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1. Introduction

The present paper is devoted to a complete description of derivations on
the algebra of locally measurable operators LS(M) affiliated with a type I
von Neumann algebra M.

Given a (complex) algebra A, a linear operator D : A → A is called a
derivation if D(xy) = D(x)y + xD(y) for all x, y ∈ A. Each element a ∈ A
generates a derivation Da : A → A defined as Da(x) = ax− xa, x ∈ A. Such
derivations are called inner derivations.

It is well known that all derivation on a von Neumann algebra are inner
and therefore are norm continuous. But the properties of derivations on the
unbounded operator algebra LS(M) seem to be very far from being similar.
Indeed, the results of [2] and [5] show that in the commutative case where
M = L∞(Ω, Σ, µ), with (Ω, Σ, µ) any non atomic measure space with a finite
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measure µ, the algebra LS(M) ∼= L0(Ω, Σ, µ) of all complex measurable func-
tions on (Ω, Σ, µ) admits non zero derivations. It is clear that these derivations
are discontinuous in the measure topology (i.e., the topology of convergence
in measure), and thus are non inner. It seems that the existence of such
pathological examples deeply depends on the commutativity of the underly-
ing algebra M. Indeed, the main result of our previous paper [1] states that if
M is a type I von Neumann algebra, then any derivation D on LS(M), which
is identically zero on the center Z of the von Neumann algebra M (i.e., D is
Z-linear), is inner, i.e., D(x) = ax−xa for an appropriate element a ∈ LS(M).

In the mentioned paper [1] we have also constructed an example of a non
inner derivation on the algebra LS(M), where M is a homogeneous type
In algebra L∞(Ω)⊗̄Mn(C). In this case LS(M) coincides with the algebra
Mn(L0(Ω)) of all n×n matrices over the algebra L0(Ω) = L0(Ω, Σ, µ). Namely,
given any non zero derivation δ : L0(Ω) → L0(Ω) and a matrix (λij)n

i,j=1 ∈
Mn(L0(Ω)), λij ∈ L0(Ω), i, j = 1, n, put

Dδ((λij)n
i,j=1) = (δ(λij))n

i,j=1.

Then it is clear that Dδ defines a derivation on Mn(L0(Ω)), which coincides
with δ on the center of Mn(L0(Ω)).

In the present paper we prove that for type I von Neumann algebras the
above construction (1) gives the general form of the pathological derivations
and these only exist in type Ifin cases, while for type I∞ von Neumann algebras
M all derivation on LS(M) are inner. Moreover we prove that an arbitrary
derivation D on LS(M) for a type I von Neumann algebra M, can be uniquely
decomposed into the sum Da + Dδ where the derivation Da is inner and the
derivation Dδ is of the form above. In such a decomposition δ is defined
uniquely, and the element a is unique up to a central summand.

2. Preliminaries

Let (Ω,Σ, µ) be a measurable space and suppose that the measure µ has the
direct sum property, i. e. there is a family {Ωi}i∈J ⊂ Σ, 0 < µ(Ωi) < ∞, i ∈ J,
such that for any A ∈ Σ, µ(A) < ∞, there exist a countable subset J0 ⊂ J
and a set B with zero measure such that A =

⋃
i∈J0

(A ∩ Ωi) ∪B.

We denote by L0(Ω) = L0(Ω,Σ, µ) the algebra of all (equivalence classes
of) complex measurable functions on (Ω, Σ, µ) equipped with the topology
of convergence in measure. Then L0(Ω) is a complete commutative regular
algebra with the unit 1 given by 1(ω) = 1, ω ∈ Ω.



derivations on operator algebras 3

Recall that a net {λα} in L0(Ω) (o)-converges to λ ∈ L0(Ω) if there exists
a net {ξα} monotone decreasing to zero such that |λα − λ| ≤ ξα for all α.

Denote by ∇ the complete Boolean algebra of all idempotents from L0(Ω),
i. e. ∇ = {χ̃A : A ∈ Σ}, where χ̃A is the element from L0(Ω) which contains
the characteristic function of the set A. A partition of the unit in ∇ is a family
(πα) of orthogonal idempotents from ∇ such that

∨
α πα = 1.

A complex linear space E is said to be normed by L0(Ω) if there is a map
‖ · ‖ : E −→ L0(Ω) such that for any x, y ∈ E, λ ∈ C, the following conditions
are fulfilled:

1) ‖x‖ ≥ 0; ‖x‖ = 0 ⇐⇒ x = 0;

2) ‖λx‖ = |λ|‖x‖;
3) ‖x + y‖ ≤ ‖x‖+ ‖y‖.

The pair (E, ‖·‖) is called a lattice-normed space over L0(Ω). A lattice-normed
space E is called d-decomposable, if for any x ∈ E with ‖x‖ = λ1+λ2, λ1, λ2 ∈
L0(Ω), λ1λ2 = 0, λ1, λ2 ≥ 0, there exist x1, x2 ∈ E such that x = x1 + x2 and
‖xi‖ = λi, i = 1, 2. A net (xα) in E is said to be (bo)-convergent to x ∈ E, if
the net {‖xα − x‖} (o)-converges to zero in L0(Ω). A lattice-normed space E
which is d-decomposable and complete with respect to the (bo)-convergence
is called a Banach – Kantorovich space.

It is known that every Banach–Kantorovich space E over L0(Ω) is a module
over L0(Ω) and ‖λx‖ = |λ|‖x‖ for all λ ∈ L0(Ω), x ∈ E (see [6, Chapter II]).

Let K be a module over L0(Ω). A map 〈·, ·〉 : K × K → L0(Ω) is called
an L0(Ω)-valued inner product, if for all x, y, z ∈ K, λ ∈ L0(Ω), the following
conditions are fulfilled:

1) 〈x, x〉 ≥ 0; 〈x, x〉 = 0 ⇔ x = 0;

2) 〈x, y〉 = 〈y, x〉;
3) 〈λx, y〉 = λ〈x, y〉;
4) 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉.
If 〈·, ·〉 : K × K → L0(Ω) is an L0(Ω)-valued inner product, then ‖x‖ =√
〈x, x〉 defines an L0(Ω)-valued norm on K. The pair (K, 〈·, ·〉) is called a

Hilbert–Kaplansky module over L0(Ω), if (K, ‖ · ‖) is a Banach – Kantorovich
space over L0(Ω) (see [6, Chapter III]).

Let X be a Banach space. A map s : Ω → X is said to be simple, if s(ω) =
n∑

k=1

χAk
(ω)ck, where Ak ∈ Σ, Ai ∩ Aj = ∅, i 6= j, ck ∈ X, k = 1, n, n ∈ N. A
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map u : Ω → X is said to be measurable, if for every A ∈ ∑
with µ(A) < ∞

there is a sequence (sn) of simple maps such that ‖sn(ω)−u(ω)‖X → 0 almost
everywhere on A.

Let L(Ω, X) be the set of all measurable maps from Ω into X, and let
L0(Ω, X) denote the space of all equivalence classes with respect to the equal-
ity almost everywhere. Denote by û the equivalence class from L0(Ω, X) which
contains the measurable map u ∈ L(Ω, X). Further we shall identify the el-
ement u ∈ L(Ω, X) and the class û. Note that the function ω → ‖u(ω)‖X

is measurable for any u ∈ L(Ω, X). The equivalence class containing the
function ‖u(ω)‖ is denoted by ‖û‖. For û, v̂ ∈ L0(Ω, X), λ ∈ L0(Ω) put
û + v̂ = ̂u(ω) + v(ω), λû = ̂λ(ω)u(ω).

It is known [6, Chapter III] that (L0(Ω, X), ‖·‖) is a Banach – Kantorovich
space over L0(Ω).

If H is a Hilbert space, then L0(Ω,H) can be equipped with an L0(Ω)-
valued inner product 〈x, y〉 = ̂〈x(ω), y(ω)〉H , where 〈·, ·〉H is the inner product
on H, such that (L0(Ω,H), 〈·, ·〉) becomes a Hilbert – Kaplansky module over
L0(Ω). Moreover the space

L∞(Ω,H) = {x ∈ L0(Ω,H) : 〈x, x〉 ∈ L∞(Ω)}

is a Hilbert –Kaplansky module over L∞(Ω).

An operator T : L0(Ω, H) → L0(Ω,H) is said to be L0(Ω)-linear if T (λ1x1+
λ2x2) = λ1T (x1) + λ2T (x2) for all λ1, λ2 ∈ L0(Ω), x1, x2 ∈ L0(Ω,H). An
L0(Ω)-linear operator T : L0(Ω,H) → L0(Ω,H) is L0(Ω)-bounded if there
exists an element c ∈ L0(Ω) such that ‖T (x)‖ ≤ c‖x‖ for any x ∈ L0(Ω,H).
For an L0(Ω)-bounded L0(Ω)-linear operator T we put ‖T‖ = sup{‖T (x)‖ :
‖x‖ ≤ 1}.

Denote by B(L0(Ω,H)) the algebra of all L0(Ω)-bounded L0(Ω)-linear
operators on L0(Ω,H) and denote by B(L∞(Ω, H)) the algebra of all L∞(Ω)-
bounded L∞(Ω)-linear operators on L∞(Ω,H).

Let B(H) be the algebra of all bounded linear operators on a Hilbert
space H and let M be a von Neumann algebra in B(H) with the operator
norm ‖ · ‖M . Denote by P (M) the lattice of projections in M.

A linear subspace D in H is said to be affiliated with M (denoted as DηM),
if u(D) ⊂ D for every unitary u from the commutant

M ′ = {y ∈ B(H) : xy = yx, ∀x ∈ M}
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of the von Neumann algebra M.

A linear operator x on H with the domain D(x) is said to be affiliated
with M (denoted as xηM) if D(x)ηM and u(x(ξ)) = x(u(ξ)) for all ξ ∈ D(x).

A linear subspace D in H is said to be strongly dense in H with respect
to the von Neumann algebra M, if

1) DηM ;

2) there exists a sequence of projections {pn}∞n=1 in P (M) such that pn ↑ 1,
pn(H) ⊂ D and p⊥n = 1− pn is finite in M for all n ∈ N, where 1 is the
identity in M.

A closed linear operator x acting in the Hilbert space H is said to be
measurable with respect to the von Neumann algebra M, if xηM and D(x)
is strongly dense in H. Denote by S(M) the set of all measurable operators
with respect to M.

A closed linear operator x in H is said to be locally measurable with respect
to the von Neumann algebra M, if xηM and there exists a sequence {zn}∞n=1

of central projections in M such that zn ↑ 1 and znx ∈ S(M) for all n ∈ N.

It is well-known [7] that the set LS(M) of all locally measurable operators
with respect to M is a unital *-algebra when equipped with the algebraic
operations of strong addition and multiplication and taking the adjoint of an
operator.

Note that if M is a finite von Neumann algebra then S(M) = LS(M).
Let M be a von Neumann algebra with a faithful normal finite trace τ.

Consider the topology tτ of convergence in measure or measure topology on
S(M), which is defined by the following neighborhoods of zero:

V (ε, δ) = {x ∈ S(M) : ∃e ∈ P (M), τ(e⊥) ≤ δ, xe ∈ M, ‖xe‖M ≤ ε},

where ε, δ are positive numbers.
It is well-known that S(M) equipped with the measure topology is a com-

plete metrizable topological *-algebra.
Recall that a von Neumann algebra M is of type I if it is isomorphic to a

von Neumann algebra with an abelian commutant, or, equivalently M admits
a faithful abelian projection.

If a von Neumann algebra M with the center L∞(Ω) is homogeneous of
type Iα, where α is a cardinal number, then M is ∗-isomorphic to the algebra
B(L∞(Ω, H)), where dimH = α, while the algebra LS(M) is ∗-isomorphic to
B(L0(Ω,H)) (see for details [1]).
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It should be noted that if dimH = n, n ∈ N, then L0(Ω,H) is an n-
homogeneous module over L0(Ω) and thus it is isomorphic to

∏n
i=1 L0(Ω),

therefore the algebra B(L0(Ω,H)) of L0(Ω) - linear operators on L0(Ω,H) is
isomorphic to the algebra Mn(L0(Ω)) of all n× n matrices over L0(Ω).

Thus if M is a von Neumann algebra of type In, n ∈ N, with the center
L∞(Ω), then LS(M) = S(M) is ∗-isomorphic to the algebra Mn(L0(Ω)). If
moreover M admits a faithful normal finite trace then one can obtain the
following direct proof of the mentioned isomorphism.

Proposition 2.1. Let M be a von Neumann algebra of type In, n ∈ N,
with a faithful normal finite trace τ and let Z(S(M)) denote the center of the
algebra S(M). Then S(M) ∼= Mn(Z(S(M))).

Proof. Let {eij : i, j ∈ 1, n} be matrix units in Mn(Z). Consider the *-
subalgebra in S(M) generated by the set

Z(S(M)) ∪ {eij : i, j ∈ 1, n}.

This *-subalgebra consists of elements of the form

n∑

i,j=1

λijeij , λi,j ∈ Z(S(M)), i, j = 1, n

and it is *-isomorphic with Mn(Z(S(M))) ⊆ S(M). Since τ is finite and M is
tτ -dense in S(M), it is sufficient to show that the subalgebra Mn(Z(S(M)))
is closed in S(M) with respect to the topology tτ . The center Z(S(M)) is
tτ -closed in S(M) and therefore the subalgebra

e11Z(S(M))e11 = Z(S(M))e11,

is also tτ -closed in S(M).

Consider a sequence xm =
n∑

i,j=1
λ

(m)
ij eij in Mn(Z(S(M))) such that xm →

x ∈ S(M) in the topology tτ . Fixing k, l ∈ 1, n we have that e1kxmel1 →
e1kxel1. Since e1kxmel1 = λ

(m)
kl e11 one has λ

(m)
kl e11 → e1kxel1. The tτ -closedness

of Z(S(M))e11 in S(M) implies that

λ
(m)
kl e11 → λkle11
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for an appropriate λkl ∈ Z(S(M)). Multiplying by ek1 from the left side
and by e1l from the right side we obtain that λ

(m)
kl ekl → λklekl. There-

fore xm →
n∑

i,j=1
λijeij and thus x =

n∑
i,j=1

λijeij . This implies that S(M) ∼=
Mn(Z(S(M))). The proof is complete.

Note that the algebra LS(M) has the following remarkable property: given
any family {zi}i∈I of mutually orthogonal central projections in M with∨
i∈I

zi = 1 and a family of elements {xi}i∈I in LS(M) there exists a unique

element x ∈ LS(M) such that zix = zixi for all i ∈ I. This element is denoted
by x =

∑
i∈I

zixi (see [7]).

The last assertion enables us to obtain the following important property
of the algebra LS(M) in the case of type I von Neumann algebra M, which
follows from Proposition 2.1 and the spectral resolution of operators.

Proposition 2.2. Let M be a type I von Neumann algebra. Then for any
element x ∈ LS(M) there exists a countable family of mutually orthogonal
central projections {zk}k∈N in M such that

∨
k

zk = 1 and zkx ∈ M for all k.

It is known [8] that given a type I von Neumann algebra M there exists a
unique (cardinal-indexed) family of central orthogonal projections (qα)α∈J in
P (M) with

∑
α∈J

qα = 1 such that qαM is a homogeneous type Iα von Neumann

algebra. In this case M is a *-isomorphic with the C∗-product of the algebras
B(L∞(Ωα,Hα), i.e.

M ∼=
⊕

α∈J

B(L∞(Ωα,Hα)).

The direct product ∏

α∈J

L0(Ωα,Hα)

equipped with the coordinate-wise algebraic operations and inner product
forms a Hilbert –Kaplansky module over L0(Ω) ∼= ∏

α∈J

L0(Ωα).

In [1] we have proved that if the von Neumann algebra M is *-isomorphic
with

⊕
α∈J

B(L∞(Ωα, Hα)) then the algebra LS(M) is *-isomorphic with

B(
∏

α∈J

L0(Ωα, Hα)) ∼=
∏

α∈J

B(L0(Ωα,Hα)),



8 s. albeverio, sh.a. ayupov, k.k. kudaybergenov

i.e.
LS(M) ∼=

∏

α∈J

B(L0(Ωα,Hα)).

Indeed, let Φ be a *-isomorphism between M and B(
⊕
α∈J

L∞(Ωα,Hα)).

Take x ∈ B(
∏

α∈J

L0(Ωα,Hα)) and let ||x|| be its L0(Ω)-valued norm. Consider

a family of mutually orthogonal projections {zn}n∈N in L∞(Ω) with
∨

zn = 1
such that zn||x|| ∈ L∞(Ω) for all n ∈ N. Then znx ∈ M for all n ∈ N and∑
n

znΦ(znx) ∈ LS(M). Put

Ψ : x →
∑

n

znΦ(znx).

It is clear that Ψ is a well-defined *-homomorphism from B(
∏

α∈J

L0(Ωα,Hα))

into LS(M). Since given any element x ∈ LS(M) there exists a sequence of
mutually orthogonal central projections {zn} in M such that znx ∈ M for all
n ∈ N and x =

∑
n

znx, this implies that Ψ is a *-isomorphism between LS(M)

and B(
∏

α∈J

L0(Ωα,Hα)).

It is known [3] that B(
∏

α∈J

L0(Ωα,Hα)) is a C∗-algebra over L0(Ω) and

therefore there exists a map || · || : LS(M) → L0(Ω) such that for all x, y ∈
LS(M), λ ∈ L0(Ω) one has

||x|| ≥ 0, ||x|| = 0 ⇔ x = 0;
||λx|| = |λ|||x||;

||x + y|| ≤ ||x||+ ||y||;
||xy|| ≤ ||x||||y||;
||xx∗|| = ||x||2.

This map || · || : LS(M) → L0(Ω) is called the center-valued norm on LS(M).
The above isomorphism enables us to obtain the following necessary and

sufficient condition for a derivation on the algebra LS(M) to be inner.

Theorem 2.3. ([1]) Let M be a type I von Neumann algebra with the
center Z. A derivation D on the algebra LS(M) is inner if and only if it is
Z-linear, or equivalently, it is identically zero on Z.
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3. Main results

Let A be an algebra with the center Z and let D : A → A be a derivation.
Given any x ∈ A and a central element z ∈ Z we have

D(zx) = D(z)x + zD(x)

and
D(xz) = D(x)z + xD(z).

Since zx = xz and zD(x) = D(x)z, it follows that D(z)x = xD(z) for any
x ∈ A. This means that D(z) ∈ Z, i.e. D(Z) ⊆ Z. Therefore given any
derivation D on the algebra A we can consider it restriction δ onto the center
Z :

δ : z → D(z), z ∈ Z.

This simple but important property of derivations is crucial in our further
considerations.

Let M be a homogeneous von Neumann algebra of type In, n ∈ N, with the
center Z = L∞(Ω). Then M is *-isomorphic with the algebra of Mn(L∞(Ω))
of n × n matrices over the algebra L∞(Ω), while LS(M) ∼= B(L0(Ω,H)) is
isomorphic with the algebra Mn(L0(Ω)) of all n×n matrices over the algebra
L0(Ω), and the center of Mn(L0(Ω)) can be identified with L0(Ω).

In the papers [2], [5] the existence of non zero derivations on L0(Ω) has
been proven in the case of a non atomic measure space (Ω, Σ, µ). Given a
derivation δ : L0(Ω) → L0(Ω) consider the elementwise derivation Dδ on
Mn(L0(Ω)) defined as:

Dδ((λij)n
i,j=1) = (δ(λij))n

i,j=1, (1)

where (λij)n
i,j=1 ∈ Mn(L0(Ω)).

A straightforward calculation shows that Dδ is indeed a derivation on
Mn(L0(Ω)) and its restriction onto the center of Mn(L0(Ω)) coincides with δ.

Lemma 3.1. Every derivation D on the algebra Mn(L0(Ω)) admits a unique
decomposition

D = Da + Dδ,

where Da is an inner derivation and Dδ is a derivation of the form (1).
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Proof. Given a derivation D on Mn(L0(Ω)), consider its restriction δ onto
its center L0(Ω) and extend it to the whole Mn(L0(Ω)) by the form (1) as Dδ.
Put D1 = D −Dδ. Then given any z ∈ Z = L∞(Ω) we have

D1(z) = D(z)−Dδ(z) = D(z)−D(z) = 0,

i.e. D1 is identically zero on Z and therefore it is Z-linear. Theorem 2.3
implies that D1 is inner, i.e. D1 = Da for an appropriate a ∈ Mn(L0(Ω)).
Therefore D = Da + Dδ.

Now suppose that

D = Da1 + Dδ1 = Da2 + Dδ2 .

Then Da1 − Da2 = Dδ2 − Dδ1 . Since Da1 − Da2 is identically zero on the
center of Mn(L0(Ω)), then Dδ2 −Dδ1 also is identically zero on the center of
Mn(L0(Ω)). Thus δ1 = δ2 and hence Da1 = Da2 . The proof is complete.

In order to consider the case of type I∞ von Neumann algebra we need
some auxiliary results.

Lemma 3.2. Any derivation δ on the algebra L0(Ω) commutes with the
mixing operation on L0(Ω), i.e.

δ(
∑
α

παλα) =
∑
α

παδ(λα)

for an arbitrary family (λα) ⊂ L0(Ω) and every partition {πα} of the unit
in ∇.

Proof. Consider a family {λα} in L0(Ω) and a partition of the unit {πα}
in ∇ ⊂ L0(Ω). Since δ(π) = 0 for any idempotent π ∈ ∇, we have δ(πα) = 0
for all α and thus δ(παλ) = παδ(λ) for any λ ∈ L0(Ω). Therefore for each πα0

from the given partition of the unit we have

πα0δ(
∑
α

παλα) = δ(πα0

∑
α

παλα) = δ(πα0λα0) = πα0δ(λα0).

By taking the sum over all α0 we obtain

δ(
∑
α

παλα) =
∑
α

παδ(λα).

The proof is complete.
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Recall [6] that a subset K ⊂ L0(Ω) is called cyclic, if
∑
α∈J

παuα ∈ K for

each family (uα)α∈J ⊂ K and for any partition of the unit (πα)α∈J in ∇.

Lemma 3.3. Given any non trivial derivation δ : L0(Ω) → L0(Ω) there
exist a sequence {λn}∞n=1 in L∞(Ω) with |λn| ≤ 1, n ∈ N, and an idempotent
π ∈ ∇, π 6= 0 such that

|δ(λn)| ≥ nπ

for all n ∈ N.

Proof. Suppose that the set {δ(λ) : λ ∈ L0(Ω), |λ| ≤ 1} is order bounded
in L0(Ω). Then δ maps any uniformly convergent sequence in L∞(Ω) to an (o)-
convergent sequence in L0(Ω). The algebra L∞(Ω) coincides with the uniform
closure of the linear span of idempotents from ∇. Since δ is identically zero
on ∇ it follows that δ ≡ 0 on L∞(Ω). Since δ commutes with the mixing
operation and since every element λ ∈ L0(Ω) can be represented as λ =∑
α

παλα, where {λα} ⊂ L∞(Ω), and {πα} is a partition of unit in ∇, we have

δ(λ) = δ(
∑
α

παλα) =
∑
α

παδ(λα) = 0, i.e. δ ≡ 0 on L0(Ω). This contradiction

shows that the set {δ(λ) : λ ∈ L0(Ω), |λ| ≤ 1} is not order bounded in
L0(Ω). Further, since δ commutes with the mixing operations and the set
{λ : λ ∈ L0, |λ| ≤ 1} is cyclic, the set {δ(λ) : λ ∈ L0(Ω), |λ| ≤ 1} is also
cyclic. By [4, Proposition 3] there exist a sequence {λn}∞n=1 in L∞(Ω) with
|λn| ≤ 1 and an idempotent π ∈ ∇, π 6= 0, such that |δ(λn)| ≥ nπ, n ∈ N.
The proof is complete.

Now we are in position to consider derivations on the algebra of locally
measurable operators for type I∞ von Neumann algebras.

Theorem 3.4. If M is a homogeneous von Neumann algebra of type Iα,
α ≥ ℵ0,then any derivation on the algebra LS(M) is inner.

Proof. Since M is homogeneous of type Iα, α ≥ ℵ0, there exists a sequence
of mutually orthogonal and mutually equivalent abelian projections {pn}∞n=1

in M with the central cover 1 (i.e. faithful projections).
For any bounded sequence Λ = {λk} in Z define an operator xΛ by

xΛ =
∞∑

k=1

λkpk.
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Then
xΛpn = pnxΛ = λnpn. (2)

Let D be a derivation on LS(M), and let δ be its restriction onto the
center of LS(M), identified with L0(Ω).

Take any λ ∈ L0(Ω) and n ∈ N. From the identity

D(λpn) = D(λ)pn + λD(pn)

multiplying it by pn from both sides we obtain

pnD(λpn)pn = pnD(λ)pn + λpnD(pn)pn.

Since pn is a projection, one has that pnD(pn)pn = 0, and since D(λ) = δ(λ) ∈
L0(Ω), we have

pnD(λpn)pn = δ(λ)pn. (3)

Now from the identity

D(xΛpn) = D(xΛ)pn + xΛD(pn),

in view of (3) one has similarly

pnD(λnpn)pn = pnD(xΛ)pn + λnpnD(pn)pn,

i.e.
pnD(λnpn)pn = pnD(xΛ)pn. (4)

(3) and (4) imply
pnD(xΛ)pn = δ(λn)pn.

Further for the center-valued norm ‖ · ‖ on LS(M) (see Section 2) we have :

‖pnD(xΛ)pn‖ ≤ ‖pn‖‖D(xΛ)‖‖pn‖ = ‖D(xΛ)‖
and

‖δ(λn)pn‖ = |δ(λn)|.
Therefore

‖D(xΛ)‖ ≥ |δ(λn)|
for any bounded sequence Λ = {λn} in Z.

If we suppose that δ 6= 0 then by Lemma 3.3 there exist a bounded sequence
Λ = {λn} in Z and an idempotent π ∈ ∇, π 6= 0, such that

|δ(λn)| ≥ nπ



derivations on operator algebras 13

for any n ∈ N. Thus, ‖D(xΛ)‖ ≥ nπ for all n ∈ N, i.e. π = 0 – that is a
contradiction. Therefore δ ≡ 0, i.e. D is identically zero on the center of
LS(M), and therefore it is Z-linear. By Theorem 2.3 D is inner. The proof
is complete.

Now let us consider the general case of type I von Neumann algebras.
Let M be a type I von Neumann algebra and let (qα)α∈J ⊂ P (M) be the

orthogonal family of central projections with
∑

α∈J qα = 1 such that qαM is
a homogeneous type Iα von Neumann algebra, i.e.

M ∼=
⊕

α∈J

B(L∞(Ωα,Hα)).

As it was mentioned in Section 2 we have the *-isomorphism

LS(M) ∼=
∏

α∈J

B(L0(Ωα,Hα)).

Now let D be a derivation on the algebra LS(M) and let δ be its restriction
onto its center S(Z). Since each qα is a central projection we have that D(qα) =
0, for all α ∈ J. Therefore D(qαx) = qαD(x) for all x ∈ LS(M) and α ∈ J.
This implies D maps each qαLS(M) into itself and thus Dα = D|qαLS(M) is a
derivation on qαLS(M). Since qαS(Z) ∼= L0(Ωα) for each α, and since δ maps
each qαS(Z) into qαS(Z), it follows that δ induces a derivation δα on each
L0(Ωα).

Put F = {α ∈ J : α ∈ N}. Let Dδα (α ∈ F ) be the derivation on
the matrix algebra qαLS(M) ∼= Mα(L0(Ωα)) constructed by the formula (1).
From Lemma 3.1 we obtain that

Dα = Daα + Dδα , (5)

where aα ∈ qαLS(M). By Theorem 3.4 for each α ∈ J \ F we have

Dα = Daα , (6)

where aα ∈ qαLS(M), i.e. δα ≡ 0. For such α we put Dδα ≡ 0. Denote

a = {aα}α∈J . (7)

Now define a derivation Dδ on LS(M) by

Dδ(x) = (Dδα(xα)), x = (xα) ∈ LS(M). (8)
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Since D = {Dα}α∈J , from (5) and (6) we obtain that

D = Da + Dδ,

where a and Dδ are defined in (7) and (8) respectively.
Therefore we obtain the following main result of the paper.

Theorem 3.5. Let M be a type I von Neumann algebra. Every derivation
D on the algebra LS(M) can be decomposed in a unique way as

D = Da + Dδ,

where Da is an inner derivation and Dδ is a derivation of the form (8).

In particular if M is an arbitrary type I∞ von Neumann algebra then in
the above notation we have that F = ∅ (i.e. α ≥ ℵ0 for all α ∈ J) and (6)
implies

Corollary 3.6. If M is a type I∞ von Neumann algebra then any deriva-
tion on LS(M) is inner.
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