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Abstract : It has been shown that the three-circles theorem, which is also known as Ţiţeica’s
or Johnson’s theorem, can be extended to strictly convex normed planes, with various ap-
plications. From this it follows that the notions of orthocenters and orthocentric systems in
the Euclidean plane have natural analogues in strictly convex normed planes. In the present
paper (which can be regarded as continuation of [5] and [14]) we derive several new charac-
terizations of the Euclidean plane by studying geometric properties of orthocentric systems
in strictly convex normed planes. All these results yield also geometric characterizations of
inner product spaces among all real Banach spaces of dimension ≥ 2 having strictly convex
unit balls.
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1. Introduction

By (M2, C) we denote an arbitrary normed or Minkowski plane (i.e., a real
two-dimensional normed linear space) with unit circle C, origin O, and norm
‖·‖. We restrict our discussion to strictly convex Minkowski planes, whose
unit circles are strictly convex curves with midpoint O, thus not containing
a non-degenerate segment. Basic references to the geometry of Minkowski
planes and spaces are [18], [16], [17], and the monograph [19].

For any point x ∈ (M2, C) and any number λ > 0, the set C(x, λ) := x+λC
is said to be the circle centered at x and having radius λ. For x 6= y, we denote
by 〈x, y〉 the line passing through x and y, by [x, y] the segment between x
and y, and by [x, y〉 the ray with starting point x passing through y. The
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distance from a point x to a non-empty set A is denoted by d(x,A), i.e.,
d(x,A) = inf{‖z − x‖ : z ∈ A}.

It has been shown by E. Asplund and B. Grünbaum in [5] that the follow-
ing theorem, which is the extension of the classical three-circles theorem in
the Euclidean plane, also holds in strictly convex, smooth Minkowski planes.
(The three-circles theorem is also called Ţiţeica’s or Johnson’s theorem; see
the survey [13] and the monograph [12, p. 75]. For the related concept of
orthocentricity, even in Euclidean n-space with n ≥ 2, we refer to the survey
contained in [9] and to [7].)

Theorem 1.1. If three circles C(x1, λ), C(x2, λ), and C(x3, λ) pass through
a common point p4 and intersect pairwise in the points p1, p2, and p3, then
there exists a circle C(x4, λ) such that {p1, p2, p3} ⊆ C(x4, λ).

Actually, the smoothness condition can be relaxed, i.e., Theorem 1.1 holds
in strictly convex Minkowski planes (cf. [19, Theorem 4.14, p. 104] and [14]).
This theorem is also basic for extensions of Clifford’s chain of theorems to
strictly convex normed planes; see [15].

The point p4 in Theorem 1.1 is called the C-orthocenter of the triangle
p1p2p3, and by Theorem 1.1 it is also evident that pi is the C-orthocenter of
the triangle pjpkpl, where {i, j, k, l} = {1, 2, 3, 4}. Thus it makes sense to call a
set of four points, each of which is the C-orthocenter of the triangle formed by
the other three points, a C-orthocentric system. See [20] for another concept
of orthocenters which is related to Birkhoff orthogonality.

The proof of the above theorem for strictly convex Minkowski planes is
based on the following properties of strictly convex Minkowski planes (cf. [5]
and [18, p. 106]), which will be used throughout the paper:

Lemma 1.2. Let (M2, C) be a strictly convex Minkowski plane. If x1 6= x2

and {y1, y2} ⊆ C(x1, λ) ∩ C(x2, λ), then x1 + x2 = y1 + y2.

Lemma 1.3. Any three non-collinear points in a strictly convex Minkowski
plane are contained in at most one circle.

The following facts are well known in Euclidean geometry:

1. The three altitudes of a triangle intersect in a point called orthocenter
of that triangle.
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2. The altitude to the base of an isosceles triangle bisects the corresponding
vertex angle.

3. If one of the altitudes of a triangle is also an angular bisector, then the
triangle is isosceles.

4. The altitude to the base of an isosceles triangle bisects its base.

5. If one of the altitudes of a triangle is also a median (i.e., a segment
from a vertex to the midpoint of the opposite side), then the triangle is
isosceles.

As the notion of C-orthocenter can be viewed as a natural extension of that
of orthocenter in Euclidean geometry, one may ask whether results related to
orthocenters in Euclidean geometry still hold in Minkowski geometry in the
sense of C-orthocenters. It is our aim to continue the investigations from [14]
in this spirit.

For our discussion we need the definitions of isosceles orthogonality,
Birkhoff orthogonality, and Busemann angular bisectors. Let x, y ∈ (M2, C).
The point x is said to be isosceles orthogonal to y if ‖x + y‖ = ‖x− y‖, and
in this case we write x ⊥I y (cf. [10]). On the other hand, x is said to be
Birkhoff orthogonal to y if ‖x + ty‖ ≥ ‖x‖ holds for all t ∈ R, and for this
we write x ⊥B y (cf. [6]). We refer to [10], [11], and [2] for basic properties
of isosceles orthogonality and Birkhoff orthogonality, and to [4] and [3] for a
detailed study of the relations between them.

For non-collinear rays [p, a〉 and [p, b〉, the ray

[
p,

1
2

( a− p

‖a− p‖ +
b− p

‖b− p‖
)

+ p

〉

is called the Busemann angular bisector of the angle spanned by [p, a〉 and
[p, b〉, and it is denoted by AB

(
[p, a〉, [p, b〉) (cf. [8]). It is trivial to see that

when ‖a− p‖ = ‖b− p‖, then

AB

(
[p, a〉, [p, b〉) =

[
p,

1
2
(a + b)

〉
.
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2. Some lemmas

The following lemmas are needed for our investigations.

Lemma 2.1. (cf. [1]) Let (M2, C) be a strictly convex Minkowski plane.
Then, for any x ∈ (M2, C)\{O} and any number λ > 0, there exists a point
y ∈ λC (unique except for the sign) such that x ⊥I y.

Lemma 2.2. Let C(x1, λ) and C(x2, λ) be two circles in a strictly convex
Minkowski plane (M2, C). If {w, z} ⊆ C(x1, λ), {w′, z′} ⊆ C(x2, λ), and w−z =
w′ − z′, then

d(x1, 〈w, z〉) = d(x2, 〈w′, z′〉).

Proof. Without loss of generality, we can suppose that x1 = x2 = O and
λ = 1. By the assumed strict convexity, ‖w − z‖ = ‖w′ − z′‖ = 2 implies that
w = −z and w′ = −z′, yielding d(x1, 〈w, z〉) = d(x2, 〈w′, z′〉) = 0. Now we
consider the case when ‖w − z‖ < 2. Again by strict convexity of (M2, C), any
vector with norm < 2 is the sum of two unit vectors in a unique way (cf. [18,
Proposition 14, p. 106]). Thus, either w = w′ and z = z′ or w = −z′ and
z = −w′ hold, and each of these two cases clearly gives that d(x1, 〈w, z〉) =
d(x2, 〈w′, z′〉).

Lemma 2.3. ([4, (4.12)]) If for any x, y ∈ (M2, C) with x ⊥I y there exists
a number 0 < t < 1 such that x ⊥I ty, then (M2, C) is Euclidean.

The following lemma follows immediately from Lemma 2.3.

Lemma 2.4. If for any x, y ∈ (M2, C) with x ⊥I y there exists a number
t > 1 such that x ⊥I ty, then (M2, C) is Euclidean.

Lemma 2.5. (cf. [4, (10.2)]) A Minkowski plane (M2, C) is Euclidean if
and only if the implication

x ⊥B y ⇒ x ⊥I y

holds for any x, y ∈ C.

Lemma 2.6. (cf. [4, (10.9)]) A Minkowski plane (M2, C) is Euclidean if
and only if the implication

x ⊥I y ⇒ x ⊥B y

holds for any x, y ∈ C.
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Lemma 2.7. (cf. [14]) Let {p1, p2, p3, p4} be a C-orthocentric system in
a strictly convex Minkowski plane (M2, C). If xi is the circumcenter of the
triangle pjpkpl, where {i, j, k, l} = {1, 2, 3, 4}, then {x1, x2, x3, x4} is also a
C-orthocentric system and

pi − pj = xj − xi.

Lemma 2.8. Let (M2, C) be a strictly convex Minkowski plane. For any
x, y ∈ (M2, C)\{O} with x ⊥I y, let p3 = y, p4 = −y, x1 = x, x2 = −x, and
λ = ‖x + y‖. Then there exist two points p1 ∈ C(x2, λ) and p2 ∈ C(x1, λ) such
that {p1, p2, p3, p4} is a C-orthocentric system, and that one of the following
conditions is satisfied:

(1) ‖p3 − p1‖ = ‖p3 − p2‖, and p3 and the line 〈p1, p2〉 are separated by the
line l0, which is passing through p4 parallel to 〈p1, p2〉,

(2) p4 ∈
[
p3,

p1+p2

2

]
,

(3) p3 and the line 〈p1, p2〉 are separated by l0, and p4 ∈ AB

(
[p3, p1〉, [p3, p2〉

)
,

(4) p3 and the line 〈p1, p2〉 are separated by the line l0, and 〈p1, p2〉 is a
common supporting line of the circles C(x2, λ) and C(x1, λ).

Proof. (1) By the assumed strict convexity and the fact that x ⊥I y, one
can easily verify that the circles C(x1, λ) and C(x2, λ) intersect in exactly two
points, which are p3 and p4. Also, one can easily verify that 2x2 − y lies in
the circle C(x2, λ) and 2x1 − y in C(x1, λ), and that the point p4 lies in the
segment [2x2 − y, 2x1 − y]. Denote by H− the closed half plane bounded by
〈2x2 − y, 2x1 − y〉 that does not contain p3, and by C(p4, λ)− the intersection
of H− and C(p4, λ). Then, since the point p3 and the line 〈x2 − 2y, x1 − 2y〉
are separated by the line 〈2x2− y, 2x1− y〉, the points x1− 2y and x2− 2y lie
in the semicircle C(p4, λ)−.

Let
w = −y − 2

3
x and z = −y +

2
3
x.

Then simple calculation shows that [p3, x2 − 2y] intersects [2x2 − y, 2x1 − y]
in w, and [p3, x1 − 2y] intersects [2x2 − y, 2x1 − y] in z.

Since

‖w − p4‖ = ‖z − p4‖ =
2
3
‖x‖ ≤ 1

3
(‖x + y‖+ ‖x− y‖) =

2
3
λ < λ,

for any t ∈ (0, 1) there exists a unique point x(t) such that the line 〈p3, tw +
(1 − t)z〉 intersects the semicircle C(p4, λ)− in a point x(t). From the fact
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Figure 1: The proof of Lemma 2.8.

that the segment [x1, x2 − 2y] intersects [x2, x1 − 2y] in p4 it follows that
‖x(t)− x1‖ < 2λ and ‖x(t)− x2‖ < 2λ hold for any t ∈ (0, 1) . Thus there
exist two points p1(t) and p2(t) such that C(x(t), λ) intersects C(x2, λ) exactly
in p1(t) and p4, and C(x(t), λ) intersects C(x1, λ) exactly in p2(t) and p4. Then,
for any t ∈ (0, 1), {p1(t), p2(t), p3, p4} is a C-orthocentric system; see Figure 1.

Moreover, for any t ∈ (0, 1) we have by Lemma 2.7 that p2(t) − p1(t) =
x1 − x2. Then, by Lemma 2.2,

d
(
x(t), 〈p1(t), p2(t)〉

)
= d

(
x2 − 2y, 〈2x2 − y, 2x1 − y〉),

and therefore

d
(
x(t), 〈p1(t), p2(t)〉

)
< d

(
x(t), 〈2x2 − y, 2x1 − y〉),

which implies that p3 and the line 〈p1(t), p2(t)〉 are separated by the line
〈2x2 − y, 2x1 − y〉.

Now we show the existence of the points p1 and p2 with the desired prop-
erties. It is trivial that the functions x(t), p1(t), and p2(t) as well as the



on orthocentric systems 37

function
f(t) = ‖p3 − p2(t)‖ − ‖p3 − p1(t)‖

are continuous. So

lim
t→0

f(t) = lim
t→0

(‖p3 − p2(t)‖−‖p3 − p1(t)‖) = ‖p3 − (2x1 − y)‖−‖p3 − p4‖ > 0

and

lim
t→1

f(t) = lim
t→1

(‖p3 − p2(t)‖−‖p3 − p1(t)‖) = ‖p3 − p4‖−‖p3 − (2x2 − y)‖ < 0.

Hence there exists a number t0 ∈ (0, 1) such that f(t0) = 0. Let x3 = x(t0),
p1 = p1(t0), and p2 = p2(t0). Then p1 and p2 are two points having the desired
properties.

(2) For any t ∈ (0, 1), let the functions x(t), p1(t), and p2(t) be defined as
in (1), and w(t), z(t) be the points where the line 〈2x2 − y, 2x1 − y〉 meets
〈p3, p1(t)〉 and 〈p3, p2(t)〉, respectively. It is clear that when t is sufficiently
close to 0, the midpoint of [w(t), z(t)] has to lie strictly between p4 and 2x1−y,
and when t is sufficiently close to 1, the midpoint of [w(t), z(t)] has to lie
strictly between p4 and 2x2 − y. Thus there exists a number t0 ∈ (0, 1) such
that 1

2

(
w(t0) + z(t0)

)
= p4. Then p1 = p1(t0) and p2 = p2(t0) are two points

having the desired properties.
(3) For any t ∈ (0, 1), let the functions x(t), p1(t), and p2(t) be defined as in

(1). It is clear that when t moves from 0 to 1, the ray AB

(
[p3, p1(t)〉, [p3, p2(t)〉

)
turns continuously from AB

(
[p3, 2x1−y〉, [p3, p4〉

)
to AB

(
[p3, 2x2−y〉, [p3, p4〉

)
.

Thus there exists a number t0 ∈ (0, 1) such that AB

(
[p3, p1(t0)〉, [p3, p2(t0)〉

)
=

[p3, p4〉. Let p1 = p1(t0) and p2 = p2(t0). Then p1 and p2 are two points having
the desired property.

(4) Let y′ ∈ C be a point such that y′ ⊥B x and {x2 +λy′, x1 +λy′} ⊆ H−.
Then 〈x2 + λy′, x1 + λy′〉 is a common supporting line of the circles C(x2, λ)
and C(x1, λ).

Let p1 = x2 + λy′, p2 = x1 + λy′, and x3 = p1 + p4 − x2. Then one can
easily verify that {p1, p2, p4} ⊆ C(x3, λ), and therefore p1 and p2 are the two
points with the desired properties.

3. Main Results

Now we will present our main results which are new characterizations of
the Euclidean plane among all strictly convex normed planes via properties
of C-orthocentric systems.



38 h. martini, s. wu
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p3 = y

p4

x3

p1 p2

O

Figure 2: The proof of Theorem 3.1.

Theorem 3.1. A strictly convex Minkowski plane is Euclidean if and only
if for any C-orthocentric system {p1, p2, p3, p4} the relation

pi − pj ⊥B (pk − pl)

holds, where {i, j, k, l} = {1, 2, 3, 4}.

Proof. If (M2, C) is Euclidean then, for any C-orthocentric system {p1,
p2, p3, p4}, pi is the orthocenter of the triangle pjpkpl, where {i, j, k, l} =
{1, 2, 3, 4}. Thus

pi − pj ⊥B (pk − pl).

Conversely, for any x, y ∈ C with x ⊥I y let

p3 = y, p4 = −y, x1 = x, and x2 = −x.

By Lemma 2.8, there exist two points p1 and p2 such that {p1, p2, p3, p4} is a
C-orthocentric system; see Figure 2. By Lemma 2.7, p2 − p1 = x1 − x2 = 2x.
On the other hand, by the assumption of the theorem we have

(p2 − p1) ⊥B (p3 − p4)

or, equivalently, x ⊥B y. By Lemma 2.6, (M2, C) is Euclidean.
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Theorem 3.2. A strictly convex Minkowski plane (M2, C) is Euclidean
if and only if for any C-orthocentric system {p1, p2, p3, p4} with ‖p3 − p1‖ =
‖p3 − p2‖ it holds that p4 ∈

〈
p3,

p1+p2

2

〉
.

Proof. We only have to prove sufficiency. By Lemma 2.4, we just need to
show that for any x, y ∈ (M2, C) with x ⊥I y there exists a number t > 1 such
that x ⊥I ty, and it is trivial in the case where at least one of x and y is O.

For any x, y ∈ (M2, C)\{O} with x ⊥I y, let

p3 = y, p4 = −y, x1 = x, and x2 = −x.

By (1) of Lemma 2.8, there exist two points p1 and p2 such that {p1, p2, p3, p4}
is a C-orthocentric system, ‖p3 − p1‖ = ‖p3 − p2‖, and that p3 and the line
〈p1, p2〉 are separated by the line passing through p4 parallel to 〈p1, p2〉. Then,
by the assumption of the theorem,

p4 ∈
〈
p3,

p1 + p2

2

〉
.

Since p3 and the line 〈p1, p2〉 are separated by the line passing through p4

parallel to 〈p1, p2〉, we have

p4 ∈
[
p3,

p1 + p2

2

]
.

Thus there exists a number t > 2 such that

p3 − p1 + p2

2
=

t

2
(p3 − p4) = ty.

On the other hand, by Lemma 2.7 we have

‖x + ty‖ =
∥∥∥∥
x1 − x2

2
+

(
p3 − p1 + p2

2

)∥∥∥∥ = ‖p3 − p1‖

=
∥∥∥∥
p2 − p1

2
−

(
p3 − p1 + p2

2

)∥∥∥∥ = ‖x− ty‖ .

(3.1)

Hence there exists a number t > 2 such that x ⊥I ty, which completes the
proof.

Theorem 3.3. A strictly convex Minkowski plane (M2, C) is Euclidean if
and only if for any C-orthocentric system {p1, p2, p3, p4} the equality
‖p3 − p1‖ = ‖p3 − p2‖ holds whenever p4 ∈

〈
p3,

p1+p2

2

〉
.
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The proof of Theorem 3.3 makes use of (2) of Lemma 2.8 and is very
similar to that of Theorem 3.2, and so we omit it.

Theorem 3.4. A strictly convex Minkowski plane (M2, C) is Euclidean if
and only if for any C-orthocentric system {p1, p2, p3, p4}, p4 lies on the line
containing AB

(
[p3, p1〉, [p3, p2〉

)
whenever ‖p3 − p1‖ = ‖p3 − p2‖.

Proof. We only have to prove sufficiency. By Theorem 3.2 it is sufficient
to show that for any C-orthocentric system {p1, p2, p3, p4}, p4 ∈

〈
p3,

p1+p2

2

〉
whenever ‖p3 − p1‖ = ‖p3 − p2‖.

By the assumption of the theorem, for any C-orthocentric system {p1, p2, p3,
p4} with ‖p3 − p1‖ = ‖p3 − p2‖, p4 lies on the line containing AB

(
[p3, p1〉,

[p3, p2〉
)
. By the definition of Busemann angular bisectors and the fact that

‖p3 − p1‖ = ‖p3 − p2‖, we have

AB

(
[p3, p1〉, [p3, p2〉

)
=

[
p3,

p1 + p2

2

〉
.

Thus
〈
p3,

p1+p2

2

〉
is the line containing AB

(
[p3, p1〉, [p3, p2〉

)
, and therefore

p4 ∈
〈
p3,

p1 + p2

2

〉
.

The proof is complete.

Theorem 3.5. A strictly convex Minkowski plane (M2, C) is Euclidean
if and only if for any C-orthocentric system {p1, p2, p3, p4} the equality
‖p3 − p1‖=‖p3 − p2‖ holds whenever p4 lies on the line containing AB

(
[p3, p1〉,

[p3, p2〉
)
.

Proof. We only have to prove sufficiency. By Lemma 2.4, we just need to
show that for any x, y ∈ (M2, C) with x ⊥I y there exists a number t > 1 such
that x ⊥I ty.

For any x, y ∈ (M2, C)\{O} with x ⊥I y, let

p3 = y, p4 = −y, x1 = x, and x2 = −x.

By (3) of Lemma 2.8, there exist two points p1 and p2 such that {p1, p2, p3, p4}
is a C-orthocentric system, p3 and the line 〈p1, p2〉 are separated by the line
passing through p4 parallel to 〈p1, p2〉, and that

p4 ∈ AB

(
[p3, p1〉, [p3, p2〉

)
.
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By the assumption of the theorem we have ‖p3 − p1‖ = ‖p3 − p2‖, and then

AB

(
[p3, p1〉, [p3, p2〉

)
=

[
p3,

p1 + p2

2

〉
.

Since p3 and the line 〈p1, p2〉 are separated by the line passing through p4

parallel to 〈p1, p2〉, we have

p4 ∈
[
p3,

p1 + p2

2

]
.

Hence there exists a number t > 2 such that

p3 − p1 + p2

2
=

t

2
(p3 − p4) = ty.

In a way analogous to that referring to Theorem 3.2 it can be proved that
x ⊥I ty, which completes the proof.

Theorem 3.6. A strictly convex Minkowski plane is Euclidean if and only
if for any C-orthocentric system {p1, p2, p3, p4} with p3 6= p4 the equality
‖p3 − p1‖ = ‖p3 − p2‖ holds whenever 〈p1, p2〉 is a common supporting line of
the circle containing {p1, p3, p4} and the circle containing {p2, p3, p4}.

Proof. Suppose first that (M2, C) is Euclidean. For any C-orthocentric
system {p1, p2, p3, p4}, let C(xi, λ) be the circumcircle of the triangle pjpkpl,
where {i, j, k, l} = {1, 2, 3, 4}. Then 〈p3, p4〉 is the radical axis of C(x1, λ) and
C(x2, λ). (Note that the radical axis of two circles is the locus of points of equal
circle power with respect to two non-concentric circles, where the power of a
point with respect to a circle is equal to the squared distance from the point
to the center of the circle minus the squared radius of the circle; cf. [12].) If
〈p1, p2〉 is a common supporting line of C(x1, λ) and C(x2, λ), then 〈p3, p4〉 will
be the perpendicular bisector of [p1, p2], and therefore ‖p3 − p1‖ = ‖p3 − p2‖.

Now we prove sufficiency. By Lemma 2.5 we only have to show that for
any x, z ∈ C, z ⊥B x ⇒ z ⊥I x. Let ω be a fixed orientation on (M2, C). Since
z ⊥B x if and only if (−z) ⊥B x, it will be sufficient to prove that for any
x, z ∈ C with −→zx = ω (i.e., the orientation −→zx is given by ω), z ⊥B x implies
z ⊥I x.

By strict convexity of (M2, C), for any x ∈ C there exists a unique point
z ∈ C such that z ⊥B x and −→zx = ω. On the other hand, by Lemma 2.1, for
any number t > 0 there is a unique point y(t) ∈ tC such that x ⊥I y(t) and−−−→
y(t)x = ω. Let

x1 = x, x2 = −x, p3(t) = y(t), and p4(t) = −y(t).
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x2 x1 = x

p3 = y(t)

p4

x3(t)

p1(t) p2(t)

O

Figure 3: The proof of Theorem 3.6.

Then, by (4) of Lemma 2.8, there exist two points p1(t) and p2(t) such that
the set

{
p1(t), p2(t), p3(t), p4(t)

}
is a C-orthocentric system, p3(t) and the line

〈p1(t), p2(t)〉 are separated by the line passing through p4(t) which is parallel
to 〈p1(t), p2(t)〉, and that the line 〈p1(t), p2(t)〉 is the common supporting line
of C(x1, ‖x + y(t)‖) and C(x2, ‖x + y(t)‖); see Figure 3. From Lemma 2.7 it
follows that

p1(t)− p2(t) = x2 − x1.

Thus x2 − p1(t) ⊥B x and x1 − p2(t) ⊥B x, and therefore

‖x + y(t)‖ z = x2 − p1(t) = x1 − p2(t).

Let z(t) = ‖x + y(t)‖ z. Then

‖p3(t)− p2(t)‖ = ‖p3(t)− x1 + x1 − p2(t)‖ = ‖p3(t)− x1 + z(t)‖

and

‖p3(t)− p1(t)‖ = ‖p3(t)− x2 + x2 − p1(t)‖ = ‖p3(t)− x2 + z(t)‖ .

By assumption ‖p3(t)− p1(t)‖ = ‖p3(t)− p2(t)‖, and therefore

‖p3(t)− x2 + z(t)‖ = ‖p3(t)− p1(t)‖ = ‖p3(t)− p2(t)‖ = ‖p3(t)− x1 + z(t)‖ ,
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i.e., ∥∥(
y(t) + z(t)

)
+ x

∥∥ =
∥∥(

y(t) + z(t)
)− x

∥∥.

It is evident that
lim
t→0

y(t) = O,

and therefore
lim
t→0

‖x + y(t)‖ = ‖x‖ = 1.

It follows that

lim
t→0

(
y(t) + z(t)

)
= lim

t→0

(
y(t) + ‖x + y(t)‖ z

)
= z,

and then

‖z + x‖ =
∥∥∥lim

t→0

(
y(t) + z(t)

)
+ x

∥∥∥ =
∥∥∥lim

t→0

(
y(t) + z(t)

)− x
∥∥∥ = ‖z − x‖ .

Hence z ⊥I x.

The theorem above says that a Minkowski plane is Euclidean if and only
if the implication

〈p1, p2〉 supports the circles C(x1, λ) and C(x2, λ) =⇒ ‖p3 − p1‖ = ‖p3 − p2‖

holds for any C-orthocentric system {p1, p2, p3, p4}. In the next theorem we
show that the reverse implication also characterizes the Euclidean plane.

Theorem 3.7. A strictly convex Minkowski plane is Euclidean if and only
if for any C-orthocentric system {p1, p2, p3, p4} with p3 6= p4, 〈p1, p2〉 is a
common supporting line of the circle containing {p1, p3, p4} and the circle
containing {p2, p3, p4} whenever ‖p3 − p1‖ = ‖p3 − p2‖.

Proof. For any x, z ∈ C with z ⊥B x and any number t > 0, we can
define y(t), x1, x2, p3(t), and p4(t) as in the proof of Theorem 3.6. Then,
by (1) of Lemma 2.8, there exist two points p1(t) and p2(t) such that the
set

{
p1(t), p2(t), p3(t), p4(t)

}
is a C-orthocentric system, p3(t) and the line

〈p1(t), p2(t)〉 are separated by the line passing through p4(t) parallel to 〈p1(t),
p2(t)〉, and ‖p3(t)− p1(t)‖ = ‖p3(t)− p2(t)‖. By assumption, the line 〈p1(t),
p2(t)〉 is the common supporting line of C(x1, ‖x + y(t)‖) and C(x2, ‖x + y(t)‖).
Then, as in the proof of Theorem 3.6, it can be shown that z ⊥I x, which
completes the proof.
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Final remark. Since a real Banach space of dimension ≥ 2 is an inner
product space if and only if each of its two-dimensional subspaces is isometric
to the Euclidean plane, it is clear that all our theorems can be interpreted (in
the spirit of the monograph [4]) as characterizations of inner product spaces
among all strictly convex real Banach spaces of dimension ≥ 2.
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