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Abstract: In this paper we introduce the Quillen-Suslin rings and investigate its relation
with some other classes of rings as Hermite rings (each stably free module is free), PSF' rings
(each finitely generated projective module is stably free), PF rings (each finitely generated
projective module is free), etc. Quillen-Suslin rings are induced by the famous Serre’s prob-
lem formulated by J.P. Serre in 1955 ([30]) and solved independently by Quillen ([28]) and
Suslin ([31]) in 1976. The solution is known as the Quillen-Suslin theorem and states that
every finitely generated projective module over the polynomial ring K[z1,...,z,] is free,
where K is a field. There are algorithmic proofs and some generalizations of this important
theorem that we will also study in this paper. In particular, we will consider extended
modules and rings, and the Bass-Quillen conjecture.
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1. INTRODUCTION

The present paper is divided in four sections. The second section is ded-
icated to define the Quillen-Suslin rings (QS) and present some other rings
close related with them (see [18]); in particular, we will prove a theorem about
some matrix characterizations of Hermitian rings that could help to study an
old conjecture about polynomial rings over Hermitian rings. The third sec-
tion is focused into computational aspects of QS rings. In particular, we will
discuss the most recent algorithmic proofs of the Quillen-Suslin theorem (see
[10], [11], [12], [21], [22], [24] and [27]). There are many generalizations of
the Quillen-Suslin theorem that we will also study in this paper. In particu-
lar, we will consider in the last section extended modules and rings and the
Bass-Quillen conjecture.

* The first author was partially supported by DIB-UN, research project 8003130.
T Students of the Msc. Program in Mathematics.
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2. QS RINGS AND SOME RELATED PROPERTIES

From now on, S represents an arbitrary commutative ring, S[z1, ..., x,]
is the polynomial ring over S in n > 1 variables, and GL,(S) is the general
linear group of invertible matrices over S of size n x n.

DEFINITION 1. Let S be a commutative ring.

(i) S is a PF ring if every finitely generated projective S-module is free (a
module M is projective if M is a direct summand of a S-free module).

(ii) S is a PSF ring if every finitely generated projective S-module is stably
free (a module M is stably free if there exist integers r, s > 0 such that
ST St e M).

(iii) S isa FFR ring (finite free resolutions) if each f.g. S-module has a finite
free resolution

F—
—_—

F F F
0 — St =&, Gtk =L St 20 A — 0,

for some k > 0.
(iv) S is an Hermite ring, denoted H, if any stably free S-module is free.
(v) Let n > 1, Sis a QS,, ring if S[z1,...,z,] is PF.
(vi) S is a Quillen-Suslin ring, denoted @S, if S is QS,, for each n > 1.

From the above definition is obvious that

PSFN H = PF, (2.1)
QS= () QS,. (2.2)
n>1

EXAMPLES 2. (i) Any principal ideal domain (PID) is PF (see [29]).

(ii) Any Bézout domain is PF' (a domain D is Bézout if any f.g. ideal of
D is principal, see [4]).

(iii) Any local ring is PF.

(iv) Semilocal rings (ring with finite many maximal ideals) are not always
PF. In fact, Zg is a semilocal ring and Zg = (3) & (4). Thus, (3) is a finitely
generated projective Zg-module, but is not free. Since 6 is square free, Zg is
semisimple; thus, semisimple rings are not always PF. We observe that this
example illustrate also that hereditary rings (each ideal is projective) are not
always PF, and consequently, semihereditary rings (each finitely generated
ideal is projective) are not always PF (see [29]).
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In the next theorem we present some characterizations of stably free mod-
ules that we will use later for proving some interesting results about PSF
rings (compare with [19] and [24]). We start recalling the definition of Fitting
ideals of a matrix and also the concept of unimodular matrix.

DEFINITION 3. Let S be a commutative ring and F' a matrix over S of
size n x m. For each integer r, the r-th Fitting ideal of F, denoted by F2(F),
is defined in the following way:

(i) F2(F)is the ideal of S generated by all minors of F of size (n—7)x (n—r),
if 1 <n—r <min{n,m}.

(i) F2(F):=S,ifn—r <0.
(iii) F2(F) := 0, if n — r > min{n, m}.

DEFINITION 4. Let S be a commutative ring and F' a matrix over S of
size r x s. F is unimodular if F{ (F) = S with ¢t = 7 — min{r, s}.

Thus, F' is unimodular if and only if the maximal minors of the matrix F'
generate the unit ideal in S (see [24]). Unimodular matrices can be charac-
terized in the following way.

PROPOSITION 5. Let S be a commutative ring and F a matrix over S of
size r X s. Then,

(i) Let s > r. F is unimodular if and only if F' has a right inverse.

(ii) Let r > s. F is unimodular if and only if F' has a left inverse.

Proof. (i) We note that min{r, s} = r. If F is unimodular, then F§ (F) =
S and it is well known that the linear system FX = e;, for 1 <+¢ < r, has
solution C) € S§%, where e; is the canonical basis column vector of S” (see
[5, Corollary 5.35]). Hence the matrix C' = [C(l) C(T)] satisfies AC' = I,.
Conversely, if C is a matrix over S of size s X r such that AC = I,., then by
the Binet-Cauchy theorem (see [25]) we conclude that the ideal generated by
all minors of size r x 7 of F is S, i.e., F§(F) = S, so F is unimodular.

(i) In this case min{r,s} = s, F is unimodular if and only if F7 is
unimodular if and only if F7" has a right inverse (by (i)), if and only if F has
a left inverse. |

THEOREM 6. Let S be a commutative ring and M an S-module. Then,
the following conditions are equivalent
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(i) M is stably free.
(ii) M is projective and has a finite free resolution.

(iii) There exist matrices P of size s x r and Q of size r X s such that r > s,
PQ = I; and M = ker(P), i.e., M is isomorphic to the kernel of an
unimodular matrix. In other words, M is isomorphic to the kernel of an
S-module epimorphism of free modules of finite dimension.

(iv) M is projective and has a finite presentation S* e B =0
where ker(Fy) is stably free.

(v) M is projective and has a finite presentation S* g B0
where r > s and Fy has a left inverse.

Fy

(vi) M is projective and has a finite presentation S* g By o

where r > s and F; is unimodular.

Proof. (i) = (ii): If S" = S° @ M for some integers r,s > 0, then M is
projective and we have the finite free resolution

L m

0—-8 -8 —M-—0,

where ¢ is the canonical inclusion and 7 is the canonical projection on M.
(ii) = (i): Let

Frp_1
—_—

F F F F
0 — St —L, Gle-1 s 22,6t T gt T M 0

be a finite free resolution of M. By induction on k we will prove that M is
stably free.

If Kk = 0 then M is free of finite dimension, and hence, stably free. Let
k > 1 and let M = ker(Fp). We get the exact sequence

0— M - 8t Lo ar o,
and hence S = M @& M; since M is a projective module. This implies that

M is also projective and then we have the finite free resolution of M;

Fi—1
—_—

F) F: F
0 — Sh %5 Glh—1 S5 8 2L My — 0.

By induction, there exist integers p, ¢ > 0 such that SP = S?@ M;, and hence,
SopSI>2MaoM &ST=MaeSP, ie., Stotd = M q SP,
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(i) = (iii): There exist integers r,s > 0 such that S" = S° @ M, and
hence M = ker(w), where 7 is the canonical projection of S on S*. We
observe that r > s; let P be the matrix of 7 in the canonical bases; since S° is
projective there exists a matrix @ of size r x s such that PQ) = I,; moreover,
M = ker(P).

(iii) = (i): Let S" 4, 5% be an epimorphism such that M = ker(A).
Then we have the exact sequence

O—>ML>STi>SS—>O,

but 5% is projective and hence S™ =2 5° & M.
(i) = (iv): Let S™ = S°@® M for some integers r,s > 0, then M is
projective and we have the exact sequence

OHSSLSTAMHO,
and also the finite presentation
s° I sm 0 v -0,

where Fj is the canonical projection and F} is the canonical injection of S* in
S”. But ker(Fp) = Im(F1) = S*, thus ker(Fp) is free, and hence, stably free.
(iv) = (i): Let M be projective and

SRR V)

a finite presentation of M with ker(Fp) stably free. Then S™ = M & ker(Fp).
There exist some integers p,q > 0 such that SP = S7 @ ker(F)) and hence
STra = M @ SP.

(i) = (v): Let S" = S®* @ M for some integers r,s > 0, then r > s, M is
projective and we have the exact sequence

0— 5 1 sm L0 -0,

where Fj is the canonical projection and F} is the canonical injection of S*
in S”. Since M is projective there exists Hy : M — S” such that FoHy = iy,
and hence,

S" = ker(Fp) @ Im(Hp) = Im(F1) & Im(Hp) .

For z € S” we have x = Fi(y) + Ho(z) with y € S® and z € M, we note that y
and z are unique for z since F and Hy are injective, so we define G : " — 5¢
by G1(x) = y. It is clear that G; is an S-homomorphism and G1F; = I;.
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(v) = (i): Let Gy : S™ — S* such that G1Fy = I, then F} is injective
and M has the finite free resolution
085 gm B o,

By (ii) and (i) M is stably free.
(v) < (vi): This is a direct consequence of Proposition 5. 1

EXAMPLE 7. Theorem 6, part (iii), gives a method for constructing stably
free modules. In fact, if f is a row unimodular matrix of size 1 x r, then the
module M := ker(f) = Syz(f) is stably free. For example, consider the row
matrix f = (zy + vy, x + vy, 2%y + xy + 1) over Z[z,y], then its right inverse is
g = (y,—zy —y,1)T, hence f is unimodular and

Syz(f) = <(w+y,—wy—y,O),(—xy—y2,$2y+xy2+xy+y2+1,—x—y),
(*y3+y2*1,fcy3*my2+y3*y2+y,*y2+y)>

is stably free. In a similar way, the row matrix v = (wy—x—i—y, —y?, x4y, 22y+
2xy + 1) over Q[z,y] is unimodular with right inverse u = (y, 0, —2y —y, 1)7,
hence v is unimodular and

SyZ('U) = <(_y7y_ 27y2 _y70)7(_xax+2axy_m+2y70)a
(y.2+2,9,0), (= 20" +1,-1,209% + 2" —y + 1, - 2y),
(—2xy— 1,1,2x2y—|—2:1:y—|—y+ 1,—2x)>
is stably free. Syz(v) and Syz(f) were computed with CoCoA (see [15]).

A direct consequence of previous theorem is the following characterization
of PSF rings.

COROLLARY 8. A ring S is PSF if and only if each f.g. projective S-module
has a finite free resolution.

COROLLARY 9. If S is a Noetherian FFR ring, then S[z1, ..., x,] is a PSF
ring.

Proof. By [29, Theorem 9.44], S[z1,...,x,] is a FFR ring, for each n > 1.
Thus, the result is a direct consequence of previous corollary. 1
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COROLLARY 10. (SERRE’S THEOREM) If K is a field, then for eachn > 1,
K[zy,...,z,] is PSF.

Proof. In [1, Theorem 3.10.4], there is a constructive proof (using Grébner
bases) of Hilbert’s Syzygy theorem that says that K|x1,...,z,] is FFR. Thus,
Serre’s theorem is a direct consequence of previous corollary. |

Matrix descriptions of H rings are presented in the following theorem

(compare with [6], [18] and [24]).

THEOREM 11. Let S be a commutative ring. Then, the following condi-
tions are equivalent.
(i) Sis H.

(ii) Any unimodular column matrix v over S of size r x 1 can be completed
to an invertible matrix of GL,(S) adding r — 1 new columns.

(i) Any unimodular row matrix v over S of size 1 x r can be completed to
an invertible matrix of GL,(S) adding r — 1 new rows.

(iii) Given a unimodular column matrix v over S of size r x 1 there exists a
matrix U € GL,(S) such that Uv = ey.

(iii) Given a unimodular row matrix v over S of size 1 X r there exists a
matrix U € GL,(S) such that vU = (1,0,...,0).

(iv) Given a unimodular matrix F of size r X s, v > s, there exists U €

GL,(S) such that
I
NE

(iv)" Given a unimodular matrix F of size s x r, r > s, there exists U €
GL,(S) such that

UF =

FU=[I,]0].

Proof. We recall that the elements of S™ are columns vectors of size r x 1.
It is clear that (ii) < (ii)’, (iii) < (iii)’ and (iv) < (iv)'.

(i) = (ii): Let v = [v1 --- v,]T be an unimodular matrix of size r x 1,
there exists w = [u1 - - u, ] such that uv =1, i.e.,, uyv1 + - - + upv, = 1; we
define

sT 28

e, +H—— U
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where {ej,..., e,} is the canonical basis of S”. We observe that « is a sur-
jective homomorphism since a(v) = 1. There exists § : S — S” such that
aff =ig and S” = Im(f) @ ker(«); in fact, we define §(1) := v and [ is injec-
tive, so Im(3) = S is free with basis {v}. This implies that S” = S & ker(«),
i.e., ker(a) is stably free, so by hypothesis, ker(a) is free of dimension r — 1;
let {z1,...,z,_1} be a basis of ker(«), then {v, 1,..., 2,1} is a basis of 5".
This means that [v @ -+ @,—1] € GL.(S).

(ii) = (i): Let M be an stably free S-module, then there exist integers
r,s > 0 such that S™ =2 S° ® M. It is enough to prove that M is free for
the case when s = 1. In fact, S*® M = S @ (S°~! ® M) is free and hence
S5l @ M is free; repeating this reasoning we conclude that S @ M is free, so
M is free.

Let » > 1 such that ™ =2 S®M, let 7 : S™ — S be the canonical projection
with kernel isomorphic to M and let {ej,..., e,} be the canonical basis of
S”; there exists p: S — S” such that 7u = ig and S" = ker(7) @ Im(p). Let
p(l) =v =[vy ---v.]7 € 8", then 7(v) = 1 = vy7w(e1) + - + v.7(e,), ie.,
v is a unimodular matrix over S of size r x 1, moreover S” = ker(n) & (v).
By hypothesis, there exists U € GL,(S) such that Ue; = v.

Let f:S" — S" be the isomorphism defined by U in the canonical basis
of S”, then f(e1) = v and f(e;) = v;, i > 2, where vy,..., v, are the others
columns of U.

If we prove that f(e;) € ker(w) for each i > 2, then ker(r) is free, and
consequently, M is free. In fact, let f’ be the restriction of f to (es,...,e;),
ie., f':{ea,...,e.) — ker(m). Then f’ is bijective: of course f’ is injective;
let w be any vector of S, then there exists € S” such that f(z) = w, we
write & = (x1,x9,...,2,) = x1€1 + 2z, with z = z9e3 + -+ - + z,e,. We have
f(x) = f(rie1+ 2) = z1f(e1) + f(z) = z1v + f(z) = w. In particular,
if w € ker(w), then w — f(z) € ker(m) N (v) = 0, so w = f(z) and hence
w = f'(z), i.e., [’ is surjective.

In order to conclude the proof we will show that f(e;) € ker(w) for each
1 > 2. Since f was defined by U, the idea is to change U in a such way that its
first column was v and for the others columns were v; € ker(m), 2 <i < r. Let
m(v;) =m € 5,1 > 2and v, = v; —r;v; then adding to column ¢ of U the first
column multiplied by —r; we get a new matrix U such that its first column is
again v and for the others we have 7(v}) = w(v;) — rim(v) =r; —r; =0, ie,
v} € ker ().

(ii) = (iii): v can be completed to an invertible matrix of GL,(5) if and
only if there exists V € GL,(S) such that Ve; = v if and only if e; = V" 1w;
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thus U := VL.

(iii) = (iv)’: The proof will be done by induction on s. For s = 1
the result is trivial. We assume that (iv)’ is true for unimodular matrices
with [ < s — 1 rows. Let F be a unimodular matrix of size s x r,r > s,
then there exists a matrix B such that FFB = I;. This implies that the
first row v of F' is unimodular; by (iii)’ there exists U’ € GL,(S) such that
vU' = (1,0,...,0) = e, and hence FU' = F",

T
€1

F// — FI

I

with F” a matrix of size (s—1) x 7. Since FB = I, then I, = F”(U'"'B), i.e.,
F" is a unimodular matrix; let F”” be the matrix eliminating the first column
of F', then F"" is unimodular of size (s — 1) x (r — 1), with r — 1 > s —1; by
induction, there exists a matrix C' € GL,_1(S) such that F"'C = [Is_1 | 0].
From this we get,

1 0 0
! !
ar Qg ayy 1 0
FU =F" = : : : =1, o |
| @s—11 a;—u a’ls—lr
and hence
1 0] 1 of1 o 1 0 0
FU' = = .
0o C x F"1 |10 C x I q O]

Multiplying the last matrix on the right by elementary matrices we get (iv)’.
(iv)' = (iii)’: Taking s =1 and F = v in (iv)’ we get (iii)’. 1

A useful result for checking freeness for stably free modules (see Theorem
6) is given by the following theorem.

THEOREM 12. Let S be a commutative ring and M a stably free S-module
given by the kernel of a unimodular matrix F of size s X r, r > s, with right
inverse B. Then the following conditions are equivalent:

(i) M is free of dimension r — s.

(ii) There exists a matrix U € GL,(S) such that FU = [Is | 0]. In such
case, the last r — s columns of U conform a basis for M. Moreover, the
first s columns of U conform B.
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(iii) There exists a matrix V € GL,(S) such that F' coincides with the first s
rows of V, i.e., F' can be completed to an invertible matrix V' of GL,(.5).

Proof. (i) = (ii): Let B be a matrix of size r X s such that F'B = I,

moreover let S* S?, then S” = Im(B) @ ker(F'), thus, we are assuming
that ker(F) is free. If s = r then F is invertible and U = F~! = B and the

result is trivially true. Let r > s and let { v1,...,v,} be a basis of ker(F)
with p:=r—s. If {ej,..., es} is the canonical basis of 5%, then {u,..., us}
is basis of Im(B) with u; := Be;, 1 <1i < s, thus {v1,..., vp,u1,...,us}isa

basis of S”. We define S” Y, S"byU e;:=wu;forl <i<s,andUesqj:= vj
for 1 < j < p. Clearly U is bijective; moreover, FUe; = Fu; = FFBe; = e;
and FUegy; = Avj =0, ie.,, FU = [I, | 0]. Additionally, by the definition
of U we observe that the first s columns of U form the matrix B.

(ii) = (i): Let U® the k-th column of U, then FU = F[UWM ... U ...
UM =[I,]0],s0 FUY = e;, 1 <i<s, FUSH) =0,1 < j < p with
p :=r — s. This means that U+ € ker(F) and hence (UG+) : 1 < j <
p) C ker(F). On the other hand, let ¢ € ker(F) C S, then F ¢ = 0 and
FUU 'c = 0, thus [I; | 0]U 'e = 0 and hence U te € ker([I5 | 0]); let
d=[d,...,d; )" €ker(Is|0]), then [Is | 0]d = 0 and from this we conclude
that di = --- =ds =0, ie., ker([I; | 0]) = (€41, €542, .., €54p), in other
words, ker([ I | 0]) coincides with the column module of the matrix

0
L
From U~te € ker([Is | 0]) we get that c is in the column module of matrix

U — [U(SH) U(S+p)]_

Ip

This proves that ker(F') = <U(S+j) 1 <5< p>; but since U is invertible,
then ker(F') = M is free of dimension p = r — s. We also has proved that the
last » — s columns of U conform a basis for M.

(i) « (iii): FU = [I5 | 0] if and only if F = [I | 0]UL, but the first s
rows of [Is | 0]JU ™! coincides with the first s rows of U™}; taking V := U~!
we get the result. |

Some examples of H rings are presented next.
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ExXAMPLE 13. Semilocal rings are H. This can be proved in the following
way: finite product of H rings is a H ring; S is a H ring if and only if
S/Rad(S) is a H ring (Rad(S) is the Jacobson radical of S'); any field is a H
ring, so we conclude the proof applying the chinese remainder theorem. On
the other hand, from (iv) of Example 2 we get that

PFCH.

Moreover, from Examples 2 and (2.1) we get that semilocals rings are not
always PSF.

ExaMPLES 14. (i) If R is a Dedekind domain (hereditary integral do-
main), then R[z1,...,x,] is H, for any n > 1 (see [18, Theorem V.2.11]).

(ii) If S is a commutative ring of Krull dimension 0, then S[z1,...,x,] is
H, for any n > 1 (see [18, Proposition V.2.13]).

(iii) If S is a local ring, in [3] Bhatwadekar and Rao have proved that S[z]
is H if and only if S(z) is H, where S(z) is the localization of S[x] at the
multiplicative set of monic polynomials (see also [18, Theorem 5.9]).

EXAMPLE 15. Now we will exhibit a ring that is not H (see [6]); this
example also shows that if S is H not always S/I is H, where [ is a proper
ideal of S: let S := R[z,y,2]/I and I := (2% +y? + 22 — 1), then f := (7,7, %)
is unimodular with right inverse f7, however f cannot be completed to a
unimodular matrix.

Related with the H condition there are two well known conjectures (see
[18]), probably not solved yet, that could be investigated with the results of
Theorem 11:

CONJECTURES 16. (i) If S is H, then S[z] is H.
(ii) If S is local, then S[z] is H.

3. A CONSTRUCTIVE PROOF OF THE QUILLEN-SUSLIN’S THEOREM

The most famous example of QS ring is given by the Quillen-Suslin the-
orem proved not only for coefficients in a field but also for coefficients in a
PID:

Let D be a PID, then for n > 1 every finitely generated projective
Dizy,...,xy,)-module is free, i.e., D[z1,...,x,] is PF.
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Thus, the Quillen-Suslin theorem stays that any PID is QS. A complete study
of the Quillen-Suslin’s theorem could be found in [18]. A non-algorithmic proof
of this key theorem could be found in [28], [31], [17], [18], [19] and [29].

In this section we present a clear and constructive proof of the theorem
in the classical case, i.e., when the coefficients are in a field (compare with
[24]). More exactly, if M C (K|[z1,...,x,])™ is a f.g. projective module, K
a field, the procedure that will exhibit in the following two theorems shows
how to construct a free basis for M. For this purpose we will adapt the
Logar-Sturmfels’ algorithm of [24] and also the ideas in [27].

The first theorem (Theorem 20) proves that Klzi,...,x,] is an Hermite
ring; the second theorem (Theorem 21) constructs a finite free basis for M.
In order to prove these two theorems we need some preliminary lemmas.

LEMMA 17. (NOETHER NORMALIZATION) Let p(x1,...,z,) € Klzi,
..y Tp] and m := deg(p(z1,...,x,)) + 1, where deg(p(z1,...,x,)) is the
total degree of p(xi,...,x,). Consider the following automorphism of
Kz, ..., 2]

Yn i= Tn , yi::xi—x?nﬂ., 1<i<n-1.

Then, p(y1,-..,Yn) = aq(yn), where a € K — {0} and ¢(y,) € Ry, is monic,
with R := K[yi1,...,Yn—1]. In the case where K is an infinite field, the auto-
morphism could be taken linear, i.e., y; := > 7_) mjjx;, where M = [my;] is
an invertible matrix over K.

Proof. See [29, Lemma 4.58] and [13, Theorem 3.4.1]. 1

LEMMA 18. Let S be a commutative ring and let f1, fo,b,d € S[x]. Let
s := Resy(f1, f2) € S be the resultant of fi and fa with respect to x. Then,
there exists U € GLy(S[z]) such that

[£1(b) f2(0)]U = [ fi(b+ sd) fa(b+ sd)].

Proof. The proof in [27] of this lemma is constructive and we will include it.
For the resultant of two polynomials consult [5] or [19]. Using Groébner bases
we can find p1, p2 € S[x] such that s = fip1 + fopa. Let s1,s2,t1,t2 € Sz, y, 2]
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be polynomials defined by

file +yz) = filz) +ysi(z,y,2),
fo(x +yz) = fa(z) +ysa(z,y, 2),
p1(@ +yz) = pi(z) + yta(z,y, 2)
p2(z +yz) = pa(z) + yta(z,y, 2) .

We note that

s1(b,s,d) = : |
so(b, s,d) == f2(b+s<i) ~ f(b) |
hbsd) = 2O Sfi) —n(®)
ta(b, s,d) = p2(b+ Sc? ~ po(b) |

and we define

Ui := 1+ s1(b, s,d)p1(b) + t2(b, s,d) f2(b)
Uz1 := s1(b, s, d)p2(b) — t2(b, s,d) f1(b) ,
Uiz := s2(b, s, d)p1(b) — t1(b, s,d) f2(b) ,
Usz := 1+ s2(b, s, d)p2(b) + t1(b, 5,d) f1(b) ;

then the matrix
Ui Ur2

Us1 Uz

has determinant 1 and satisfies the identity of the lemma. [}

LeEMMA 19. Let flz) := (fi1,..., fr) € (R[z])" be a unimodular row ma-
trix, with R := K|x1,...,Zn_1], ¥ := x,, and f; monic in x. Then, there exist
a matrix U € GL,(R][z]) such that fU = £(0).

Proof. We include the constructive proof given in [27]. Let a; := (0,...,0)
€ K" ! we define My := {g € R|g(a1) = 0}, then M; is a maximal
ideal of R and K; := R/M; = K (see [9]); by hypothesis f € (R[z])" is
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unimodular and its image f € (Ki[z])" = ((R/M)[z])" is also unimodu-
lar. Since Kj[x] is a principal ideal domain, by the Smith canonical form we
can construct matrices V' € GL;(K;[z]) and Ul € GL,_;(K;[z]) such that
V'(f2o..., fr)U{ = [g1 0 -+ 0], with g7 € K;[z], but then V7 is a nonzero
element of K7 and we can assume that (E, . ,ﬁ)ﬁ{ =[g1 0 --- 0]. Addi-
tionally we observe that <gT> = <E, .. ,ﬁ> and since <ﬁ, . ,ﬁ> = Ki[z],
then <ﬁ,ﬁ> = Kj[z]. Since K1 = K is a subring of R, we may lift 7{ =U]
as an element of GL,_1(R[z]) and g7 := g1 as an element of R[z]|. Then,

1 0

Ty o

=i ai+q2 @3 - qrl,

where qi2,...,q1, € Mi[x]. We define r1 := Res;(f1,91 + q12) € R, and we
can find p1,hy € R[z] such that pyf1 + h1(g1 + qi2) = 1. Since f; is monic,
and f1,91 € K1[z] generate the unit ideal, we have

T = ReSx(fl,gl + q12) = Resx(ﬁ7ﬁ) 7& 6)

ie., 11 ¢ Mj. Let K be the algebraic closure of K; for j = 2, let as €
(K)"! be a zero of 71 and My = {g € R|g(as) = 0} the corresponding
maximal ideal of R, note that ry € Ms; as above we can construct ro €
R — M, Uy € GL,_1(R[z]), g2,p2,he € R[x] and ¢o2,...,q2, € Ma[z]; or
in general, for j > 2, let a; € (K)"! be a common zero of ry,...,7j_1,
M; the corresponding maximal ideal of R, r; € R — Mj, Uj € GL,—1(R[z]),
9j,pj, hj € R[z] and gjo,...,qjr € M;jlx]; we observe that r,...,rj_1 € M;
but 7; ¢ iR+ ---+7;_1R. Since R is Noetherian, there exists a finite [ such
that riR+---4+r R = R and using Grobner bases we can find wy,...,w; € R
such that rywy + -+ + mw; = 1. We define by, b1, ...,b; € R[x] as

by : =0,
by :=rqwz,

bQ = TrwiT + rows ,

by := rqwix + rowsxr + -+ - + MW = x .
Note that for each 1 <4 <

bi = bifl + r,wW;T .
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Claim. For each 1 < i <[, there exists a matrix U; € GL,(R[z]) such
that f(b;) = f(bi—1)Ui.

From previous claim we inductively get f(x) = f(b;) = f(b—1)U; = -+ =
FO)ULUs -+ Uy, so fU = f£(0), with U .= U, UL -+ U

In order to complete the proof we must prove the above claim. For 1 <
1<, let

gi = gi + @2,

then
1 0

e

=[filz) i(z) qgs(@) - qr(2)].

For 3 < j <, we have ¢;;(b;) — gij(bi—1) € (b; — bi—1)R[z] = ryw;zR[z] since
b; — b;_1 = ryw;x for each 1 < ¢ < [. Since r; does not depend on z, we have
ri = pi(z) fi(z) + hi(2)gi(x) = pi(bi-1)f1(bi-1) + hi(bi-1)gi(bi—1) = a linear
combination of f1(b;—1) and g;(b;—1) over R[z]; therefore, for 3 < j < r, we
have ¢;;j(b;) = ¢ij(bi—1)+ a linear combination of fi(bi—1) and g;(bi—1) over
R[z]. From this we conclude that there exists a matrix C; € GL,(R[z]) such
that

1 0

f(bi—l) 0 U{(bzfl)

Ci=[filbic1) Gi(bic1) @is(bi—1) -+ qir(bic1) |Ci

= [filbic1) Gi(bic1)  aqis(bi) - qir(bi)]-
By Lemma 18, we can construct a matrix U; € GLy(R[z]) such that

[fi(bic1)  Gilbio1) ]Ti = [ (b)) Gulbi) ]
Finally, we define U; € GL,(R|x]) as
U 0
0 Ir—2

then f(bi—1)U; = f(b;). This conclude the proof of the claim and also the
proof of the lemma. i

U; .=

1 0 . 1 0
0 Ulbi_1)| * 0 U/(b)~'|’

THEOREM 20. Let K be a field. Then,

(i) Given a unimodular matrix F over K[xy,...,x,] of size s x r, r > s,
with right inverse B, there exists U € GL,(K|x1,...,zy]) such that

FU =[I, | 0].
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In such case, the last r — s columns of U conform a basis for ker(F).
Moreover, the first s columns of U conform B.

(ii) Given a unimodular matrix F over K[x1,...,x,]| of size r X s, r > s,
with left inverse B, there exists U € GL,(K]|x1,...,z,]) such that

UF =[I,|0].

In such case, the last r — s rows of U conform a basis for ker(F'). More-
over, the first s rows of U conform B.

Proof. Taking the transposes of matrices involved we observe that (i) and
(ii) are equivalent, so we only need to prove (i). The second part of (i) was
proven in Theorem 12. Moreover, by induction, we only need to consider the
case s = 1 (see also the proof of Theorem 11).

Thus, given a unimodular row matrix f = (f1,..., f.) over K[z1,...,zy]
of size 1 x r we will construct a matrix U € GL,(K[z1,...,2,]) such that
FU = (1,0...,0).

Case 1. For r = 1 the property is trivially true. For » = 2 the property
is valid for any commutative ring R: in fact, let g = (g1,92) € R? such that
fgt =[1],ie., figi + f2g2 = 1, then in this case the matrix U is

e —f
U= g2 f1]

since det(U) =1 and fU = (1,0).

Case 2. We can assume that r > 3. For n = 1 the matrix U is computable
since K[z1] is a principal ideal domain: in fact, by the Smith canonical form
we can construct matrices V' € GL1(K[z1]) and U € GL,(K][x1]) such that

VfU = [d 0 --- 0], with d € KJz;1], but then V is a nonzero element
of K and we can assume that fU = [d 0 --- 0]. Since U is invertible
(dy = (f1,..., fr) = K[z1] and hence d is a nonzero constant of K, so we can

assume that d =1 and fU =10 --- 0].

The rest of the proof is as in [27]. We assume that the result is true for
k < mn—1 variables and let R := K[z1,...,Tp—1] and © := xp; let f(z) := f =
(fis--., fr) € K[z1,...,25] = R[z] be a unimodular row matrix. Permuting
some columns of f (if it is necessary) and by Lemma 17 we can assume that
f1 is monic. By Lemma 19 we can construct a matrix U’ € GL,(R[z]) such
that
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Since f(0) is unimodular over R, by induction there exists a matrix U” €
GL,(R) such that f(0)U” = (1,0,...,0), and then, fU = (1,0,...,0), with
U:=U'U" € GL,(R[z]). I

THEOREM 21. (QUILLEN-SUSLIN) Let K be a field. If M is a f.g. pro-
jective K[x1,...,x,]-module, then M is free and a basis for M is effectively
computable.

Proof. By [1, Theorem 3.10.4], we can construct a finite free resolution for
M,

0— At Doy gtoms Dt 0Bt o g (3.1)
where A := K|x1,...,zy,]. Since M is projective the short exact sequence

0 — ker(Fp) — A" oM -0

splits, so ker(Fp) = Im(F}) is projective. By induction we get that Im(F;) is
projective for 1 < i < k; in particular, Im(Fj_1) is projective and the exact
sequence

0 At Do gter B g ) o

splits; then Fj, has a left inverse Ly, i.e., Ly F} = I3, , and also Fj,_; has right
inverse Hj_1, and hence we have the exact sequence

Hk—l Lk

0 — Im(Fk_1) Alk—1 Alv 0.

We note that Ly is effective computable from Fj: in fact, by Theorem 20,
part (ii), we compute a matrix U’ such that U'F}, = [, | 0] and the first
rows of U’ conform L. Since Lj has a right inverse we can apply Theorem
20, part (i), and compute an invertible matrix Uy_; of size t;_1 X tp_1 such
that

LiUg—1=[1Lt, | 0]

and its first {5 columns conform the matrix Fj; the remaining t;_1 —t; columns
of Ui_1 form a free basis for ker(Ly); we denote this submatrix of Ux_; by
Vk—l- Let

Cr-1:=Fr1Vi-1,

then the size of Cy_1 is tgx_o X (tx—1 — tx). We have proved that Cj_q is
effective computable.
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We claim that the following sequence is exact:

Cr—1

0 — Atk—1=tk , Atk—2 P2

Fy_3

Atr=s St 0. (3.2)

In fact, Vi1 : A%-17% — A'-1 ig injective since the columns of Vj,_; are
linearly independent, moreover Im(V;_1) = ker(Ly) = Im(Hy_1); hence, let
x € ker(Ck—_1), then Cy_1(z) = 0 = Fy_1Vi_1(x), this means that Vi_i(z) €
ker(F)_1) = Im(F}), so there exists 2 € A such that V;_1(z) = Fi(z), and
hence Li(Vk—1(z)) = 0 = Li(Fi(2)) = 2z, i.e., Vi—1(x) = 0, so z = 0. This
prove that Cj_1 is injective. Fj_9Cy_1 = Fy_oFk_1Vk—1 =0, so Im(Cx_1) C
ker(Fj_o); finally, if w € ker(Fy_2) = Im(Fi_1), then w = Fj,_1(u) with u €
Ate=1 but u— FyLg(u) € ker(Lg), so u— FyLy(u) = Vix_1(y) and consequently

w=Fi_1(u) = Fr_1(Vik—1(y) + FiLg(u))
= Fy1(Vik-1(y)) + Fr—1(FiLg(u)) = F—1(Ve-1(y)) = Cr-1(y)

thus, ker(Fi_2) C Im(Ck_1). This prove that (3.2) is exact.

The finite free resolution (3.2) is shorter than the resolution (3.1), hence,
repeating this procedure we effectively construct a matrix Cy := FyVy such
that the sequence

0— A 2 -0,
is exact. Then, the columns of Cy form a free basis for M. |
EXAMPLE 22. Let
M = <(—y,y—2,y2—y,0), (—x,x+2,xy—x+2y,0),
(y,x+2,y,0), (—2y2+1,—1,2xy2+2y2—y+1,—2y),
(= 20y —1,1,20% + 2oy +y + 1,-22) ) € (Qlz,y))".

According to Example 7, M is projective, and with CoCoA or Singular (see
[16]), we computed the finite free resolution

O—>A2i>A5i>M—>O,
where A := Q[x, y],

—y —x Y —2y% +1 —2zy —1
y—2 T +2 T+2 -1 1
v —y zy—x+2y Y 22 + 2y —y+1 2%y +2zy+y+1
0 0 0 —2y —2x

Fy =
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and
(2+2 —a?—2z+ 3]
-y xy+%
F = 2 —2x
3T
L 0 -3y

A left inverse of F can be computed directly,

0 0 : 2 0
Loi= Clpaly 1
1 1 s+ 5y —1 Y

)
—X

and according to the proof of Theorem 21 the matrix Uy is given by the
columns of F; and a free basis for the kernel of Li; with CoCoA we computed
the kernel of L; and we get

[1 —y+2 0]
-1 x- %y T
ker(L1)= | 0 2 0], ker(ker(L;)) =0,
o -1 0
| 0 0 1]

i.e., the columns of the previous matrix form a free basis for the kernel of L.
Consequently,

(x4 2 —x2—2x+% 1 —y+2 0
—y xy—l—% 1 ﬂ:—%y T
Uy := 2 —2x 0 2 0],
0 s 0 -5 0
L0 —3y 0 0 1]
1 —y+2 0]
—1 x—%y z
Vo:=10 2 0
o -1 o0
| O 0 1]

Then, the columns of Cy = FyVy form a basis for M, with Cy given by



74 O. LEZAMA ET AL.

Ty —x2+%:ﬁy+2y2—% —x? —2yx — 1
Co = y—x—4 mz—%$y+4m—y2+3y+% 22+ 241
o B v
0 Y —2z
where

a=x—3y—zy+1y°,
3 5 1
B=aty—a® =Syt oy -yt gy -

y=y+ 322y +day —2? +1.

1
92 )

With CoCoA we checked that ker(Cp) = 0 and M coincides with the column
module of Cy:

UseR ::= Q[z,y];

Syz([Vector(z —y,y — x — 4,2 — 3y — 2y + 32, 0),

Vector(—x? +1/2zy + 2y* — 1/2,2% — 1/2xy + 4z — y* 4+ 3y + 1/2,
wy —a® = 3/2xy* +5/2zy — y° + 47 +1/2y — 1/2,y),

Vector(—z? — 2yz — 1, 2% 4+ 2z + 1,y + 32%y + 4oy — 22 + 1, —22)));
Module(]0])

UseR ::= Q[z,y];

G := ReducedGBasis(Module(Vector(z —y,y — x — 4,z — 3y — 2y + y*,0),
Vector(—x? +1/2zy + 2y* — 1/2,2% — 1/2xy + 42 — y* 4+ 3y + 1/2,

a2y —a? —3/2xy® +5/2xy — P + 7+ 1/2y — 1/2,y),

Vector(—a® — 2yx — 1,2 + 2z + 1,y + 322y + day — 2% + 1, —22)));

G;

[Vector(y,x 4+ 2,y,0), Vector(—x — y,0,zy — x + ¥, 0),

Vector(z? —1/2,1/2,2% + 1/2y + 1/2, —z), Vector(—y,y — 2,y* — y,0),
Vector(zy+x+y+1/2,-1/2,2 — 3/2y + 1/2, —y)]
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UseR == Qlr, yl;

G := ReducedG Basis(Module(Vector(—y,y — 2,y* — ,0),

Vector(—z,x + 2,2y — = + 2y,0),

Vector(y, z + 2,y,0), Vector(—2y* + 1, -1, 2zy* + 2y* —y + 1, —2y),

Vector(—2xy — 1,1, 22%y + 2xy +y + 1, —2x)));

G;

[Vector(—y,y — 2,y° — y,0),

Vector(zy+x+y+1/2,—-1/2,2 — 3/2y + 1/2,—y),

Vector(z? —1/2,1/2, 2% + 1/2y + 1/2, —z), Vector(y, z + 2,y,0),

Vector(—x — y,0,z2y — x + y,0)]

In the previous example the computation of matrices L and Uy (see the
notation in the proof of Theorem 21) was trivial, i.e., Theorem 20 was not
applied. We present next an example that illustrates the procedure for com-

puting the matrix U of Theorem 20, part (i). As we observe in the proof of
that theorem, it is enough to consider the case s = 1.

ExaMmpPLE 23. We will consider the example given by A. van den Essen
and presented in [6], i.e.,

f= (2tl‘z+ty2,2t:ny+t2,t:r2) € (Q[t,az,y, z])g.

We illustrate the procedure given in Theorem 20, Lemma 19 and Lemma 18,
dividing the computations in some steps. We will use the package CoCoA for

some computations.
Step 0. With CoCoA we check that f is unimodular:

Use R = Q[t,x,y, z];

G := ReducedGBasis(Ideal(2tzz + ty? + 1, 2txy + t2, tz?));
G;

1]

Step 1. Noether normalization: the automorphism in this case is given
byt —z, xz—ty—z 22—y sofi=(x%+2y)z+1, fo = 2>+ 2twz and
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f3 = t?z. Permuting f; and fs we have a new unimodular row matrix, and
we can assume that

f= (z2 + 2twz, (a;2 + 2ty)z + 1,t22) € (Q[t,a:,y, z])3

where fi = 22 + 2txz is monic in z with coefficients in Q[t, z,y].

Step 2. Now we apply Lemma 19 in order to construct a matrix U’ €
GL3(R|[z]) such that f U’ = f(0), with R := Q[t, 2, y|; we will use the notation
of Lemma, 19.

Step 2 1

a; := (0,0,0), M1 = <t x,y) is a maximal ideal of R, K; :=
R/M; = = (z

0,0,0
1.0) € ( SGEN

1 0
0 11|’

g1 = 1; thus, g1 = 1, q12 = (2% + 2ty)z € Mi[2] and 13 = t?z € M;[z]. With
CoCoA we compute 1 := Res,(f1,g1) = Res. (22 + 2tzz, 1 + (22 + 2ty)2),

l"II

07 = v =

UseR ::= Qlt,z,y, 2];

F =224+ 222G =1+ (22 + 2ty)z;
Resultant(F, G, 2);

— 2ta® — Atzy + 1,

then
r o= —2ta® — 4t2xy + 1.

)
=
o
x.
=
=3

Step 2.2. ao := (2,1,0) is a zero of r1, My = <t %,x—l y) is

ideal of R, Ko := R/M> = Q, f = (2* + 2,2+ 1, 12) € (Ka[2])? = (Q[2])3,

U2 U2_

gj—f thus, go = 1, qoo = (—4t2 +2ty+x2)z € Ms[z] and ¢o3 = (t2 — %ty—
122)22 +(t2 1)z € My[z], moreover, Res, (22 +2tzz, 14 (—4t>+2ty+2%)z) =
8t3x — 2tad — 4t?xy + 1, ie.,

ro = 83z — 2tad — At?zy + 1.
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Step 2.3. With CoCoA we computed
UseR ::= Qlt, z,y];
I := Ideal(—2tx3 — 4t%xy + 1,83z — 2t2® — At?zy + 1);
GenRepr(1,1);
(4225 — 28 — 22y + 2t + 4?2y — 223y — 2txy® + 1,
28 + 2taly + 223y + 2tay?],
hence (r1,r2) = R and 1 = ryw; + rowg with
wy = 48225 — 2® — 2taSy + 2ta® + 4t xy — 223y — 2tay® + 1,
wy = 2 4 22y + 223y + 2txy? .
Step 2.4. We have
bp =0, b1 = rwz, bo = rqwiz + rowez = 2.

Step 2.5. According to the proof of Lemma 19, f(be) = f(2) = f =
f(b1)Usz and f(by) = f(bo)Ur = f(0)Uy, where Us and U; must be computed
with Lemma 18. Hence, fU’ = f(0), with U’ := U, 'U;*. With the notation
of Lemma 19 we have

10 o, o] [1 0
Uy .= C
' o Uj0)] Lo 1|0 U®b)?
and i o o .
1 0 Uy 0]]1 0
U = C
2 Usbr) | Lo 1[0 Usbe)t ]
Thus,
1 0
! _ — / b ,1‘
U1(0) 0 1 Up(b1)™
moreover,
£(0) L0 le =[f1(0) G1(0) qu3(b1)]
0 U{(O) 1= |1 g1 q13(01) ],
but f£(0) = (0,1,0), so (0,1,0)Cy = [0 1 £%b1 | since f1(0) =0, g1(0) =1 and
q13(b1) = t2b1. We can take

1 0 0
Cl =10 1 t2b1
0 0 1
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Moreover, for Uy we have

[£10) G(0)] = [/1(01) Gu(b1)],

Lemma 18 gives a procedure for computing [71, let

~ Ui U2
U= | _ _
Uzl U2

using the proof of Lemma 18 with b = by =0, s = r1, d = w12, we have
u11 =1+ 51(0,71, w12)p1(0) + t2(0,71,w12)g1(0)
ug1 = $1(0, 71, w12)h1(0) — t2(0,71, w1 2) f1(0)
1z = 52(0,71, w12)p1(0) — 1(0, 1, w12)91(0),
gy = 1+ 52(0,71,w12)h1(0) + t1(0, 71, w12) f1(0)

where p1 f1 + h1(g1 + qi2) = r1 and p1, hy, s1, S2,t1, t2 are some polynomials
that we must compute. With CoCoA we computed

p1 = 2t + dtaly + 4t%y2
hy = —2ta® — At2xy — 2?2 — Ayz + 1.
Since g1(0) =1, f1(0) =0, p1(0) = p1 and hi(0) = 71, by Lemma 18
sy = f1(b1) — f1(bo)

= wiz(rw z + 2tx),

1
g1(b1) —g1(b
S9 = w — wlz(x2 —+ 2ty)7
1
b1) — b
tl:P1(1) p1(0):O’
1
h1(b1) — h1(b
to = M = —w12($2 + 2ty).
1

From all of these computations we conclude that
u1; =1 +wiz(riwz + 2tx)(w2 + 2ty)2 — wlz(ac2 + 2ty),
Uz = riwiz(riwy z + 2tx) ,
U1g = wiz(x? + 2ty)?,

Uy =1+ rlwlz(xz + 2ty),
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and
u;p w0
Ur= |t Tz %1 | ;
0 0 1

we observe that det(U;) = 1 and

~ ~ ~ 2
Uzp  —Ui2  Ur2t“by
—1 ~ ~ ~ 9
U "= |—u2a unn  —unth
0 0 1

Now we will compute Uy 1 We start with Cs, we have

[f1(b1)  G2(b1)  qo3(b1)] Co= [ fi(b1) Ga(b1) qos(b2)];

since ¢a3(b2) = q23(b1)+ a linear combination of f1(b1) and g2(b1) over R]z],
we conclude that the form of Cy is

Co =

S O =
S = O

p

ql,

1

where p, ¢ are polynomials that we must compute; we get that

q23(b2) = pfi(b1) + qg2(b1) + qo3(b1) .

Expressing the previous relation in terms of ¢, x, 3, z and using CoCoA we found
that

p = 16t52822 — 12t421922 + 31221222 — ixMzQ + 32t720y2? — 48t°28y2? +
1883210y 22 — 2tx'2y2? — 4815269222 + 36t 281222 — 6122109222 + 24t526¢322 —
83289322 — 4t aby? 22 + 1610282 — 8t42102 + 122122 4 32t 720y 2 — 326528y 2 +
613210y — 32t025y%2 + 1242822 + 8t920y32 + 32t023y2? — 24tiady2? +
6122 yz% — %:cgyzz + 32tTxy2? — 2023y 2% + 306320y%2% — %tx7y2z2—
48t5213 2% 4 48t a3y> 2% — 920y 2 + 240 xyt2? — 108323y 2% — Attay®2? +
32t023yz — 16t*2%yz + 2t%2Tyz + 32t7Txy?z — 48923y 4+ 10t320y%z —
3210z 2 + 16t123y32 + 8tOxytz,

or factoring, we have

1
p= 1352(1}7 + 22y + 222y + 2ty?) (422 — 222 — 2tyz + 42) (412 — 2° — 2ty)?



80 O. LEZAMA ET AL.

and )
q= —1332(337 + 2ty + 222y + 2ty*)q

with

q = 128t7x%2% — 960w 2% + 241321322 — 2x1P2% + 2561827 y2? — 3841527
yz? + 144t a My 2% — 1682213y 22 — 384t727y% 2% + 288t°29y% 2% — 48321y %22 +
19210274322 — 64t 29y3 22 — 326527y 22 + 12872 2 — 64152 2 4 832132 + 25618
x7yz—256t02%y 2+ 484w lyz — 256t 2 Ty2 2+ 96527y 2 +-64t5 2Ty 2+ 16t 12822 —
8t221022 4 11222 4 25617ty 2?2 — 160725y 22 4 166328y 22 + 220922 + 2561822
Y222 — 5765249222 4 208t 1209222 — 16t228y? 22 — 384t 2x%y3 22 4 384524 y3 2% —
6413251322 + 19215229222 — 80ttatyt2? — 326522922 + 16t1282 — 4122102 +
25617 x4y 2 — 96220y 2 + 2561522y 2 — 3841024y 2 + 64145y 2 — 2561712y 2 +
12885243 2 + 641022yt 2 4 32t a3y 22 — 16205y 22 4 207y 22 + 32ty % 2% — 48t323
Y222 + 10txdy? 2% — 32t a3 22 + 1662233 22 4 8t3xy* 22 + 32t a3y 2 — 825y +
32t0xy? 2 —24t323y2 2 — 16t wyP 2 —32t° w2+ 161323 2 — 2t 2+ 32t wy 2 — 8t Py 2 —
8t3xy?z — 3200w+ 8t323 + 1614wy — 161122 +-81202 22 — 24 22 + 1613y 2% — 4t ay 2% —
4t%y? 22 — 16t 2 +-4t% 22 2+ 8ty 2+ 87w — 2t — At wy — 4t% 2+ 24 2ty 2 — 47+ 1.

For Us, let
~ v v
Uy = [~11 ~12] 7
V21 022
by the proof of Lemma 18 with b = b1, s = r9 and d = w2z, we have

011 = 1+ 84 (br, r2, waz)p (b1) + t5(br, r2, w22) g2 (b1) ,
Vg1 = 57 (b1, 72, waz)hy (b1) — ty(b1, 72, w22) f1(b1)
V12 = s5(b1, ro, waz)p] (b1) — 1 (b1, ro, waz)ga(b1) ,

Upp = 1+ sy(b1,r2, waz)hy (by) + t1 (b1, m2, waz) f1(by)

where p) fi1 + R (g2 + q22) = 72 and pj, b}, sy, s, ), t, are some polynomials
that we must compute. With CoCoA we found that

Pl = 16t* — 8222 + a2t — 1663y + 4ta’y + 4t%y? = (42 — 22 — 2ty)?,
Ry = 8t3x — 2tad — atzy + 4tz — 2%z — 2yz + 1.
Moreover, with CoCoA we computed

bo) — f1(b
5/1 — M — —.IZ(.I'? + 2t$5y + 2$2y + 2ty2)5/1, s
T2
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where
s = 83292 — 2tallz + 16t4x7yz — 8t2x9yz — 8t3a:7y2z + 282
+ 16t3:c4yz — 2taSyz + 16t4m2y22 - 12t2x4y22
— 8t322%y3 2 + 223yz + 2twyPz — 2x — 22,
In a similar way we get that

_ 92(b2) = g2(b)

sh =" I — _ga(a” + 2txdy + 202y 4 2ty?) (482 — 2 — 2ty),
T2
- Pi(b2) —py(br) 0,
2
R (b)) — Ry (b
th = M = xz(x” + 2ta’y + 222y + 2ty%) (4% — 2 — 2ty) .

T2

We have proved that [72 is effectively computable, and consequently, we have
computed Uy L. the columns of Uy Lare

U2 —(b1 — 4q + 1)v12 — 4pva2
Ci’ = | —v91 , Cé/ = (b1 —4q + 1)511 + 4p621 —Zz ,
4v971 —4((b1 —4q + 1)511 + 4p521 -z — 1)

and N N
—2((by — 4q)V12 + 4pvan)
Cg = i((bl - 4q)511 + 4]9521 — Z)
—((b1 — 4q)v11 +4pv2 — 2 — 1)
Then U’ = U, *U; " and its columns are

U2 + Ug1 (4pvaz + V12(b1 —4q + 1))
Cl= —Ug9V1 — Ug1 (4pU21 — 2z + V11(by — 4q + 1)) ;
4(ugv21 + 21 (4pv21 — 2z +v11(b1 —4g + 1) — 1))

—U12092 — U1 (4pUa2 + V12(b1 — 4g + 1))
Ch = U12021 + w11 (4pvo1 — 2z +011(b1 —4g + 1)) ;
—4(&12521 + ’1711(4])521 —z 4+ 511(171 —4q + 1) — 1))
2b1212T22 — §012(b1 — 4q) — poaz + t2b1t11 (4pTa2 + T12(b1 — 4g + 1))
C:/J, = pU21 — %Z + iﬂll(b1 — 4q) — t2b1U12021 — t2b11U11 (4pva1 — 2z + V11 (b1 — 4q + 1))
2 — dpva1 — V11 (b1 — 4q) + 4t2b1 12021 + 4t2b1711 (4pUar — 2 +U11(b1 —4q+1) — 1) + 1

With CoCoA we checked that det(U’) = 1.
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Step 3. Since f(0) = (0,1,0), then with notation in the proof of Theorem
20,

0 1 0
U'=11 0 o0f,
0 0 1
and hence,
U=UU"=[C, ¢ .
Thus, if
Ul U1z U13
U:= |ua1 w2 wuxl,
u3z1p U32 U3z
then

u11 = —U12022 — U11(4pvaz + V12(b1 — 49 + 1)),

ug1 = U12V21 + U1 (4pv21 — z + v11(b1 — 4q + 1)),

uz1 = —4(U12v21 + u11(4pv21 — 2z +v11(b1 —4g +1) — 1))
= —4ug + 4uyy,

U1g = UzaVa2 + U1 (4pU2a + V12(b1 — 4g + 1)),

Uge = —Ug2Ua1 — Uz1(4pUa1 — z +v11(b1 — 4q + 1)),

uzz = 4(U2021 + 21 (4pv21 — 2z +V11(b1 —4g + 1) — 1))

= —4dugy — 4ug ,
oo 1 _
u13 = t°b1u12v22 — 1012(51 —4q) — pUa2
+ 261711 (4paz + Via(by — 4q + 1)),

. 1 1. - -
u23 = pla1 = 12 + Zvll(bl — 4q) — t2b1 U120

— 2b1T11 (4pUa1 — 2 + D11 (b1 — 4g + 1)),
ugs = z — 4play — 011 (b1 — 4q) + 42b1T12021
+ 482611 (4pUo1 — 2+ D11 (by —4g+1) —1) + 1
= —dugz — 421U + 1.
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ExXAMPLE 24. In the previous example we can take y = 0 and calculate
the concrete entries of U. Thus,

f= (22 + 2wz, 2%z + 1,t22) € (Q[t,x,z])3.
In this case we have
ry = —2ta:3+1, ro = 8t3:c—2ta:3+1, wy, = 4t2$6—$8+2t:1;3+1, Wy = 28,
We observe that rywq + rowo = 1. Moreover,
by = rqwiz = ( —2ta® + 1) (4t2x6 — 2% 4 2t + l)z.
From this we get

U = —32t°21922 4 166322122 — 222222 — 16t4 21622
+ 22022 — 81321322 4+ 81301y — 2tx'32 4 44221022
— 221222 + 210 4 22 22 + 2t2? — 2?2 41 ,
Uy = 641021822 — 321422022 + 44227222
+ 166321722 — 4ta1®2? + 21922 — 166202 + 422122
— 16832722 + 4tatt2? — 22’z — 22822 + 2taz + 22 ,
Uro = 422122 — 2"z + 2t2%2 + 22,
Uoy = =832 2 + 2232 — 2192 + 222 + 1.

With CoCoA we checked that 1711622 — 1721&12 =1.
On the other hand,

p= ix82(4t22 — 22+ 4t2) (4t2 — a:2)2 ,

q¢= —%xszq’,
with
q¢ = 128t72%2% — 961521 22 4 241321322 — 21522 + 128t72%2 — 6452 2 +
8t3x13 2+ 16t1a82% — 81221022 4+ 21222 + 16t 282 — 4122102 — 32522 + 161323 2 —
20z — 32t%x + 8t3x3 — 161422 + 8t2222% — x%22 — 16t12 + 4t%222 + 83z —
a3 — At?z + 2%z — 4% + 1.
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Moreover,

U1 = 32t°2%2 — 166321 2 + 2tz 4+ 1662822 — 81221022
+ 2222 4?8 — 2102 41 ,

Top = —64t52182% + 321402022 — 41227222 — 321021723
+ 166321923 — 22?123 — 166321722 + 4tx192? — 4221623
+ 21823 — 21622 1 1662102 — 4t221%2 + 16632922 — 4tatl 22
+4t2282% — 21923 4 2%z + 22822 ,

V1o = —64t%282 + 48t12102 — 12022122 + 212,

Voo = 12872722 — 96175922 + 24327 2% — 2607322
+ 1612022 — 81221822 + 22022 — 32t°2% 2 + 168321 2 — 2232
— 16642822 4+ 81221022 — 21222 —4t?282 + 2102 + 1.

With CoCoA we also checked that 110292 — U21012 = 1. Finally, with the
notation of the previous example we have

Ul = 641521822 — 32¢122022 4 4222222 + 326%21522 — 8321722

+16t4 21222 — 4622122 — 16t 2102 + 462222 — 22”2 — 252,
ugy = 16t121823 — 4222023 4 8321523

+ 48221223 4 2272 + 2t — 2?2 41 ,
U3 = —128t921922 + 643221 2% — 8ta?32? — 64t121823

+ 166222023 — 64121622 + 422022 — 324321%23 — 32341322

— 166221223 + 326321 2 — 8tz + 166221022 — 821222 + 42102

We have checked that fiuiq + fouor + fsuzs = 1.

Up = 128t72'7 2?2 — 64t°21922% + 8322122 4 16t1216 22
— 4221822 — 3265292 + 832 2 — 16142822
+ 4221022 — 42082 + 2?2 4 1,

U9y = 326921723 — 8321923 + 41221623 — 4122823 — 2402 — 22 ,
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ugs = —256t%212% + 1281122022 — 16¢%22%2% — 128¢°2'72°
+ 326321923 — 64321722 + 1612922 — 166221623
— 421022 4 64t 2102 — 16622122 + 64¢32° 22
— 16ttt 2% + 16122823 + 8ta”z + 82822
We have checked that fiuio + foues + fyusgs = 0.

w1z = 512622723 — 384t%2:2923 4+ 96t 23 23 — 8913323 + 25641022423
— 648322023 — 166522823 + 41223923 4+ 1281°2:21 23 — 32722323
— 128921922 4 64t7 221 2% — 892?322 — 641321823 + 48522023
_Qhp22,3 _ 396,182 | 944,20 2 80,7,15.3 4 45,17 3
— 8221522 — 166521223 + 4t 21423 + 166521022 — 44421222
— 221422 — 1615282 + 8t 2102 — 22122 4 2632922 + 22522
Uy = 12869227 2% — 64¢7 2?7 24 + 82231 2t + 64¢82%4 2 — 4t 22821
+ 326722 2 — 16652182 4 8t 2202 + 166521023 — 44221823
_eP15,4 g5 13,3 gyt 12,4 gu5, 11 2 | 943,13 2
201228 — a2 — 23078 — 20008 1 120227 — 122
ugz = —1024¢1027823 4+ 768t%2302% — 1926023223 + 161234 2% — 5120927724
+ 256t 220 2% — 326923 2t — 512092723 4 96t°22%2% — 1667231 23
— 256322421 + 161102 — 2561% 07223 4 44?222 — 128172 24
+ 2563272022 — 128022222 4+ 161127 2% + 2561721923 — 1925221 23
+ 248322323 + 64102182 — 3204220 2% 4 64¢°21922 — 161322 22
+ 641521023 4 161121823 — 120222023 4 320°21°2% + 44221822
+32t°21323 + 161022t — 326721122 4 8172 1P 2% — 16¢%21023
+ 8221223 4+ 326522 — 83t 2 + 16642822 — 8221022 + 4¢22B2 4+ 1.
We have checked that fiuis + fouos + fauss = 0.

The above computations show that fU = (1,0,0).
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Remark 25. In [7] has been recently implemented the package
QUILLENSUSLIN developed in the computer algebra system MAPLE, that will
appear soon. The main functions of the package QUILLENSUSLIN are: compute
a unimodular matrix U which transforms a row vector admitting a right-
inverse into a matrix of the form [I 0]; complete a matrix admitting a right-
inverse to a unimodular matrix; compute a basis of a free module finitely
presented by a given matrix.

We conclude this section commenting some recent generalizations of the
Quillen-Suslin theorem: Gago-Vargas in [11] extended the algorithmic proofs
of the Quillen-Suslin theorem to coefficients in a PID with some additional
computational conditions. In [14] Gubeladze presented a non algorithmic
proof that the monoid ring D[M] is PF, where D is a PID and M is a certain
type of commutative monoid; in [22] is presented an algorithmic proof of the
Gubeladze’s generalization for fields. In [20] is presented an algorithmic proof
for quotients rings of K[x1,...,z,] by monomials ideals. When D is a PID,
quotients rings of D[M] by monomials ideals are also PF. A non algorithmic
proof of this fact is given in [32]. According to these results arise the following
problem-conjecture.

CONJECTURE 26. The constructive proofs in [11] and [20] can be extended
to D[M]/I, where D is a PID and M is a commutative, seminormal, finitely
generated monoid, which is torsion free, cancellative, and has no nontrivial
units.

4. EXTENDED RINGS AND THE BASS-QUILLEN CONJECTURE

If we consider finitely generated projective modules over arbitrary com-
mutative polynomial rings, is natural to ask if the Quillen-Suslin theorem also
holds, i.e., if S is an arbitrary commutative ring, we ask if S is a QS ring.
Related with this question are defined the extended modules and the corre-
spondent extended rings (see [18]). In this section we will study these topics
and some related conjectures.

DEFINITION 27. Let S be a commutative ring and B a S-algebra. Let M
be a B-module, M es extended from S if there exists a S-module My such
that M = My ®g B.

With the notation of the previous definition and setting
S[X] = S[x1,..., 2] and (X) :={x1,...,2pn),
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we have the following properties.

PROPOSITION 28. (i) If M is free over B, then M is extended from S.
(ii) If B = S[X] and M is extended from S, then

My = M/(X)M.

Moreover, if M is finitely generated (projective) as B-module, then M
is finitely generated (projective) as S-module.

Proof. (i) If M =2 BY) then M = SV) @g B.
(ii) If M = My ®g S[X] then
M @gx) S[X]/{X) = My ®s S[X] ®@g1x] S[X]/(X),
M/IX)M = My ®s S[X]/(X),
M/(X)M = My ®s S,
M/(X)M = M.
Let M = (z1,...,2z) and w € My, then w = Z with z € M; there exist poly-
nomials p1(X),...,p(X) € S[X] such that w =Z = z1p1(X) + - - - + zepe(X)
= Z1po1 + - -+ + Ztpot, where py; is the independent term of p;(X), 1 < i < ¢.

Hence, My = (z1,...,%)-
Finally, let M @ M’ = (S[X])®"), then

(M & M) ®s1x) SIX]/(X) 2 (S[XDT) ©g1x) SIX]/(X),

Mya M'/(X)M' = ST,
1

Extended modules are close related with QS rings as is showed in the
following results (see [18]).

DEFINITION 29. Let S be a commutative ring.

(i) Let n > 1, S is a E, ring if every f.g. projective S[x1, ..., x,]-module is
extended from S.

(ii) S is an extended ring E, if S is E,, for each n > 1.
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From Proposition 28 we get the following consequences:

E=()En, (4.1)
n>1

QS, CE, foreachn>1, (4.2)

QSCE. (4.3)

The following results are announced without proof in [18, p. 166].

THEOREM 30. (i) QS=PFNE=PSFNHNE.

(ii) Let S a PF ring. Then, for eachn > 1, S is E,, if and only if S[z1,. .., xy]
is PF. In other words, for PF rings E, = QS,, for each n > 1, and
consequently, E = QS.

(iii) For eachn > 1, if S is Ep41, then S and S|x] are E,.
(iv) EC---CE;1 CE, C--- CEy.
Proof. (i) First we will prove that QS C PFN E. By (4.3), QS C E; let
M be a S-f.g. projective module, then M & M’ = S™ and hence
(Mo M) ®sS[X]= 8" s S[X],
(M ®s S[X]® M s S[X]) = (S ®s S[X))™ = S[X]|™;
this means that M ®g S[X] is a S[X]-f.g. projective module, so by the hy-

pothesis M ®g S[X] is a S[X]-free module, i.e., M ®g S[X] = S[X]*, for some
k > 0. From this we get

1

M ®s S[X] @s1x) SIX]/(X) = S[X]* @51x) SIX]/(X),
M ®s (S[X] @spx) SIX]/(X)) 2 (S[X] @spx) SIX]/(X)",

(SIX]/(X)),

I

M ®s S[X]/{X)
M®gS~M~sk.

This means that S is PF. Thus, QS C PF, and hence, QS C PFN E.

Now we will prove that PFNE C QS: let M be a S[X]-f.g. projective
module, then M is extended from S and there exists a S-f.g. projective module
My such that M = My®gS[X]. By the hypothesis, M is S-free, i.e., My = S™,
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for some m > 0. Hence, M = S™ ®g S[X]| = S[X]|™, ie., M is S[X]-free.
This prove that S is QS.

The second equality follows from (2.1).

(ii) “=" Let M be af.g. projective S[X]-module, then M is extended from
S and theres exists a f.g. projective S-module M such that M = My®g S[X].
We are assuimng that S is PF, then M is S-free, and hence, M is S[X]-free.
This proves that E, C QS,, for each n > 1. The converse is thrue because
of (4.2).

(iii) Let M be a f.g. projective S[X]|-module, the there exists a S[X]-
module M’ such that M & M’ = (S[X])™ for some m > 1. From this we
get,

(M @& M') ®gx) S[X, 2ni1] = S[X]" @g1x] S[X, Zn1a],

I

M ®@g1x) S[X, Tni1] ® M’ @g1x) S[X, 2nt1] = S[X, 2ppa]™

This means that M ® g;x]S[X, ¥p41] is a f.g. projective S[X, x4 1]-module;
since S is E, 1, there exists a S-module M, such that

M ®g51x1 S[X, Zny1] = Mo ®@s S[X, Tpt1],
and from this we get

M Qs[x] SX, 2] QS[X, 2011 S[X, xpt1]/(Tns1)
= Mo ®@s S[X, Znt1] @gx,2,11] S[Xs Tns1]/(Tnt1)

M ®g1x) (S[X, Tn+1] ®8[X,zn11] S, 56n+1]/<33n+1>>
= My @5 (SIX, 2n41] @51x 1] SIX Tni]/ (2011}

ie.,
M®S[X] S[X] =M M(] XRg S[X] .

This means that M is extended from S, and hence, S is E,.

Now let B := S[z] and M be a f.g. projective B[X]-module, the there
exists a B[X]-module M’ such that M & M’ = (B[X])™ for some m > 1.
From this we get

(M & M') ®px) S[X, 2] = BX]" @px) S[X, 2],
M®B[X] SIX,z]® M’ ®B[X] S[X, z] = (B[X] ®B[X] S[X,:c})m >~ S[X, x]™.
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But B[X] = S[X, ], so
Me M =2 S[X,z)™,

ie., M is a f.g. projective S[X,z]-module. This implies that M is extended
from S; thus, there exists My a f.g. projective S-module such that M =
My ®s S[X, z]. Hence,

M = Mo ®s (S[z] @1 S[X, 2])
M = (Mo ®g S[z]) ®gp Slz][X],

with Mé = My ®g S[CC] = My ®g B.
(iv) This is consequence of (iii) and (4.1). I

From this theorem arise the following conjectures.

CONJECTURES 31. (i) For each n > 1, if S is E,, then S[x] is E,.
(ii) If S is E, then S[z] is E.

(iil) By = E».
(iv) E; = E,, for some m > 2.
(V) El =E.

Related with these questions are the following properties (see [18]).

ProPOSITION 32. For a fixed integer n > 1, the following four statements
are equivalent:
(i) Any ring satisfying E,, also satisfies Ej 1.
(ii) Any ring satisfying E,, also satisfies E, 4, for all r > 1.
(iii) If a ring S satisfies E,,, then so does S|x].
(iv) If a ring S satisfies E,,, then so does S|x1,...,z,] for all r > 1.
Proof. (i) = (iii): Let S be an E,, ring, then S is an E,; ring. Thus,
any f.g. projective S[z][X]-module is extended from S, so S[z] is E,,.

(ili) = (i): Let S be an E, ring, and let M be an S[z1,...,zn11]-f.g.
proyective module; since S[z1] is E,,, then M is extended from S[z4], i.e.,

M= Ml ®S[J}1] S[l’l”l’g, cee 7$n+1] )
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where M is a f.g. projective S[x1]-module. Since S is E,, so by Theorem 30
(iv), S is Eq, hence M is extended form S, and consequently, M is extended
from S. This means that S is E,41.

(i) = (ii): Let S € E,, then S € E, 11, thus the result is obvious for r = 1.
Since S € Ep41, by Theorem 30, S[z1] € E,, and again by (i), S[z1] € En+1.
We have proved (iii) for n 4 1, but (iii) is equivalent to (i) for a fixed integer,
in this case for the integer n+ 1, then by (i) S € E,+2. Thus, we have proved
that E,+1 = Ep42. Since S € E, 49, then by Theorem 30, S[z] € E,+1, so
S[z] € Ept2. We have proved (iii) for n + 2, but (iii) is equivalent to (i) for a
fixed integer, in this case for the integer n + 2, then by (i) S € E,4+3. We can
repeat this reasoning and we get that S € E, ., for each r > 1.

(ii) = (i): Obvious.

(iii) = (iv): If S € E, then by (iii) S[z1] € E,, and again by (iii)
S[z1,z2] € E,. By induction on r we complete the proof of this part.

(iv) = (iii): Obvious. N

COROLLARY 33. With the notation of Conjectures 31, it holds:

(a) (iil) & (iv) & (v).
(b) (v) = (i) = (ib).

Proof. (a) (iii) = (iv): It is clear that E,, C Ej; let S € E;, then by
(iii), S € Ey. Using Proposition 32 with n = 1, we get that S € E, for r > 1,
ie, S e En.

(iv) = (iii): It is clear that Ey C Ey; let S € Ej, then by (iv), S € E,,
C ks.

(iii) = (v): This proof is similar to previous proof.

(b) (v)=(i): Let S € E,, then S € E; = E,s0 S € E,;1; by Proposition
32, S[z] € E,,.

(i) = (ii): Obvious. 1

Some non trivial examples of E rings are the followings.

EXAMPLES 34. (i) Any Priifer domain (every f.g. ideal is projective) is
a E ring (see [23] and [8]). We observe that the Quillen-Suslin theorem is a
consequence of this result: in fact, if D is a PID, then D is a Priifer domain;
let M be a f.g. projective D[X]-module, by the result M is extended from D,
ie., M = My®p D[X], where M is a f.g. projective D-module. But since D
is a PID, My is D-free, and consequently, M is D[X]-free.
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(ii) Bézout domains are Priifer domains. Thus, Bézout domains are E;
however, if D is a Bézout domain, any f.g. projective D[X]-module is free,
i.e., the Bézout domains are QS (see [26]).

(iii) Let S be a commutative ring of Krull dimension 0. Then, S is E
(see [18])

(iv) A Noetherian generalization of the Quillen-Suslin theorem has been
given also by Quillen and Suslin (see [18]). Let S be a commutative regular
ring of Krull dimension < 2. Then, S is E. We note that the Quillen-Suslin
theorem is a consequence of this result. In fact, any PID satisfies the con-
ditions of the result: we recall that a commutative ring S is regular if S is
Noetherian and the global dimension of S is finite (see [18] and [29]). But any
PID is Noetherian and any PID has global dimension < 1. Thus, any PID
is regular; moreover, the Krull dimension of any PID is < 1. Thus, if D is
a PID, then every finitely generated projective D[X]-module M is extended
from D, and as we saw above, this implies that M is D[X]-free.

Related with the results of previous example, Bass ([2]) and Quillen ([28])
formulated the following conjecture.

CONJECTURE 35. (BQg: THE BASS-QQUILLEN CONJECTURE) Let S be a
commutative regular ring of Krull dimension < d. Then, every finitely gener-
ated projective S[X]-module is extended from S, i.e., S is E.

The H property and the BQ), conjecture are related in the following way.

THEOREM 36. The following conjectures are equivalent:

(Cl) If S is H then S[x] is H.
(C2) If S is local, then S|x] is H.

(C3) If S is a commutative ring and M is a stably free S[x]-module, then M
is extended from S.

(C4) If S is local and M is a stably free S[x]-module, then M is extended
from S.

(C5) If S is a commutative ring and f= (fi(x),..., fo(z))? is an unimodular
column matrix over S[z| such that f{0) can be completed to a matrix of
GL,(S), then f can be completed to a matrix of GLy,(S][x]).

(C6) IfS is Iocal and £f= (f1(z),..., fo(x))? is an unimodular column matrix
over S[x] such that fl0) can be completed to a matrix of GL(S), then
f can be completed to a matrix of GL,(S[z]).
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Morever, the truth of any of these conjectures will imply the truth of BQg
for all d.

Proof. (C1) = (C2): Let M be a stably free S-module, then M is a f.g.
projective S-module, but since S is local then M is S-free. Thus, S has the
H property. By (C1), S[z] is H.

(C2) = (C4): Let M be a stably free S[zr]-module, with S local; by
(C2), S[x] is H, then M is S[z]-free, and hence, M is extended from S (see
Proposition 28).

(C4) = (C2): Let M be a stably free S[z]-module, then M is a f.g.
projective S[z]-module; by (C4), M is extended from S, M = My ®g S[z],
where M is a f.g. projective S-module. But since S is local, then My is S-free,
so M is S[z]-free.

(C4) = (C3): This is a consequence of the Quillen Patching theorem: Let
S be a commutative ring. Let M be a finitely presented S[X|-module. Then,
M is extended from S if and only if for every maximal ideal P € Max(S), Mp
is extended from Sp (see [18]). In fact, let M be a stably free S[z]-module,
then M is a finitely presented module; moreover, Mp is a stably free Sp|x]-
module for each maximal ideal P of S: S[x]™ = M @ S[z]"™ for some m,n > 0,
then Spz]™ = M, @ Splz]". By (C4), Mp is extended from Sp, and by the
Quillen Patching theorem, M is extended from S.

(C3) = (C1): Let S be a H ring; let M be a stably free S[z]-module; by
(C3), M is extended from S, M = My ®g S[z], where My is a f.g. projective
S-module. We need to prove that M is S[z]|-free. We have S[z]P = M & S|[x]4
for some p, g > 0; then

Slz|P = (Mo ®g S[z]) ® S[z]?,
and hence
SlalP @gp) Slz]/ (@) = (Mo ®s S[z]) ®s1) S[zl/(x) & Sla]? ®gp Szl/(z)

i.e.,

SP =~ My SY,

This means that My is a stably free S-module, but since S is H, then Mj is
S-free, and hence, M is S[z]-free.

(C3) = (C5): There exists g = (g1(x), ..., gn(x)) such that g (z)f1(z) +
<o+ gn(x) fu(x) = 1, we define
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where {e1,...,e,} is the canonical basis of S[z|". We observe that « in a

surjective homomorphism since «(f) = 1. There exists § : S[z] — S[z]”
such that a8 = ig,) and S[z]" = Im(B) @ ker(a). In fact, 3 is defined by
B(1) := f and f is injective, hence, Im(5) = S[z] is free with basis {f}.
This implies that ker(«) is stably free, and by hypothesis, ker(«) is extended
from S. So, there exists a S-module Ky such that ker(a) = Ky ®g S[z],
moreover Ky = ker(a)/(x) ker(a). If we prove that ker(a)/(x)ker(a) is S-
free, then ker(«) is S[z|-free, and consequently, {f,h1,..., h,—1} is a basis
if S[x|", where {hi,...,h,_1} is a basis of ker(«). This means that B :=
[f hi---hyp_1] € GL,(S]z]) and (C5) holds.
Thus, we must prove that ker(«)/(x) ker(«) is S-free. We define

sm 5 8
ei — gi(0)
where {ei,..., ey} is the canonical basis of S™. There exists fy : S — S”
such that By = ig and S™ = Im(fFy) @ ker(ap). In fact, Gy is defined by
Bo(1) := £(0) and [y is injective, hence, Im(fGy) = S is free with basis {f(0)}.
Thus,
S™ = ker(ag) @ (£(0));

but by hypothesis f(0) is completable to a square matrix of GL,,(S), then as
we saw in the proof of Theorem 11, ker(ag) =2 S"~!. The idea is to prove that
ker(a)/(x) ker(a) = ker(agp). We have the following commutative diagram:

Slz]" ® (S[a]/(z)) 2= Sla] ® (S[a]/(x))
al |
Sn SN S

where ¢ is the identical map of S[z|/(x) and the vertical arrows ¢ and ¢ are
the natural isomorphisms defined by

O((hi(@), ... hn(2)) ®T) = (1(0),. .., 1n(0))
o(h(z)® 1) = h(0).

Then we have
ker(ag) = ker(a ® i) = ker(a) ® (S[z]/(x)) = ker(a)/(x) ker(c) .
(C5) = (C6): Obvious.
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(C6) = (C2): We will apply again Theorem 11. If f = (f1(z), ..., fo(z))"
is an unimodular column matrix over R[z|, then there exists g;(x) € S[z],
1< < n, such that g1(2) f1(2) + - + gu() fa(x) = 1, 50 g1(0)f1(0) + -+ +
9n(0)fn(0) = 1. Since S is local there exists ¢ such that f;(0) € S*, and
hence, by elementary operations on the rows of f(0) we find an invertible
matrix B € GL,(S) such that Bf(0) = ey, i.e., f(0) can be completed to an
invertible matrix of GL,(S). By (C6), f can be completed to an invertible
matrix of GLy,(S[x]).

The proof of the second part of theorem is very extensive and need many
preliminaries; this proof can be read in [18]. 1

According to previous theorem, if the conjecture (C6) is true then the
Bass-Quillen conjecture is true, and also, the Conjecture 16. The conjec-
ture (C6) can be formulated in the following way: in a local ring S if f =

(fi(x),..., fo(x))T is an unimodular column matrix over R[], then
f1(0) fi(z)
: = Bel = = Eel 9
fn(0) fn(@)

where B € GL,(S) and B € GL,(S[x]).
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