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Abstract

Most methods for small-area estimation are based on composite estimators derived from design-
or model-based methods. A composite estimator is a linear combination of a direct and an indirect
estimator with weights that usually depend on unknown parameters which need to be estimated.
Although model-based small-area estimators are usually based on random-effects models, the
assumption of fixed effects is at face value more appropriate. Model-based estimators are justified
by the assumption of random area effects; in practice, however, areas can not be substituted for
one another in a random manner (we say, they are not interchangeable). In the present paper
we empirically assess the quality of several small-area estimators in the setting in which the area
effects are treated as fixed. We consider two settings: one that draws samples from a theoretical
population, and another that draws samples from an empirical population of a labour force register
maintained by the National Institute of Social Security (NISS) of Catalonia. We distinguish two
types of composite estimators: a) those that use weights that involve area specific estimates of
bias and variance; and, b) those that use weights that involve a common variance and a common
squared bias estimate for all the areas. We assess their precision and discuss alternatives to
optimizing composite estimation in applications.
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1 Introduction

Sample surveys are often used to estimate quantities related not only to the total

population but also to a variety of small-area domains. Small-area estimation is concer-
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ned with estimating population quantities associated with a partition of the domain (popula-

tion) into subdomains (small areas or districts) j = 1, . . . ,J. Nowadays there is a large body

of methodology for small-area estimation; see, e.g., Platek, Rao, Särndal and Singh (1987),

Isaki (1990), Ghosh and Rao (1994), Singh, Gambino and Mantel (1994), and Rao (2003).

Large-scale (national) surveys are usually designed to yield estimates of a small

number of key national population quantities (means, proportions and the like) that have

sufficient precision, without having to adopt any assumptions other than the sampling

design. Insisting on a large sample for each district is not realistic, especially when there

are many districts, and several of them form a very small fraction of the population.

When estimating a domain quantity, we refer to a direct estimator if it is based

only on the domain-specific sample. A domain (area) is regarded as small if the direct

estimate for the area does not have adequate precision. For a small area one could use

indirect estimators that borrow strength from values of the variable of interest from

related areas and/or time periods. An implicit or explicit model is used to link the

different areas and/or time periods, often through the use of auxiliary information such

as a census count or some administrative records. An initial classification of small-area

estimation divides the methods into design-based and model-based.

Design-based methods are based solely on the sampling design and do not make use

of distributional (model) assumptions about the observed variables. Sampling variation,

that is, variation across hypothetical replications of drawing a sample, arises only

due to the variation of the specific units that are selected into the sample, and not

due to variation of the population characteristics of interest (such as the small-area

means) which are considered fixed because they are constant across replications. In

contrast, model-based methods assume stochastic models governing the population

values that are the target of the estimation process. Models are used to mediate the

process of borrowing strength across the districts (small areas). That is, inference about

a district that is represented in the sample by very few observations is supported by the

information in the other districts’ subsamples. This is most effective when the districts

are very similar. Similarity can be enhanced by adjustment for other variables, opening

up the potential of regression models.

Borrowing strength, as defined originally by Efron and Morris (1973), is based on the

assumption of random effects. In the simplest setting with no covariates, the deviations

of the district-level means θ j from their national mean θ are assumed to be a random

sample from a centred distribution with a finite variance, such as N (0,σ2
u).

Model-based methods for small-area estimation associate the districts with random

effects. In applications, however, the districts have their names (labels), and the target

quantities θ j could in principle be established by enumeration. In an hypothetical

replication of the survey, the same districts, with the same subpopulations and the same

values of θ j would be involved. Therefore, it is natural to associate the districts with

fixed effects. Longford (2007) argues that the assumption of fixed or random effect has

a profound effect on standard errors of model-based small-area estimators. In the present

paper we consider both design- and model-based estimators, and assess their accuracy
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in the case of the fixed-effect assumption. Accuracy refers not to average MSE across

areas, but to MSE for the particular (fixed) areas. This departs from previous studies in

which accuracy was assessed by averaging MSE across areas (see, e.g., Costa, Satorra

and Ventura (2003), and Santamarı́a, Morales and Molina (2004)).

In the model-based approach, the best linear unbiased predictor (BLUP) of the

parameter of interest (the small-area parameter), is a linear combination of a direct

and a synthetic estimator with weights that depend on two parameters that are

usually unknown: the within- and between-area variances (possibly after controlling

for other variables, regressors). Since both parameters are unknown quantities, these

two variances have to be estimated, giving rise to the empirical BLUP (EBLUP). This

estimation can distort the optimality of the EBLUP. In sections 3 and 4 we assess the

consequences on accuracy of the substitution of model parameters by estimated values.

The purpose of the paper is to compare the performance of design- vs. model-based

small-area estimators, with a focus on a specific (fixed) set of small areas. Monte Carlo

methods are used for this investigation.

Two population frames will be considered in the Monte Carlo study: a) a theoretical

population with varying distribution and sample size; b) an empirical population of

labour statistics from the affiliation of firms in the NISS (National Institute of Social

Security) registers. The choice of the NISS is motivated by current work at IDESCAT

(Statistics Bureau of Catalonia).

The plan of the paper is as follows. Section 2 develops the notation and general

context of small-area estimation, focusing on the distinction between design-based

and model-based methods. Sections 3 and 4 describe the Monte Carlo studies using

the theoretical and the empirical population, respectively. Section 5 concludes with a

discussion of the results and the avenues for further research.

2 Approaches for small-area estimation

We consider a population stratified into J (small-area) domains (strata), j = 1,2, . . . ,J,

and we seek to estimate the stratum parameters θ j as well as an overall population

parameter θ . A direct estimator of θ j uses sample data only from area j. An indirect or

synthetic estimator of θ j uses data also from outside area j. We suppose that there is a

direct estimator θ̂d j of θ j and that it is unbiased (but may have large variance), and a

synthetic estimator θ̂s j that has small variance but may be biased for θ j.

Two perspectives motivate the different small-area estimators. The first assumes

that the θ j are fixed values and that there is sampling variation only within each

stratum. In the second, in addition to the random variation within strata, there is also

random variation of the θ j, that are supposed to be realizations from a specific sampling

distribution. We now describe these two approaches, design-based (fixed θ j) and model-

based (random θ j), respectively.
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2.1 Fixed-area perspective

Following Rao (2003, Section 4.3), a natural way to balance the potential bias of a

synthetic estimator θ̂s j of θ j against the instability of a direct estimator θ̂d j of the same

parameter is to take the composite estimator (weighted average)

θ̂c j(π j) = (1−π j) θ̂d j +π j θ̂s j, (1)

a function of the weight 0≤π j ≤ 1. This estimator has a mean square error (MSE) given

by (Rao, 2003, formula (4.3.2)):1

MSE(θ̂c j,θ j) = (1−π j)
2MSE(θ̂d j,θ j)+π2

j MSE(θ̂s j,θ j)

+2π j(1−π j)E
{

(θ̂d j −θ j)(θ̂s j −θ j)
}

(2)

where MSE(δ̂,δ) denotes the MSE of an estimator δ̂ with respect to the target δ. The

expectation in the last term of (2) is taken with respect to the design-based sampling

variation. In most applications, θ̂d j and θ̂s j are uncorrelated, so this last term vanishes.

This is assumed throughout. Denote θ̃c j = θ̂c j(π̃ j).

The weight that minimizes the MSE of θ̃c j is approximately (see Rao (2003, formula

(4.3.3))

π̃ j =
MSE(θ̂d j,θ j)

MSE(θ̂d j,θ j)+MSE(θ̂s j,θ j)
(3)

in which case the (minimum) MSE is

MSE(θ̃c j,θ j) = π̃2
j MSE(θ̂s j,θ j); (4)

and

MSE(θ̃c j,θ j) = (1− π̃ j)
2MSE(θ̂d j,θ j); (5)

so, the (optimal) composite estimator θ̃c j is superior to both the synthetic estimator

θ̂s j, since π̃ j < 1, and the direct estimator θ̂d j, since π̃ j > 0 and θ̃c j(0) = θ̂d j. If there

was covariation among the synthetic and the direct estimator, cov(θ̂d j, θ̂s j) would be

subtracted once in the numerator and twice in the denominator.

The expression (2) (with the covariance term ignored) will be used in sections 3 and

4 to compute the exact MSE of various composite estimators arising in a Monte Carlo

study. The exact values of the MSE can be computed since in Monte Carlo studies we

1 As in Rao (2003, Section 4.3), and throughout this section, “Var”, “MSE” and “E” should carry a subscript
p that refers to variation with respect to the sampling design; this subscript has been suppressed for notational
convenience.
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know the population values of the parameters. In applications, the MSE will have to be

estimated and several estimates are available. Longford (2007) discusses issues arising

in the estimation of the MSE in the case of fixed area effects.

When the direct and synthetic estimators are unbiased for θ j and θ respectively, and

the variance of θ̂s j is small relative to the variance of the direct estimator, we have

π̃ j =
var(θ̂d j)

var(θ̂d j)+(θ −θ j)2
(6)

If θ̂d j is the sample mean, then var(θ̂d j) = σ2
jε/n j, where σ2

jε is a within-domain

variance and n j is the sample size of the jth domain.2 Then (6) becomes

π̃ j =
σ2

jε/n j

σ2
jε/n j +(θ −θ j)2

(7)

For a synthetic estimator (unbiased for θ ) whose variance is small compared with the

variance of the direct estimator (unbiased for θ j), we have

E(θ̂s j − θ̂d j)
2 ≈ (θ −θ j)

2 +var(θ̂d j) (8)

and π̃ j ≈ var(θ̂d j)/(θ̂s j − θ̂d j)
2, suggesting the weight

π̂†
j =

v̂ar(θ̂d j)

(θ̂s j − θ̂d j)2
,

where v̂ar(θ̂d j) is an unbiased estimator of var(θ̂d j). This estimator is very unstable and

it could even fall outside the interval [0,1]. In the Monte Carlo study in sections 3 and 4

we use instead the weight

π̂∗
j =

v̂ar(θ̂d j)

(θ̂s j − θ̂d j)2 + v̂ar(θ̂d j)
, (9)

which satisfies the condition 0 ≤ π̂∗
j ≤ 1.

The composite small-area estimators can be based on the assumption of homogeneity

of the within-area variances, in which case they will use a common estimate of this

variance, such as the estimator of (14) defined in the section below, or they may

contemplate heteroscedasticity, in which case they may use an area specific estimate

such as (16) (see section below).

2 We could contemplate homoscedasticity and replace σ2
jε by σ2

ε.
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The optimal composite estimator that uses the weight in (7) is not feasible in practice

because the bias term (θ j−θ)2 and the varianceσ2
jε are unknown quantities that need to

be estimated. We shall see that several alternatives to the estimation of the within-area

variance do not induce much difference among estimators; in contrast, alternatives to

the estimation of the squared area-bias term will lead to fundamental differences among

estimators.

2.2 Random-area perspective

Alternative small-area estimators are based on models. Suppose

y ji = X jiβ+Z jiγ j +ε ji (10)

where i = 1,2, . . . ,n j and j = 1,2, . . .J, i and j denoting primary and secondary level

units, observations and areas, respectively. X ji and Z ji are vectors of attributes of

observation i of area j, β is a vector of regression coefficients and γ j is a vector of

random area effects, independent of ε ji, and usually both normally distributed with

respective variances σ2
u and σ2

ε (variance matrix Σu, instead of σ2
u, when Z ji is a vector).

Since the issues we want to investigate arise already on the simplest of the random-

area models, the one that has no covariates, our research will be made more transparent

by using the simplest version of the model in (10), with Z ji set to the indicator of area j

and X ji = 1 is empty (there are no covariates); that is,

y ji = µ+u j +ε ji (11)

Variables u j and εi j are centred random variables with respective variances σ2
u (variance

“between”) and σ2
ε (variance “within”).

Let y j. = n−1
j ∑i yi j and y.. = n−1 ∑i ∑ j yi j be the respective direct and synthetic

estimators of θ j = µ+ u j, where n = ∑ j n j is the overall sample size. Since var(y j.) =

σ2
u +(σ2

ε/n j) and cov(y j.,u j) = σ2
u, the best unbiased linear predictor (BLUP3) of θ j

given y j. is (see, e.g., Neudecker and Satorra, 2003)

BLUP(θ j | y j.) = µ+
σ2

u

σ2
u +σ2

ε/n j

(y j.−µ) = (1−ω j)y j. +ω jµ (12)

where

ω j = 1−
σ2

u

σ2
u +σ2

ε/n j

=
σ2
ε/n j

σ2
u +σ2

ε/n j

=
1

1+n j γ

3 A common notation is also BLP,but since BLP is unbiased in the predictive sense, i.e. E
{

BLP(θ j)−θ j

}
= 0,

the terminology of ‘best linear unbiased predictor’ (BLUP) will be used.
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and γ= σ2
u/σ

2
ε. We used E(y j.) = µ. The empirical BLUP (EBLUP) is

θ̂c j(ω̂) = EBLUP(θ j | y j.) = (1− ω̂ j)y j. + ω̂ jy..

where y.. (the overall mean) is used as an estimator of µ and

ω̂ j =
σ̂2
ε/n j

σ̂2
u + σ̂2

ε/n j

=
1

1+n jγ̂
(13)

as the estimator of ω j, with γ̂= σ̂2
u/σ̂

2
ε. Here

σ̂2
ε =

1

n− J

J

∑
j=1

n j

∑
i=1

(yi j − y. j)
2 (14)

and

σ̂2
u =

1

J−1

J

∑
j=1

(y. j − y..)
2 (15)

are moment-matching estimators of the variances. The estimator σ̂2
ε could be

alternatively written as a weighted mean, i.e.

σ̂2
ε =

J

∑
j=1

((n j −1)/(N − J)) σ̂2
ε j,

of the within-area variance estimates

σ̂2
jε =

1

n j −1

n j

∑
i=1

(yi j − y. j)
2. (16)

As an alternative to these estimators we could use maximum likelihood (ML)

estimation of the mixed regression model. For the unbalanced case, this provides

alternative EBLUP estimators. These will be evaluated in the Monte Carlo study of

sections 3 and 4.

One could also question the quality of these EBLUP estimators when the model (11)

deviates from the standard assumptions, such as normality of the within- and between-

area distributions, or both, or when there is variation among the within-area variances

while equality is assumed.

Note that all composite estimators we consider are “borrowing strength” estimators,

with the distinction that the ones based on the “random effect” perspective use “average”

type of estimates for the bias, while the ones based on the “fixed effect” assumption use

area specific estimate of the bias. In the Monte Carlo study below, we will see that there

is a sharp difference on performance for these two type of estimators.
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The Monte Carlo study of Section 3 contemplates normal and highly skewed

distributions, both for the first- and second-level distributions. Non-normality of the

distribution within each area, and heteroscedasticity of the within-area variances, is

present in the Monte Carlo study of Section 4 involving an empirical population.

3 Monte Carlo study: theoretical population

In the simplest set-up, data is generated from a two-level model in which the domain

parameters θ j are realizations of θ j ∼N(µ= θ ,σ2
u = 3) and the observations y ji (subject

i in area j) are realizations of y ji ∼ N(µ= θ j,σ
2
ε = 6). The number of small areas is 40.

In some simulations the within-area sample sizes are equal to n j = 10, while in other

simulations n j ranges from 6 to 40.

Next we list the estimators considered in the Monte Carlo study. The direct and

synthetic estimators are respectively the sample mean of area j and the overall sample

mean θ̂ . The composite estimators can be classified according to whether or not the

weights are known (theoretical) or estimated (empirical), and according to whether the

estimator of the squared bias term (θ j − θ)2 is area specific (weights will be denoted

by π j) or averaged across the areas (weights denoted as ω j). Except for the direct

estimator, denoted by D, all estimators considered are composite estimators whose

weights are specified as follows:

DESIGN-BASED ESTIMATORS

Theoretical composite: TC1

π̃ j =
σ2

jε/n j

(θ j −θ)2 +σ2
jε/n j

Empirical composite: CA

π̂∗
j =

σ̂2
jε/n j

(θ̂ j − θ̂)2 + σ̂2
jε/n j

Note that TC1 and CA use area-specific values for the within-area variance σ2
jε

(they allow for heteroscedasticity of this variance across areas).

MODEL-BASED ESTIMATORS

Theoretical composite: TC2

ω̃ j =
σ2
ε/n j

σ2
u +σ2

ε/n j

,

with population (true) values for the variances within σ2
ε and between σ2

u.
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Empirical composites: C

C is the composite estimator with ω̂ j defined in (13), (14) and (15).

ML estimator: CML

Uses the estimator (12) with the population values µ, σ2
ε and σ2

u substituted

by estimates obtained by fitting the model in (10) by ML.

3.1 Monte Carlo study: θθθ j random

We first generate the area-level quantities θ j as random draws from an assumed distri-

bution N(θ ,σ2
u), independently across replications. The areas cannot be distinguished

by any features (they are exchangeable), and so their MSEs are the same for all the

areas, for each estimator. As should be expected, the results summarized in Figure 1

indicate that the MSEs for the different methods are highly correlated. Within a method,

the empirical MSE’s are not constant because the number of replications is finite (it is

3000).

Mean & median RMSE (x100)

78     78     D
72     71     C
75     75     CA
71     71     CML
71     71 TC2
60     60 TC1

Figure 1: Root MSE (RMSE) for areas j = 1, . . . ,40 when each mean θ j is random across replications.

Within- and between-area distributions are normal (number of replications is 3000, sample size in each

area is 10). The mean and the median of the RMSE across areas are shown in the legend.
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The theoretical design-based estimator TC1 is far more efficient than the others since

it uses more information about the true values of the within-area variance and area-bias

in each replication. The within-area variance is constant across replications, but this is

not the case for the area-bias. The theoretical estimator TC2 that uses variance and bias

parameters common across the areas performs similarly as the C and CML estimators

(the last two estimators are equivalent, given that the n j are equal across areas), which

are the next in performance. The feasible design-based estimator CA performs poorly.

Finally, the direct estimator has the poorest performance.

The gain of TC1 over TC2 can be explained by the fact that TC1 uses information

about the squared area-bias (θ j −θ)2, which varies across replications, while TC2 uses

only information about the true value of its expectation, the between-area variance

(model parameter σ2
u). Replacement of the parameters by their estimates in the model-

based methods does not reduce this efficiency substantially; indeed, the RMSEs of TC2,

C and CML are nearly indistinguishable in Figure 1. In contrast, the design-based

estimator CA, which is based on substituting an estimate for the true value of the area-bias,

incurs a severe loss of efficiency when compared with the theoretical estimator TC1.

3.2 Monte Carlo study: θθθ j fixed

Now we assume that the θ j are fixed across replications, in accordance with the empirical

set-up in which the eccentricity of an area, i.e. the deviation of the area from the overall

mean, is an (unknown) but fixed quantity that remains constant across replications.

Figure 2 reports the empirical root-MSE (RMSE) across replications for each area

and for the different estimates. TC1 and TC2 are not feasible in practice since they

use true values of population parameters that are not available in a typical application.

However, the performance of TC1 and TC2 will shed light on the nature of the accuracy

of the alternative estimators.

We see that the theoretical composite estimator TC1 that uses area-specific bias

performs better than the theoretical composite TC2 that uses a single parameter (the

variance between) to account for the squared bias averaged across the areas. In fact, TC2

performs poorly in all the areas, and as the worst estimator for areas with an extreme

value of eccentricity (on the far right-hand side of the x-axis), that is, the areas for

which the mean deviates highly from the overall area mean. To understand the variation

of RMSE across the areas, these have been ordered according to their absolute deviation

| θ j − θ |, so that the extreme areas are located at the right-hand side. The lengths of

the bars at the bottom of the graph are proportional to these deviations. We see that

the largest difference between TC1 and the other statistics arises when | θ j − θ | is

small; on the other hand, TC1 and TC2 nearly coincide when | θ j −θ | is approximately

equal to the between-area variance. The empirical model-based composite estimators

also perform poorly in all the areas. These results can be summarized as follows:
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Mean & median  RMSE (x100)

78     78     D
72     71     C
75     75     CA
71     71     CML
71     71 TC2
60     60 TC1

Figure 2: Root-MSE (RMSE) of each area when the θ j are fixed across replications. The within-area

distribution is normal, with homocedastic within-area variances. The area sample size is constant and

equal to 10. The number of replications is 3000. The legend shows the mean and the median of the RMSE

across areas.

• TC1 is the most efficient estimator for all the areas. This is a theoretical

estimator, not feasible in applications. It provides a benchmark against which

other estimators can be compared or related.

• CML and C are inefficient for all he areas and specially for those with the largest

deviations from the centre (large eccentricity).

• For the model-based estimators (C, CML and TC2), using estimated or true values

of the parameters makes very little difference. This is not the case for the design-

based estimators; just compare TC1 with CA.

• CML performs poorly for all the areas and specially for those that deviate

substantively from the centre. The accuracy of CA increases for small or extreme

values of eccentricity.

The above difference among estimators can not be appreciated when observing RMSE

averaged across areas.

We will see that these results hold in a variety of circumstances, when we vary

the sample size, with large or small number of areas, and also with deviation from

normality, both in the within-area distributions and in the distribution that generates

the fixed realized values of the area means.
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3.3 Non-normality and unequal sample sizes nj

Now we consider the case where the θ j have been sampled from an asymmetric

distribution (and they stay fixed across replications), and the within-area distribution

is non-normal (in fact, it is a chi-square distribution with 1 degree of freedom). The

sample size ranges from 6 to 45, the number of areas is 40. The number of replications

is 3000. The results are shown in Figure 3. For clarity of the graph, since across areas the

maximum difference of the RMSE for C and CML is .03, only the RMSE for C is shown.

0 5 10 15 20 25 30 35 40

0
.0

0
.5

1
.0

Areas sorted by absolute deviation from overall mean

R
M

S
E

Mean & median  RMSE (x100)

54     48     D
50     47     C
52     49     CA
50     47 TC2
41     40 TC1

Figure 3: Root-MSE (RMSE) of each area when the θ j are fixed across replications. The within-area

distribution is non-normal, with homocedastic within-area variances, and area sample size ranging from 6

to 45. Sample size variation is indicated by the thickness of the bars in the x-axis (thicker bar indicating

larger sample size). The number of replications is 3000. The legend shows the mean and median of the

RMSE across areas.

Figures (2) and (3) show a similar pattern regarding the relative position of the

estimators, though peaks are present in Figure (3) due to the variation of sample size

across areas (sample size variation is proportional to the thickness of the bars in the x-

axis). Note that the peaks correspond to areas with a relatively small sample size. From

Figure (3) we conclude

1. The RMSE tends to increase with the eccentricity of the area.

2. TC1 is superior to all the estimators.



Alex Costa, Albert Satorra and Eva Ventura 97

3. The feasible estimators C and CML are inefficient for all the areas, especially on

those that deviate highly from the overall mean (high eccentricity), and so is the

theoretical estimator TC2.

4. CA does not do as badly as C and CML for those areas with low values on

eccentricity.

5. As expected, the RMSE tends to decrease with the sample size.

We also computed a version of the empirical composite C that estimates the variance-

within σ2
ε as an (unweighted) mean of the within-area estimates σ̂ε

2
j of (16), but the

difference in terms of MSE with the standard version of C was negligible.

We found that the true values of MSE computed according to formula (2) are

indistinguishable from the (estimated) ones computed with 3000 replications and

presented in Figure 3. Figure 4 displays the same graph with true RMSE for the three

estimators D, TC1 and TC2. In both figures we see the superiority of the design-based

estimators (TC1) over the model-based ones (TC2), not only for some areas that deviate

highly from the overall mean, but also for those areas that exhibit a small value of

eccentricity (the areas on the left of the x-axis).

5 10 15 20 25 30 35 40

0
.0

0
.5

1
.0

Population RMSE
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Figure 4: Theoretical values of the RMSE for D, TC1 and TC2 and for each area, for θ j fixed across

replications. Area sample size ranging from 6 to 45. The legend shows the mean and the median of the

RMSE across areas.
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Table 1: Population characteristics

Size Mean Squared bias Variance

Counties (‘Comarques’) Code N j θ j (θ j −θ)2 σ2
jε

Alt Camp AC 1282 8.73 0.09 3250.37

Alt Empordà AE 4712 5.28 14.11 294.27

Alt Penedès AP 3052 8.91 0.02 1686.24

Alt Urgell AU 745 4.71 18.70 158.25

Alta Ribagorça AR 140 4.59 19.73 205.38

Anoia AN 3264 7.86 1.37 801.64

Bages BA 5698 8.24 0.63 1356.90

Baix Camp BC 5530 6.47 6.59 6479.54

Baix Ebre BB 2237 6.31 7.41 534.40

Baix Empordà BE 4634 5.44 12.92 425.17

Baix Llobregat BL 20541 9.73 0.48 1642.46

Baix Penedès CP 2197 5.26 14.23 171.82

Barcelonès BN 88331 10.63 2.55 10314.88

Berguedà BG 1397 5.44 12.90 196.15

Cerdanya CR 788 3.71 28.34 71.93

Conca de Barberà CB 611 8.29 0.56 1388.95

Garraf GR 3466 6.28 7.62 685.91

Garrigues GS 516 5.24 14.42 96.89

Garrotxa GX 1909 7.51 2.33 419.72

Gironès GI 6369 9.82 0.62 2037.47

Maresme MA 11718 6.46 6.64 605.07

Montsià MO 1918 5.61 11.73 246.00

Noguera NG 1128 5.12 15.30 93.29

Osona OS 5494 7.09 3.77 774.65

Pallars Jussà PJ 410 4.37 21.76 130.37

Pallars Sobirà PS 272 4.06 24.76 55.46

Pla d’Urgell PU 1106 6.59 5.95 271.85

Pla de l’Estany PE 1160 6.07 8.79 143.37

Priorat PR 254 4.11 24.26 180.17

Ribera d’Ebre RE 620 5.71 11.07 418.72

Ripollès RI 959 7.87 1.35 875.92

Segarra SG 594 10.87 3.35 8171.41

Segrià SR 7096 7.74 1.69 714.23

Selva SV 4586 7.11 3.70 610.20

Solsonès SO 508 5.58 11.93 157.58

Tarragonès TG 7440 9.42 0.15 1675.66

Terra Alta TA 297 4.25 22.87 40.28

Urgell UG 1178 6.28 7.59 312.25

Val d’Aran VA 503 5.28 14.08 270.11

Vallès Occidental VC 26683 10.34 1.71 3026.89

Vallès Oriental VR 11795 8.45 0.34 832.68

† The average number of affiliates in Catalonia (overall mean θ ) is 9.04.
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Figures 3 and 4 show the same ranking among the estimators according to their root-

MSE. The same conclusions 1 to 4 that were drawn from Figure 3 apply also to Figure 4.

4 Simulation study on a real population

In this section we study the behaviour of several estimators through a Monte Carlo sim-

ulation in which we replicate samples from the Labour Force Census of Enterprises

affiliated with the Social Security system in Catalonia. This census contains information

on the number of employees who are registered in the Social Security system for each

enterprise. The data is available on a quarterly basis from year 1992. We consider

only the population in the first quarter of year 2000. The census contains 243,184

observations for Catalonia in year 2000, divided into 12 groups according to the

economic sector to which each firm belongs, and into 41 counties (the ‘comarques’).

We ignore the sector-based classification and focus solely on the division by

counties. Table 1 shows the number of enterprises (population size) and the mean and

variance of the variable of interest (number of registered employees) in each county. The

distribution of the enterprises across Catalonia is very uneven, as they are concentrated

mainly in densely populated areas. In our set-up, the small areas are held fixed across

resampling over the 1000 replications. In each replication, we extract a proportional

stratified sample by county. We used sample sizes representing 10%, 5%, 2% and 1%

of the population, which gives sample sizes close to those used by IDESCAT in several

surveys. Table 2 summarizes the characteristics of these samples. Sample sizes for each

county can be easily deduced from Table 1, applying the corresponding sample size

percentage reported in each simulation.

Table 2: Sample sizes of the Monte Carlo study (empirical population)

Overall sample Sample size in county

% of pop. Sample size Mean Median Min. Max.

1 2431 59.3 19 1 883

2 4863 118.6 38 3 1767

5 12159 296.6 95 7 4417

10 24316 593.1 191 14 8833

This population recreates conditions of non-normality, uneven sample sizes, and

heterogeneity of within-area variances that are likely to appear in applications. So

a Monte Carlo evaluation based on this population will assess the performance of

competing estimators in a realistic setting.

We evaluate the performance of the theoretical estimators TC1 and TC2, and the

empirical estimators C, CML and CA described in Section 2. For each estimator,
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we computed the empirical relative root-MSE (RRMSE) across replications for each

county. Using absolute (instead of relative) root-MSE gave the same pattern of

performance as when using RRMSE. Even though the theoretical estimators TC1 and

TC2 are unfeasible in practice (since the true values of the variances are unknown in a

given application), we wanted the Monte Carlo study to illustrate the effect on accuracy

when moving from BLUP to EBLUP. The graphs show clearly a shift on accuracy

between the theoretical estimators TC1 and TC2 (BLUE estimators, from the fixed and

random perspective, respectively) and the other empirical (EBLUP) estimators, with

the theoretical estimators having, of course, lower MSE. In this Monte Carlo study,

the theoretical estimators should be viewed as providing benchmarks for the accuracy

of the EBLUP estimators. While TC1 is the best estimator of them all, its empirical

counterpart CA performs worse in average. Also, the empirical C performs worse on

average than its theoretical counterpart TC2. The discrepancy between the empirical

estimators and their theoretical counterparts is larger when the areas are not too extreme.

The CML estimator was computed using proc xtmixed of the software package

Stata 10.0, employing the option emonly.4 For each estimator, we computed the

empirical relative root-MSE (RRMSE) across replications for each county. For the 10%

and 5% sample sizes, the direct and the composite estimators have similar RRMSE

values. For those sampling schemes, D has the smallest RRMSE among the feasible

estimators and is more efficient than the theoretical model-based TC2 estimator. We

therefore focus on the description of the 2% and 1% sampling designs.

Figure 5 plots the variation of the RRMSE for the estimators and areas for the

2% sampling design. For clarity, the RRMSE of CML is omitted as it is nearly

indistinguishable from C. The same pattern of variation is observed for the 1% sample.

Areas have been ordered with respect to their eccentricity, i.e. deviation of the area mean

from the overall mean (the heights of the bars are proportional to the eccentricity of the

area). We see that the RRMSE tends to increase as the areas become more extreme in

terms of eccentricity. The area sample size is proportional to the thickness of the bar.

We observe that RRMSE tends to decrease as the sample size increases.

The direct estimator D performs poorly. The design-based estimator CA has a very

good performance across all the areas, being close to its theoretical counterpart, TC1,

which is the most efficient. The model-based estimators TC2 and C (and CML) do

better than the direct estimator D but worse than the theoretical design-based estimator

TC1. The poor performance of D and other feasible model-based estimators for some

counties, specially for the county SG (’Segarra”) stands out. Segarra has both a huge

value of the within-county variance and a very small sample size (see columns 3 and 5

of Table 1). In applications of small-area estimation, it should be of high concern that our

area has such extreme features. If we knew the true values of the squared area-bias and

4 Using proc xtmixed with default options produced a large percentage of replications with non-
convergent solutions; however, the problem of non-convergence disappeared when we used the option emonly
(expectation maximization algorithm when the gradient based routines did not converge). That is, a proper CML
estimate was obtained in each replication.
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the within-area variance (as in TC1 and TC2) then MSE would be reduced dramatically

for SG.

The high fluctuation of the performance of the direct estimator is due to the variation

of the sample sizes and within-area variances across areas. For extreme areas, the CA

estimator performs similarly as the design-based estimator TC1. Estimation of the

population parameters has a profound effect on the accuracy for areas that are not

extreme. This is the case, for example, for Alt Camp (AC).

For completeness, Figure 6 shows the results for the 10% sampling design. We

observe the same pattern of performance across areas as in Figure 5. The distance

between the model-based and the design-based estimators is more obvious for areas

with greater eccentricity. This graph shows that the direct estimator nearly matches

the efficiency of TC1, a clear indication that for such a large sample size, small-area

estimation is redundant.

Figures 5 and 6 show that the model-based estimators do not perform too badly

when the small areas do not show a high value of eccentricity. But for areas that are

very extreme these estimators do worse than the the direct estimator. Figure 5 shows

that CA can be a good alternative in practice, because TC1 is unknown in real cases.

Surprisingly, not even averaging across areas, the estimator C (or CML) can compete

with the composite alternative CA.
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Figure 5: For the Monte Carlo analysis with an empirical population the graph shows the RRMSE or each

county, for the 2% sample. Heights of the bars are proportional to the deviations or the area-level means

from the overall mean and their thicknesses are proportional to sample sizes. The legend shows the mean

and the median of the RRMSE across areas.



102 On the performance of small-area estimators: fixed vs. random area parameters

5 10 15 20 25 30 35 40

0
.0

0
.5

1
.0

1
.5

RRMSE for 10% sample.

Areas sorted by absolute deviation from mean

R
R

M
S

E

Mean & median RRMSE (x100)

50     46     D

57     53     C

49     49     CA

61     62     TC2

42     40     TC1

AP
AC TG

VR BL CB GI BA

RI AN SR VC
GX BN

SG SV OS

PU BC MA BB UG GR
PE

RE MO SO BG BE
VA AE BP GS NG

AU AR
PJ TA PR PS

CR

Figure 6: For the Monte Carlo analysis with an empirical population the graph shows the RRMSE for

each county, for the 10% sample. Heights of the bars are proportional to the deviations or the area-level

means from the overall mean and their thicknesses are proportional to sample sizes. The legend shows the

mean and the median of the RRMSE across areas.

This Monte Carlo study with a real population provides a context in which we can

recognize different scenarios encountered in an application.

1. For an area with a large sample size, all the small-area estimators are close to each

other. This is the case of Barcelonès (BN).

2. In areas with a small sample size and a extreme within-area variance, not

necessarily extreme in eccentricity, the empirical small-area estimators may

perform very poorly. This is the case of Segarra (SG). For such areas, the

incorporation of information on the magnitude of the between- and within-area

variances may produce dramatic gains on RRMSE.

3. In an area with a small value of eccentricity and small sample size, model-based

estimators are less efficient than the design-based estimators. This can be seen in

Alt Camp (AC).

4. In an area with a high value of eccentricity and small sample size, design- and

model-based estimators gives high gains over the direct estimator. This can be

seen in Alta Ribagorça (AR).
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5 Conclusions and agenda

We have seen that in the case of fixed areas, averaging MSE across areas does not

provide the complete picture of the performance of alternative small-area estimators.

Such averaging of MSEs can be used only to evaluate accuracy in the context of random-

area parameters.

We conclude that a composite estimator that uses a common bias estimator for all

the areas performs poorly on areas that are extreme. The same is true for the theoretical

composite estimator TC2. The problem carries over to the mixed-effects regression,

even when the model is not misspecified. Therefore, estimation of the squared bias term

for each area becomes crucial.

We conjecture that issues regarding the estimation of the variances within the areas

will be less critical; however, the exercise on a real population shows also the importance

of recognizing non-normality and variation across areas of the within-area variance.

These findings indicate that the key to improve small-area estimation is to

acknowledge the fixed-effect nature of the data and to improve estimation of the squared

area-bias. Differences (heteroscedasticity) of the within-area variances seem to be also

critical. Several alternatives arise:

1. Using auxiliary information (such as a census or a previous survey) to estimate the

squared bias. Then the same simple and convenient composite estimators could be

used.

2. Improving the alternative composite estimator by defining different groups of

areas that share a common between-area variance.

3. Estimating the squared bias using small-area methods. This approach has already

been used in Longford (2007) for estimating MSEs of model-based estimators.

Further work assessing these alternatives is needed. As a final remark, we should

note that we have confined discussion to the most simple model set-up where covariates

are not present in the model; additional work assessing the validity of our findings when

the model is expanded is worth pursuing.
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