensibly) that the perturbation to the water

surface is small, comparable to the overland flow depth: η = η0 + δZ. After linearizing,

we find that the nonlinear channel evolution then arises from a rescaling of the hillslope

evolution equation and the leading order sediment transport equation takes the form:

∂H

∂T
= S ′S1/2H3/2 + S1/2 ∂

∂Y

[

βH1/2∂H

∂Y

]

, (1)

where S(X) = |η
′

0| is the unperturbed downhill slope, S ′ = dS/dX and Y , T and H

are the rescaled across stream coordinate, time variable and water film thickness. β is a

parameter, typically β = O(1). It is important to note that this equation arises through

conservation of sediment. Only Y derivatives are present, because the lateral length scale

is much smaller than the downslope one. The perturbation Z to the water surface is in

fact then determined by quadrature of the water conservation equation, but integration

of this equation in the across stream direction yields the integral constraint

∫ ∞

−∞

H3/2 dY =
2LrX

S1/2
, (2)

where L is the spacing between channels and r comes from the source term in water

the mass conservation and represent the rainfall; the limits in (2) are, however, infinites

because the integral is with respect to the much smaller channel width length scale.

Suitable initial and boundary conditions for the channel depth are that

H → 0 as Y → ±∞, H = H0(Y ) at T = 0. (3)

The equation (1), together with the integral constraint (2) and initial/boundary con-

ditions (3), forms the basis of our study. We will assume that S ′ > 0, so that the nonlinear
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term in (1) is a source. Since the downslope coordinate only appears in the coefficients,

it can be scaled out of the problem. According to FOWLER et al. (2007), if we define

H =

(

6

β

)1/3

(LrX)2/3u, T =

(

β

6

)1/6
t

S1/2S ′(LrX)1/3
, Y =

(

2β

3S ′

)1/2

x, (4)

the problem to be studied consists of a non-linear partial differential equation of diffusive

type to describe the depth of an evolving channel :

ut = u3/2 + (u3/2)xx,

∫ ∞

−∞

u3/2 dx = 1, u → 0 as x → ±∞,

u = u0(x) at t = 0.

(5)

2 Mathematical analysis

In this section we shall deal with the analysis of the problem (5) assuming that the

initial thickness perturbation u0(x) is a bounded and nonnegative function with a compact

and connected support [0, ζ0] such that
∫ +∞

0
um

0 (x)dx = M/2, for m > 1, generalizing the

particular case of (5), m = 3/2.

To precise, in this section and the following ones, we shall deal with the analysis

of the global solvability (in time) of the following problem: find a continuous curve ζ :

[0, +∞) → R
+ and a function u : P → [0, +∞) (regular enough) such that

(SL)















































































ut = (um)xx + um, in D′(P),

u(x, 0) = u0(x) a.e. x ∈ Ω0,

u(x, t) > 0, a.e. (x, t) ∈ P,

u(x, t) ≡ 0, a.e. (x, t) /∈ P,

u(ζ(t), t) = 0, (um)x(0, t) = 0 a.e. t ∈ (0, +∞),

ζ(0) = ζ0 and ζ(t) > 0 for any t ≥ 0,
∫ ζ(t)

0

um(x, t)dx =
M

2
a.e. t ∈ (0, +∞).

where Ω0 = (0, ζ0), Ωt = (0, ζ(t))×{t} ,P = ∪t>0Ωt. Notice that D′(P) denotes the space

of distributions on P and P is the positivity subset of the solution. Later on we shall

make more precise the (minimal) regularity of the solution. The function ζ(t) is called

the interface separating the (connected) region where u(x, t) > 0 from the region where

u(x, t) = 0. It is unknown and it is usually called the free or moving boundary of the

problem. Due to the free boundary we shall refer to the strong formulation (SL) as the
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strong-local formulation. We emphasize that the mass conservation constraint in (SL),

∫ ζ(t)

0

um(x, t)dx =
M

2
a.e. t ∈ (0, +∞)

prevents possible blow-up phenomena which could arise (without this condition) due to

the presence of the source term um in the equation.

In order to get a global formulation (i.e. extended to the whole domain (x, t) ∈

(0, +∞) × (0, +∞), and not only on (x, t) ∈ P), we shall see that it is necessary to

provide a suitable description of the flux −(um)x(ζ(t), t) at the free boundary. We shall

first analyze this consideration in the associated stationary problem to obtain a new

constrained global formulation for this case. The parabolic case will be treated later on.

2.1 The stationary case

Let M be a positive, fixed, real number and define v = um, then the strong formulation

of the stationary problem associated to (SL) can be written in the following way:

−vxx − v = 0, v′(0) = 0, lim
x→+∞

v(x) = 0,

∫ +∞

0

|v(x)| dx =
M

2
.

It is not difficult to observe that the formulation does not correspond to a standard con-

strained problem of the Calculus of Variations and that, therefore, the integral constraint

must be carefully considered. Moreover, since the solutions of the ODE, vxx + v = 0,

are explicitly given by v(x) = A cosx + B sin x, we see that none of them can satisfy

vx(ζ∞) = 0 if {v > 0} = (0, ζ∞). So, necessarily, the limit limxրζ∞vx(x) is strictly nega-

tive (since the function is passing from positive values to zero). Hence, if we extend v by

zero to the rest of (0, +∞), we get that vx(x) has a discontinuity at x = ζ∞. In particular,

vxx is not an integrable function on (0, +∞) but a measure with a non-zero singular part.

This introduces our formulation of the constraint by means of the “measure”:

µ = −vxx ∈ M(0, +∞),

where M(0, +∞) is the space of Radon measures (see, for instance, EVANS and GARIEPY,

1992). In fact, from the identity vxx = −v on {v > 0} we see that the (signed) Jordan

decomposition of µ (in the form µ = µ+ − µ−, with µ+ ⊥ µ−) is given by

µ+ = v (which is in L1(0,∞)) and µ− = −cδζ∞ for some c > 0,

where δζ∞ is the Dirac delta distribution located at interface ζ∞ ∈ R
+, i.e. where v(ζ∞) =

0 (sometimes we shall use the alternative notation δζ∞ = δ∂{v=0}). So, µ− is a singular

measure with respect to the Lebesgue measure. Notice that,

−vxx − v = cδ∂{v=0}, (6)
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where, c can be obtained from the following:

0 =

∫ +∞

0

dµ =

∫ +∞

0

vdx −

∫ +∞

0

dµ− =
M

2
− c < δζ∞, 1 >=

M

2
− c,

i.e., c = M/2 and thus, necessarily, µ− = −M
2
δζ∞. Moreover, integrating in (6) we have:

0 =

∫ +∞

0

dµ = −

∫ ζ∞

0

vxxdx +

∫ +∞

ζ∞

dµ− = −vx(ζ∞) −
M

2

and we deduce that, in the stationary case, the flux is determined by the integral constraint

(−vx(ζ∞) = M/2) and reciprocally. Notice also that:

‖µ‖M(0,+∞) = ‖µ+‖M(0,+∞) + ‖µ−‖M(0,+∞) =

∫ +∞

0

vdx +
M

2
= M.

As a result of the above considerations, we derive the following (symmetric) global for-

mulation: Find a stationary state v(x) and a point ζ∞ ∈ R
+ satisfying

(SP )



































vxx + v = (M/2)δζ∞, in D′(0, +∞),

v(x) > 0, x ∈ [0, ζ∞),

v(x) ≡ 0, x ≥ ζ∞,

vx(0) = 0.

Problems of this type arise in fluid mechanics (problems of the Bernoulli type), in com-

bustion and in plasma physics (see, e.g., DÍAZ et al., 2007, and its references).

We have the following existence and uniqueness result:

Given M > 0 there exists a unique solution (v(x), ζ∞) of (SP ) given by

ζ∞ =
π

2
and v(x) =

M

2
cos x

[

1 − H
(

x −
π

2

)]

, (7)

where H (x − π/2) denotes the Heaviside function located at π/2 i.e.,

v(x) =







(M/2) cosx if x ∈ [0, π/2],

0 if x ∈ (π/2, +∞).

2.2 Parabolic case

Next, we shall show that in order to generalize the global formulation, obtained in

the stationary case, to the parabolic case, it is not enough to consider the presence of

the Dirac delta. In the parabolic case, the Dirac delta does not prevent the blow-up

phenomenon. In fact, we are able to find an infinite number of solutions which are not

globally defined in time (well-known for the case of zero, continuous free boundary flux,

see SAMARSKI et al., 1995, Chapter IV, Section 1.1).
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Consider the naturally associated problem: given T > 0 (arbitrary) and a continuous,

symmetric, non negative initial data u0(x), with compact support [0, ζ0] and such that
∫ +∞

0
um

0 (x)dx = M/2, we look for a continuous curve ζ : [0, T ] → R
+ and a function

u : R
+ × [0, T ] → [0, +∞) such that u satisfies the strong-local formulation (SL). As in

the stationary case, the global formulation on the whole domain R
+ × [0, T ] of the partial

differential equation includes a Dirac delta distribution located, for each t ∈ (0, T ], at the

free moving boundary x = ζ(t) since the free boundary flux is discontinuous there (due

to the mass constraint). We introduce the notation δ∂{u(t,·)=0} to design the Dirac delta

distribution located at the interface x = ζ(t) for each t ∈ (0, T ) (i.e. δ∂{u(t,·)=0} = δ(ζ(t),t)).

Then, we have the following problem:

(P0)



























































ut = (um)xx + um − M
2
δ∂{u(t,·)=0}, D′(R+ × (0, T )),

u(x, 0) = u0(x) a.e. x ∈ (0, ζ0)

u(x, t) > 0, a.e. (x, t) ∈ PT ,

u(x, t) ≡ 0, a.e. (x, t) /∈ PT ,

u(ζ(t), t) = 0, ux(0, t) = 0 a.e. t ∈ (0, T ),

ζ(0) = ζ0 and ζ(t) > 0 for any t ∈ [0, T ],

(8)

where PT (the positivity subset of u) is defined by PT = {(x, t) ∈ R
+ × [0, T ] : 0 ≤

x < ζ(t)}. The above problem has blow up solutions. Indeed, it is possible to construct

an infinite number of initial data such that the corresponding solutions {uTe}, with Te

be a positive parameter, of problem (P0) (i.e. with a discontinuous free boundary flux

condition) are not globally defined in time (the solution uTe being defined on a finite time

interval [0,Te)). Moreover, uTe verifies that
∫ +∞

0

um(x, t)dx =
MTe

1/(m−1)

2(Te − t)1/(m−1)
for t ∈ [0, Te).

We shall look for separable solutions of the form

u(x, t) = (Te − t)−1/(m−1)θ(x). (9)

Then, the following result holds:

Theorem. For any c > 0, the problem:

(Pw)



















w
′′

+ w − 1
m−1

w1/m = cδζ0 , D′(0, +∞),

w(x) = 0 x > ζ0,

w′(0) = 0,

admits a unique nonnegative solution w such that
∫ +∞

0

w(x)dx = c. (10)
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If we take θm(x) = w(x) and c = M

2T
m/(m−1)
e

, then the pair uTe(x, t) = (Te − t)−1/(m−1)θ(x)

and ζ(t) ≡ ζ0 satisfies (P0) for u0(x) := Te
−1/(m−1)w1/m(x).

Proof. Consider the ODE w
′′

+w− 1
m−1

w
1
m = 0, written in terms of the variable θ = w

1
m :

(θm)
′′

+ θm −
1

m − 1
θ = 0,

and let us define the new variable

y =
1

m − 1
(θm−1)

′

.

Then, in the variables (θ, y), we obtain the following dynamical system:

(S1) :=

{

θ
′

= yθ2−m,

my
′

θ = −θm + 1
m−1

θ − my2θ2−m

Consider f = θm−1 and assume 1 < m < 2. The dynamical system written in the new

variables results to be:

(S2) :=















f
′

= (m − 1)y,

y
′

f = −
1

m
f 2 +

1

m(m − 1)
f − y2.

Re-scaling the spatial variable x, such that x = τf , and considering the derivatives with

respect the new spatial coordinate τ , we get the equivalent system of ODEs:

(S3) :=















fτ = (m − 1)yf,

yτ = −
1

m
f 2 +

1

m(m − 1)
f − y2,

where fτ = ∂τf and the same for yτ .

If one is looking for an orbit such that the derivative θ
′

→ 0 for θ → 0, or equivalently

for f → 0, it is necessary to consider y → ∞, due to the identity θ
′

= yθ2−m. Because of

the above considerations, we proceed to analyze the orbits y → ∞ when f → 0. In this

case, we can approximate the system (S3) by the asymptotically equivalent system:

(S4) :=











fτ = (m − 1)yf,

yτ = −y2,

from which we deduce the ODE of separable variables:

dy

df
=

−y

(m − 1)f
,

whose solutions are of the form y = k1f
−1

m−1 with k1 a non zero real constant. Hence,

f
′

= (m − 1)k1f
−1

m−1 and f
m

m−1 = mk1x + k2,
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k2 a real constant. Writing the solution in terms of the original variables, we find that

the dynamical system admits solutions that in the neighborhood of the free boundary

behaves in the following way:

θ(x) ∼ (mk1x + k2)
1
m .

Therefore, in terms of the pressure variable θm(x), we find θm(x) ∼ mk1x + k2.

Notice that θ(0) > 0 and we wish the solution θ satisfies θ(x) ≥ 0 and θ
′

(x) ≤ 0.

These requirements suggests that the constants k1 and k2 should satisfy the following:

k1 < 0, k2 > 0, k2 = u0(0)T
1

m−1
e and k1mζ0 = −k2.

notice also that, (θm)
′

= mk1 < 0, i.e., non zero derivative at the free boundary.

Note that the uniqueness of the solution to the problem (Pw)-(10) is deduced from

the fact that necessarily all solution w, w 6= leads to a equation in terms of θ. Then, as

a result of the uniqueness of solution to the equation for θ and of the fact that there is

a only way to satisfy the integral constraint on w, i.e.
∫ ∞

0
w(x)dx = c, we get that the

solution w to the problem (Pw)-(10) is unique as well.

As a conclusion, we get the existence of separable solutions in time and space given by

(9), that present blow up and admit discontinuous derivative at the free boundary. Note

that the jump of the derivative at the free boundary would be given by a multiple of the

Heaviside function, whose derivative is precisely a multiple of the Dirac delta distribution.

Therefore, we shall need some additional condition in order to give a global formulation

to the whole domain R
+ × (0, T ). Notice that if we define (for a.e. t ∈ (0, T ) fixed) the

spatial distribution

µ(t, ·) := ut(t, ·) − (um)xx(t, ·)

then we must expect to know that, in fact, such a distribution is a bounded measure

M(0, +∞) (with compact support) since

µ(t, ·) = um(t, ·) −
M

2
δ∂{u(t,·)=0}.

Moreover its signed (Jordan) decomposition, µ(t, ·) = µ+(t, ·)−µ−(t, ·), must be given by

µ+(t, ·) = um(t, ·) and µ−(t, ·) = (M/2)δ∂{u(t,·)=0}. Now, as in the stationary case we have

that the mass constraint
∫ +∞

0
um(x, t)dx = M/2 is equivalent to the “zero total measure”

condition

∫ +∞

0

dµ(t, ·) = 0, for a.e. t ∈ (0, T ). (11)

So, we arrive to the global formulation: find a nonnegative function u : R
+ × [0, T ) →
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[0, +∞) such that

(P )



































ut = (um)xx + um − M
2
δ∂{u(t,·)=0}, D′(R+ × (0, T )),

u(x, 0) = u0(x) a.e. x ∈ (0, +∞),

ux(0, t) = 0, u(x, t) → 0 as x → +∞ a.e. t ∈ (0, T ),

µ(t, ·) := ut(t, ·) − (um)xx(t, ·) satisfies (11) a.e. t ∈ (0, T ).

(12)

Notice that now the compact support condition is not explicitly required. In fact, following

the numerical experiences of FOWLER et al., 2007, we conjecture that problem (P ) can

be solved for suitable, strictly positive initial data u0(x) such that u0(x) → 0 as x → +∞.

Notice also that if a solution u of (P ) gives rise a free boundary ζ(t) := ∂{u(t, ·) = 0}

then, the zero total measure condition (11) implies that the free boundary flux must be

given by

−(um)x(ζ(t), t) =
M

2
−

∫ ζ(t)

0

ut(x, t)dx a.e. t ∈ (0, +∞).

Here (and, in fact, also in (11)) there is a slight abuse of notation since, a priori, ut(x, t)

(respectively µ(t, ·)) does not need to be a L1(R+) function but merely a bounded measure.

Nevertheless we keep the classical notation for simplicity reasons. In any case, we see that

in the transient regime the boundary flux at the free boundary is unknown (being also

discontinuous), as opposed to the stationary case where the flux (also discontinuous) can

be explicitly known. Moreover, the above considerations allow us to conclude that any

solution of the strong-local formulation (SL) solves problem (P ) and that any (regular

enough) solution of (P ) with compact support satisfies the strong- local formulation (SL).
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