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Abstract

Credit risk models are used by financial companies to evaluate in advance the insolvency risk
caused by credits that enter into default. Many models for credit risk have been developed over
the past few decades. In this paper, we focus on those models that can be formulated in terms of
the probability of default by using survival analysis techniques. With this objective three different
mechanisms are proposed based on the key idea of writing the default probability in terms of
the conditional distribution function of the time to default. The first method is based on a Cox’s
regression model, the second approach uses generalized linear models under censoring and
the third one is based on nonparametric kernel estimation, using the product-limit conditional
distribution function estimator by Beran. The resulting nonparametric estimator of the default
probability is proved to be consistent and asymptotically normal. An empirical study, based on
modified real data, illustrates the three methods.
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1 Introduction

Determining the probability of default, PD, in consumer credits, loans and credit cards is

one of the main problems to be addressed by banks, savings banks, savings cooperatives

and other credit companies. This is a first step needed to compute the capital in risk

of insolvency, when their clients do not pay their credits, which is called default. The

risk coming from this type of situation is called credit risk, which has been the object

of research since the middle of last century. The importance of credit risk, as part of
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financial risk analysis, comes from the New Basel Capital Accord (Basel II), published

in 1999 and revised in 2004 by the Basel Committee for Banking Supervision (BCBS).

This accord consists of three parts, called pillars. They constitute a universal theoretical

framework for the procedures to be followed by credit companies in order to guarantee

minimal capital requirements, called statistical provisions for insolvency (SPI).

Pillar I of the new accord establishes the parameters that play some role in the credit

risk of a financial company. These are the probability of default, PD, the exposition

after default, EAD, and the loss given default, LGD. The quantitative methods that

financial entities can use are those used for computing credit risk parameters and, more

specifically, for computing PD. These are the standard method and the internal ratings

based method (IRB). Thus, credit companies can elaborate and use their own credit

qualification models and, by means of them, conclude the Basel implementation process,

with their own estimations of SPI.

There is an extensive literature on quantitative methods for credit risk, since the

classical Z-score model introduced by Altman (1968). Nowadays there exist plenty

of approaches and perspectives for modelling credit risk starting from PD. Most of

them have provided better predictive powers and classification error rates than Altman’s

discriminant model, for credit solicitors (application scoring), as well as for those

who are already clients of the bank (behavioural scoring). This is the case of logistic

regression models, artificial neural networks (ANN), support vector machines (SV M),

as well as hybrid models, as mixtures of parametric models and SV M. For the reader

interested in a more extended discussion on the evolution of these techniques over the

past 30 years we mention the work by Altman and Saunders (1998), Saunders (1999),

Crouhy et al. (2000), Hand (2001), Hamerle et al. (2003), Hanson and Schuermann

(2004), Wang et al. (2005), and Chen et al. (2006).

The main aim of this paper is to introduce an alternative approach for modelling

credit risk. More specifically, we will focus on estimating PD for consumer credits and

personal credits using survival analysis techniques.

The idea of using survival analysis techniques for constructing credit risk models

is not new. It started with the paper by Narain (1992) and, later, was developed by

Carling et al. (1998), Stepanova and Thomas (2002), Roszbach (2003), Glennon and

Nigro (2005), Allen and Rose (2006), Baba and Goko (2006), Malik and Thomas

(2006) and Beran and Djaı̈dja (2007). A common feature of all these papers is that

they use parametric or semiparametric regression techniques for modelling the time to

default (duration models), including exponential models, Weibull models and Cox’s

proportional hazards models, which are very common in this literature. The model

established for the time to default is then used for modelling PD or constructing the

scoring discriminant function.

In this paper we propose a basic idea to estimate PD, which is performed by three

different methods. The first one is based on Cox’s proportional hazards model, the

second one uses generalized linear models, while the third one consists in using a

random design nonparametric regression model. In all the cases, some random right
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censoring mechanism appears in the model, so survival analysis techniques are natural

tools to be used.

The conditional survival function used for modelling credit risk opens an interesting

perspective to study default. Rather than looking at default or not, we look at the time

to default, given credit information of clients (endogenous covariates) and considering

the indicators for the economic cycle (exogenous covariates). Thus, the default risk is

measured via the conditional distribution of the random variable time to default, T , given

a vector of covariates, X . The variable T is not fully observable due to the censoring

mechanism.

In practice, since the proportion of defaulted credits is small, the proportion of

censored data is large, which may cause poor performance of the statistical methods.

On the other hand, the sample size is typically very large. This alleviates somehow the

problem of the large proportion of censoring.

In order to estimate empirically the conditional distribution function of the time to

default, we use the generalized product-limit estimator by Beran (1981). This estimator

has been extensively studied by Dabrowska (1987), Dabrowska (1989), González-

Manteiga and Cadarso-Suárez (1994), Van Keilegom and Veraverbeke (1996), Iglesias-

Pérez and González-Manteiga (1999), Li and Datta (2001), Van Keilegom et al. (2001)

and Li and Van Keilegom (2002), among other authors.

The rest of the paper proceeds as follows. Section 2 presents some conditional

functions, often used in survival analysis, and explains how they can be used for credit

risk analysis. The estimation of the probability of default is considered in Section 3,

under different models: Cox’s proportional hazards model, generalized linear models

and a nonparametric model. Special attention is given to the study of the theoretical

properties of the nonparametric estimator for PD, denoted by P̂D
NPM

. Its asymptotic

bias and variance, as well as uniform consistency and asymptotic normality are stated in

Section 4. An application to a real data set, with a brief discussion about the empirical

results obtained, is presented in Section 5. Finally, Section 6 contains the proofs of the

results included in Section 4.

2 Conditional survival analysis in credit risk

The use of survival analysis techniques to study credit risk, and more particularly to

model PD, can be motivated via Figure 1. It presents three common situations that may

occur in practice when a credit company observes the “lifetime” of a credit.

Let us consider the interval [0,τ] as the horizon of the study. Case (a) shows a credit

with default before the endpoint of the time under study (τ). In this case, the lifetime of

the credit, T , which is the time to default of the credit, is an observable variable. Cases

(b) and (c) show two different situations. In both of them it is not possible to observe the

time instant when a credit enters into default, which causes a lack of information coming
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Figure 1: Time to default in consumer credit risk.

from right censoring. In case (b) it is only the time from the start of the credit to the end

of the study, while (c) accounts for a situation where anticipated cancellation or the end

of the credit occurs before default.

The available information to model the PD is a sample of n iid random variables

{(Y1,X1,δ1) , . . . ,(Yn,Xn,δn)}, of the random vector {Y,X ,δ}, where Y = min{T,C} is

the observed maturity, T is the time to default, C is the time to the end of the study

or anticipated cancellation of the credit, δ = I(T ≤C) is the indicator of noncensoring

(default) and X is a vector of explanatory covariates. In this survival analysis setting we

will assume that there exists an unknown relationship between T and X . We will also

assume that the random variables T and C are conditionally independent given X .

In the previous setup it is possible to characterize completely the conditional

distribution of the random variable T using some common relations in survival analysis.

Thus the conditional survival function, S(t|x), the conditional hazard rate, λ(t|x),
the conditional cumulative hazard function, Λ(t|x), and the conditional cumulative

distribution function, F(t|x), are related as follows:

S (t|x) = P(T > t|X = x) =

∫ ∞

t
f (u|x)du

λ(t|x) = lim
∆t→0

P(t ≤ T < t +∆t|T ≥ t,X = x)

∆t
=

f (t|x)
S(t|x)

Λ(t|x) =
∫ t

0
λ(u|x)du =

∫ t

0

f (t|x)
S(t|x)du
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S (t|x) = e−Λ(t|x)

F(t|x) = 1−S(t|x)

3 Probability of default in consumer portfolio

In the literature devoted to credit risk analysis there are not many publications on

modelling the credit risk in consumer portfolios or personal credit portfolios. Most of

the research deals with measuring credit risk by PD modelling in portfolios of small,

medium and large companies, or even for financial companies. There exist, however,

several exceptions. In the works by Carling et al. (1998), Stepanova and Thomas (2002)

and Malik and Thomas (2006), the lifetime of a credit is modelled with a semiparametric

regression model, more specifically with Cox’s proportional hazards model.

In the following we present three different approaches to model the probability of

default, PD, using conditional survival analysis. All the models are based on writing PD

in terms of the conditional distribution function of the time to default. Thus PD can be

estimated, using this formula, either by (i) Cox’s proportional hazards model, where the

estimator of the survival function is obtained by solving the partial likelihood equations

in Cox’s regression model, which gives P̂D
PHM

, by (ii) a generalized linear model, with

parameters estimated by the maximum likelihood method, which gives P̂D
GLM

, or by

(iii) using the nonparametric conditional distribution function estimator by Beran, which

gives the nonparametric estimator of the default probability, P̂D
NPM

.

3.1 Modelling the probability of default via the conditional distribution

function

Following Basel II, credit scoring models are used to measure the probability of default

in a time horizon t + b from a maturity time, t. A typical value is b = 12 (in months).

Thus, the following probability has to be computed:

PD(t|x) = P(t ≤ T < t +b|T ≥ t,X = x)

=
P(T < t +b|X = x)−P(T ≤ t|X = x)

P(T ≥ t|X = x)

=
F(t +b|x)−F (t|x)

1−F (t|x) = 1− S (t +b|x)
S (t|x) (1)

where t is the observed maturity for the credit and x is the value of the covariate vector,

X , for that credit.
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3.2 Proportional hazards model

In this section, a semiparametric approach to perform the study of PD is given. Here

we use Cox’s proportional hazards approach to model the conditional survival function

S(t|x). The key in this method rests on the estimation of the cumulative conditional

hazard function, Λ(t|x), using maximum likelihood.

We follow the idea introduced by Narain (1992) for the estimation of S(t|x), but we

apply it in the definition of PD, as we have stated above in formula (1). The objective

is to build a conditional model for the individual PD(t|x), which is defined in terms

of Λ(t|x). In order to describe P̂D
PHM

, we define the following expressions relative to

Cox’s regression theory.

The estimator of the conditional hazard rate function is defined as:

λ̂(t|x) = λ̂0(t)exp
(

xTβ̂
)

,

where λ̂0(t) is an estimator of the hazard rate baseline function, λ0(t), and β̂ is an

estimator of the parameter vector, β .

Thus, under the assumption of a proportional hazards model, PD is estimated by:

P̂D
PHM

(t|x) =
F̂β̂ (t +b|x)− F̂β̂ (t|x)

1− F̂β̂ (t|x)
= 1−

Ŝβ̂ (t +b|x)
Ŝβ̂ (t|x)

, (2)

where

1− F̂β̂ (t|x) = Ŝβ̂ (t|x) = exp
(
−Λ̂(t|x)

)

The estimation method for this model consists of two steps. In the first step the

cumulative baseline hazard function, Λ0(t), is estimated by:

Λ̂0(t) =
n

∑
i=1

1{Yi ≤ t,δi = 1}
∑

n
j=1 1{Yj ≥ Yi}

,

then the parameter β is estimated by

β̂
PHM

= argmax
β

L(β),

where the partial likelihood function is given by

L(β) =
n

∏
i=1

exp
(
xT

i β
)

(
∑

n
j=1 1{Y j>Yi} exp

(
xT

j β
))
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Thus, the conditional cumulative hazard function estimator is given by

Λ̂(t|x) =
∫ t

0
λ̂(s|x)ds = exp

(
xTβ̂

PHM
)

Λ̂0(t).

The asymptotic properties of this estimator can be found, for instance, in the book by

Fleming and Harrington (1991). As a consequence of these, similar properties can be

obtained for the estimator of the default probability defined in (2).

Remark 1 Narain (1992) and many other authors defined the probability of default

as the complement of the conditional survival function evaluated at the forecast

horizon, 1−S(t +b|x). According to this, the formulation by Narain does not take

into account the fact that the credit should not be into default at maturity t.

3.3 Generalized linear model

A generalized linear model can be assumed for the lifetime distribution:

P(T ≤ t|X = x) = Fθ (t|x) = g
(
θ0 +θ1t +θTx

)
,

where θ = (θ2,θ3, . . . ,θp+1)
T

is a p-dimensional vector and g is a known link function,

like the logistic or the probit function. Thus, this model characterizes the conditional

distribution of the lifetime of a credit, T , in terms of the unknown parameters. Once

this parameters are estimated, an estimator of the conditional distribution function is

obtained, Fθ̂ , and, finally, an estimator of PD can be computed by plugging this estimator

in equation (1), i.e.

P̂D
GLM

(t|x) =
Fθ̂ (t +b|x)−Fθ̂ (t|x)

1−Fθ̂ (t|x) = 1− Sθ̂ (t +b|x)
Sθ̂ (t|x) ,

where θ̂ = θ̂
GML

is the maximum likelihood estimator of the parameter vector.

Let us consider the one-dimensional covariate case. Then θ = θ2 and the conditional

distribution given by the model is F(t|x) = g(θ0 +θ1t +θ2x), with density f (t|x) =

θ1g′(θ0 +θ1t +θ2x). Since we are given a random right censored sample, the

conditional likelihood function is a product of terms involving the conditional density,

for the uncensored data, and the conditional survival function, for the censored data:

L(Y,X ,θ ) =
n

∏
i=1

f (Yi|Xi)
δi (1−F(Yi|Xi))

1−δi
,

where Yi is the maturity of the i-th credit and δi is the indicator of default for the i-th

credit. Thus, the log-likelihood function is
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ℓ(θ ) = ln(L(Y,X ,θ )) =
n

∑
i=1

[δi ln( f (Yi|Xi))+(1−δi) ln(1−F(Yi|Xi))]

=
n

∑
i=1

[δi ln(θ1g′(θ0 +θ1Yi +θ2Xi))+(1−δi) ln(1−g(θ0 +θ1Yi +θ2Xi))]

=
n

∑
i=1

δi [ln(θ1)+ ln(g′(θ0 +θ1Yi +θ2Xi))]+
n

∑
i=1

(1−δi) ln(1−g(θ0 +θ1Yi +θ2Xi))

Finally, the estimator is found as the maximizer of the log-likelihood function:

θ̂
GML

= argmax
θ

ℓ(θ ) .

The works by Jorgensen (1983) and McCullagh and Nelder (1989) deal with

generalized linear models in a regression context. These models can be adapted to the

conditional distribution function setup.

3.4 Nonparametric conditional distribution estimator

First of all a nonparametric estimator of the conditional distribution function is obtained.

This estimator, say Ŝh(t|x), is used to derive an estimator of PD(t|x), say P̂D
NPM

(t|x),
for the desired values of t and x.

Since we have a sample of right censored data for the lifetime distribution of a credit,

we use the estimator proposed by Beran (1981) for the conditional survival function of

T given X = x:

Ŝh(t|x) =
n

∏
i=1

(
1−

1{Yi≤t,δi=1}Bni(x)

1−∑
n
j=1 1{Y j<Yi}Bn j(x)

)
,

where Yi is the observed lifetime of the i-th credit, δi is the indicator of observing default

of the i-th credit (uncensoring) and Xi is the vector of explanatory covariates for the i-th

credit. The terms Bni(x) are Nadaraya-Watson nonparametric weights:

Bni(x) =
K((x−Xi)/h)

∑
n
j=1 K((x−X j)/h)

, 1 ≤ i ≤ n,

and h ≡ hn is the smoothing parameter that tends to zero as the sample size tends to

infinity.

To estimate the probability of default at time t given a covariate vector x, we replace,

in (1), the theoretical value of the conditional survival function by its estimator Ŝh:
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P̂D
NPM

(t|x) =
F̂h(t +b|x)− F̂h (t|x)

1− F̂h (t|x)
= 1− Ŝh(t +b|x)

Ŝh(t|x)
(3)

The asymptotic properties of this estimator will be studied in the next section.

4 Asymptotic results for the nonparametric approach

The asymptotic properties for the nonparametric estimator of the default probability,

P̂D
NPM

, have been obtained from the analogous properties for the conditional

distribution function estimator under censoring, already obtained by Dabrowska (1989),

Iglesias-Pérez and González-Manteiga (1999), Van Keilegom and Veraverbeke (1996)

and Van Keilegom et al. (2001).

Using equation (3) the asymptotic bias, variance and mean squared error of the

estimator P̂D
NPM

can be obtained via some expansions. Consistency and asymptotic

normality can also be derived.

To simplify our notation, let us define ϕ(t|x) = PD(t|x) and ϕ̂n(t|x) = P̂D
NPM

(t|x).
Then, the nonparametric estimator of the default probability function is

ϕ̂n(t|x) = 1− Ŝh(t +b|x)
Ŝh(t|x)

. (4)

Before stating the asymptotic results concerning ϕ̂n we need to present some definitions

and assumptions. Most of these assumptions were already required by Iglesias-Pérez

and González-Manteiga (1999) and Dabrowska (1989) to obtain their results.

The function G(t|x) = P(C ≤ t|X = x) is the conditional distribution of the

censoring random variable given the covariate X and H(t|x) = P(Y ≤ t|X = x) is

the conditional distribution of the observed lifetime of the credit given the covariate

X . The random lifetime, T , and the censoring time, C, are conditionally independent

given the covariate X . As a consequence, 1−H(t|x) = (1−F(t|x))(1−G(t|x)). The

conditional subdistribution function of the observed lifetime for default credits is

denoted by H1(t|x) = P(Y ≤ t,δ = 1|X = x) =
∫ t

0(1−G(u|x))dF(u|x). Similarly, for

nondefaulted credits, H0(t|x) = P(Y ≤ t,δ = 0|X = x) =
∫ t

0(1−F(u|x))dG(u|x). The

distribution function and the density function of the covariate X are denoted by M(x)

and m(x). The set ΩX = {x ∈ R+ : m(x) > 0} will denote the support of m. The lower

and upper endpoints of the support of any distribution function L will be denoted by

τL = inf {t : L(t) > 0} and τL = sup{t : L(t) < 1}.

The following assumptions are needed for the asymptotic results.

A.1 The kernel K is a symmetric density function with support [−1,1] and bounded

variation.
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A.2 Let us consider ΩX , the support of the density m, and let I = [x1,x2] be an interval

contained in ΩX , such that there exist α,β ,δ > 0 with αδ ≤ βδ < 1,

α≤ inf {m(x) : x ∈ Iδ} ≤ sup{m(x) : x ∈ Iδ} ≤ β ,

where Iδ = [x1 −δ,x2 +δ]. Then the functions m′(x) and m′′(x) are continuous

and bounded in the set Iδ.

A.3 There exist positive real numbers θ and τ∗H , such that

0 < θ ≤ inf
0≤t≤τ∗H

{1−H(t|x) : x ∈ Iδ}

A.4 The functions H ′(t|x) = ∂H(t|x)
∂x

, H ′′(t|x) = ∂ 2H(t|x)
∂x2 , H ′

1(t|x) = ∂H1(t|x)
∂x

and H ′′
1 (t|x) =

∂ 2H1(t|x)
∂x2 exist, are continuous and bounded in (t,x) ∈ [0,+∞)× Iδ.

A.5 The functions Ḣ(t|x) = ∂H(t|x)
∂ t

, Ḧ(t|x) = ∂ 2H(t|x)
∂ t2 , Ḣ1(t|x) = ∂H1(t|x)

∂ t
, Ḧ1(t|x) =

∂ 2H1(t|x)
∂ t2 exist, are continuous and bounded in (t,x) ∈ [0,τ∗H)× Iδ.

A.6 The functions Ḣ ′(t|x) = ∂ 2H(t|x)
∂x∂ t

= ∂ 2H(t|x)
∂ t∂x

, Ḣ ′
1(t|x) = ∂ 2H1(t|x)

∂x∂ t
= ∂ 2H1(t|x)

∂ t∂x
exist, are

continuous and bounded in (t,x) ∈ [0,τ∗H)× Iδ.

A.7 The smoothing parameter h satisfies h → 0 , (lnn)3/nh → 0 and nh5
n/ lnn = O(1),

when n → ∞.

The consistency and asymptotic normality of the nonparametric estimator ϕ̂n are

stated in the next two theorems. The proofs of these results are given in Section 6.

Theorem 1 Fix some t and x for which 0 < ϕ(t|x) < 1. Under the assumptions A.1-

A.7, ϕ̂n(t|x) is a strongly consistent estimator of the default probability function,

ϕ(t|x). Moreover if b < τ∗H and inf
x∈I

S(τ∗H |x) > 0, the consistency is uniform in (t,x) ∈
[0,τ∗H −b]× I, i.e.

sup
t∈[0,τ∗H−b]

sup
x∈I

|ϕ̂n(t|x)−ϕ(t|x)| → 0 a.s.

Theorem 2 Assume conditions A.1-A.7. Then the mean squared error of the

nonparametric estimator for the default probability is

MSE (ϕ̂n(t|x)) = b(t|x)2h4 +
1

nh
v(t|x)+o

(
h4 +

1

nh

)
, (5)
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where

b(t|x) =
1

2
cK (1−ϕ(t|x))BH (t, t +b|x) , (6)

v(t|x) =
dKDH (t, t +b|x)

m(x)
(1−ϕ(t|x))2 , (7)

cK =
∫

K (u)2
du, dK =

∫
u2K (u)du,

BH (t, t +b|x) =
∫ t+b

t

[
Ḧ(s|x)+2

m′ (x)

m(x)
Ḣ(s|x)

]
dH1(s|x)

+

(
1+2

m′ (x)

m(x)

)∫ t+b

t

dḢ1(s|x)
1−H(t|x) , (8)

DH (t|x) =
∫ t

0

dH1 (s|x)
(1−H (s|x))2

. (9)

Furthermore, if nh5 → c ∈ (0,∞), the limit distribution of ϕ̂n(t|x) is given by

√
nh(ϕ̂n(t|x)−ϕ(t|x)) d−→ N

(
c1/2b(t|x),v(t|x)

)
.

Remark 2 As a consequence, the bandwidth that minimizes the dominant terms of the

MSE in (5) is

h0 =

(
v(t|x)

4b(t|x)2

)1/5

n−1/5. (10)

5 Application to real data

In this section we apply the estimation methods given in Section 3 to a real data set.

Our goal is to show the results obtained from the application of the three models to

the estimation of default probabilities in a sample of consumer loans. An empirical

comparison between the models is given through the descriptive statistics as well as

the estimated default rate curves. In all cases, the curves were constructed taking

into account the recommendations from the Basel statements, i.e., PD estimates with

maturity of one year forward.

The data consist of a sample of 25 000 consumer loans from a Spanish bank

registered between July 2004 and November 2006. To preserve confidentiality, the data



14 Modelling consumer credit risk via survival analysis

were selected in order to provide a large distortion in the parameters describing the true

solvency situation of the bank.

The sample represents two populations, non-defaulted loans and defaulted loans,

where the observed cumulative default rate was 7.2%. The variables treated here are the

following:

Y = maturity or loan lifetime. Here, maturity means time to default (T ), when time is

uncensored or time to withdrawal (C), in any other case. Time was measured in months.

X = scoring (credit ratio) observed for each debtor. Its range lies inside the interval

[0,100]. In this paper, X is an univariate endogenous measure of propensity to default.

The closer to zero the better the credit behaviour.

δ = default indicator (uncensoring indicator). This variable takes value 1 if loan

defaults or 0 if not.

Figure 2 shows that the scoring characteristics of debtors are clearly different in the

two groups (defaulted and non-defaulted). The moment-based characteristics like the

kurtosis (2.68 and 4.29) and the skewness (0.51 and 1.37) of these two subsamples

are very different each other and they also reflect non-normal distributions. A large

proportion (about 75%) of debtors belonging to the sample of non-defaulted loans show

a credit scoring varying between 0.0 and 11.07. This whole range is below the first

quartile (approximately 20.93) of the scoring in the group of defaulted loans.
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Figure 2: Kernel density estimates for defaulted and non-defaulted loans.
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Table 1: Descriptive statistics for maturity and covariate (X) in defaulted loans (DL), non-defaulted loans

(NDL) and aggregated loans (AL).

Sample min. 1st. Q. median mean 3rd. Q. max.

DL maturity (T ) 0.033 2.933 5.500 7.458 11.15 24.767

X 8.398 20.295 30.066 31.817 41.167 77.819

NDL maturity (C) 0.000 6.767 11.367 13.455 20.033 29.500

X 0.150 2.412 4.857 7.688 11.070 43.920

AL maturity (Y ) 0.000 6.500 10.870 13.020 19.570 29.500

X 0.150 2.540 5.440 9.425 13.405 77.819

The data show that the random variable X is a reasonable predictor to study loan

default. This is also evident when observing the descriptive statistics for both groups of

loans in Table 1.

Figure 3 shows curves for the empirical default rates obtained directly from the

sample. These curves can be thought as the result of a naı̈ve nonparametric estimator

for the unconditional default rates curves. The study of this estimator is not the goal

of this paper. Focusing the attention in the right panel in Figure 3, it is clear that the

unconditional estimates of PD become constant when the loan maturity gets large. Naive

approximations to PD do not behave well because of the lack of sensitivity to variations

in the scoring characteristics of debtors. This result show that the unconditional

approach may not be used to predict PD because the estimation accuracy on the right

tail seems to be poor. This fact motivates the use of the conditional framework to obtain

more realistic estimations for PD.
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Figure 3: Empirical default rates with different forecasting periods. Left panel shows default rates curves

for 1, 6, and 12 months forward horizons, while the right panel shows the particular case of a default rate

curve with 1 year forward horizon, which is a very common decision tool in credit risk analysis.
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5.1 Empirical results and discussion

The plots included in this section give a graphical description of the estimators proposed

in this paper concerned with the conditional approach in consumer credit risk. All these

results show that a reasonable improvement can be achieved when a survival analysis

approach is used to model the credit quality in terms of “lifetime of loans”.

5.1.1 Results for the proportional hazards model

Estimating the PD under the proportional hazards model presents clear differences

with the results for the unconditional setting (Figure 3). It is easy to see that a clear

disadvantage of using an unconditional approach is that the PD forecasts do not change

with X . The conditional approach gives more realistic estimates using the scoring

information, which is a reasonable covariate, as was established at the beginning of this

section. The covariate X explains the propensity to defaults in loan obligations. Figure

4 shows that the PD estimates increase as the customer scoring increases.

A careful look at Figure 4 shows that the estimator of PD is zero when the

time to default gets close to the maximum of the maturity observed in the sample

(approximately 25). This effect on the PD curve is due to the heavy censoring and the

lack of depth in the sample. As a consequence, the accuracy of the estimator at the right

tail of PD is poor. Nevertheless, Cox’s proportional hazards model gives more realistic

default probabilities than the unconditional approximation (see Figure 3) when the bank

previously knows the scoring characteristics of the portfolio customers.
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Figure 4: P̂D with maturity 1 year forward given X = 2.54, 5.44, 13.4 (left panel) and given the mean

value of X (right panel).
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Figure 5: P̂D estimated with the Pareto (left panel) and Snedecor’s F (right panel) link function.

5.1.2 Results for the generalized linear model

Figure 5 show the results obtained for the PD estimated with the GLM model using two

parametric links: Pareto and Snedecor’s F . The range of the estimated PD lies within

the interval [0.0,0.016] when the link function is Pareto and grows up to the interval

[0.0,0.378] when the link function is F10,50, as it can be seen in Table 2. The PD curves

obtained with this model are exponentially decreasing, as expected, but in this case it

seems that there is no a significantly contribution of the variable X in the accuracy of the

estimated default probability curves. Furthermore, the estimated curves are all above the

range of the observed default rate with maturity one year forward. The results achieved

by using these two parametric links do not fit as well as expected to the data, when

compared to the empirical default rate curves depicted in Figure 3. In spite of this, the

GLM method may be useful to study the PD horizon in the long run.

Other link distributions belonging to the exponential family have been used to fit

these data via GLM. The normal distribution, the Weibull distribution and the Cauchy

distribution were used, among others. The results obtained were even worse than those

presented in Figure 5 above.

5.1.3 Results for the nonparametric estimator

The results for the nonparametric method presented in (3) are collected in this

subsection. In practice, we have used a k-nearest neighbour (KNN) type of bandwidth,

which consists in fixing some positive integer k and define the parameter as follows:

h = hKNN(x) = d(x,X[k])
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where d(x,X[k]) is the k-th order statistic of the sample of distances from x to those Xi

with δi = 1. In other terms hKNN(x) is the k-th smallest distance from x to the uncensored

observations of the X sample.

Figures 6-7 show the behaviour of the nonparametric estimator introduced in Section

3. In Figure 6 the value of the number of nearest neighbours has remained fixed (k = 100)

and the estimator P̂D(t|x) has been computed for three different values of X (x = 2.54,

5.44, 13.4). The reverse situation is showed in Figure 7, i.e., the curves P̂D(t|x) were

obtained for two fixed values of X (x = 9.43, 20) and varying the number of nearest

neighbours (k = 100, 300, 500).
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Figure 6: P̂D with fixed bandwidth parameter k = 100 (left panel) and k = 400 (right panel) given three

scoring values.
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Figure 7: P̂D with three different bandwidth parameters, given X = 9.43 (left panel) and given X = 20

(right panel).
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The first two curves show much smaller values for PD when the values of X are close

to or below the first quartile of the distribution. For k = 100 (see Figure 6, left panel)

there is an apparent undersmoothing effect for the estimated default probability curve.

The situation improves in the right panel of Figure 6. There, since k = 400, the P̂D is

much smoother. The estimates of the PD have a large sensitivity to small changes in the

scoring variable. As a consequence the PD can be overestimated at the beginning of loan

lifetime. A possible reason for this is the heavy censoring that usually affects consumer

credit loans.

Table 2: Descriptive statistics for the empirical default rates (EDR) and for the PD estimates obtained

by Cox’s proportional hazards model (PHM), the generalized linear model (GLM) and the nonparametric

model (NPM).

Model min. 1st. Q. median mean 3rd. Q. max.

Maturity

(months)

1 0.0758 0.0940 0.0947 0.0952 0.0994 0.1033

EDR 6 0.0636 0.0638 0.0692 0.0698 0.0755 0.0779

12 0.0292 0.0292 0.0329 0.0359 0.0424 0.0481

x

2.54 0.0000 0.0045 0.0343 0.0286 0.0138 0.0159

PHM 5.44 0.0000 0.0062 0.0467 0.0389 0.0138 0.0159

13.4 0.0000 0.0147 0.1080 0.0891 0.0136 0.0157

Link x

2.54 0.0099 0.0110 0.0122 0.0125 0.0139 0.0159

Pareto 5.44 0.0010 0.0109 0.0122 0.0124 0.0138 0.0159

GLM 13.4 0.0098 0.0108 0.0121 0.0123 0.0136 0.0157

2.54 0.2826 0.2950 0.3120 0.3183 0.3370 0.4468

F10,50 5.44 0.2823 0.2946 0.3114 0.3176 0.3361 0.3784

13.4 0.2815 0.2935 0.3098 0.3156 0.3336 0.3738

k x

100 2.54 0.0000 0.0000 0.0002 0.0004 0.0007 0.0012

100 5.44 0.0000 0.0000 0.0003 0.0005 0.0010 0.0015

100 13.4 0.0000 0.0000 0.0118 0.0175 0.0300 0.0520

400 2.54 0.0000 0.0000 0.0012 0.0021 0.0039 0.0064

400 5.44 0.0000 0.0001 0.0014 0.0024 0.0045 0.0073

NPM 400 13.4 0.0000 0.0001 0.0089 0.0152 0.0282 0.0452

100 9.43 0.0000 0.0000 0.0023 0.0037 0.0067 0.0105

300 9.43 0.0000 0.0000 0.0024 0.0040 0.0073 0.0117

500 9.43 0.0000 0.0001 0.0025 0.0042 0.0079 0.0134

100 20 0.0000 0.0005 0.0205 0.0301 0.0509 0.1149

300 20 0.0000 0.0009 0.0183 0.0302 0.0514 0.1054

500 20 0.0000 0.0006 0.0177 0.0306 0.0531 0.1040
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Figure 7 includes the default probability conditional to just a single value of X , using

three different levels of smoothness. Visual inspection of Figure 7 shows that, for a fixed

bandwidth, the larger the scoring, the smoother the estimated PD curve. It is also clear

that the variability of the PD reduces when the scoring gets large.

5.1.4 Comparison

A summary with a descriptive comparison of the three models is given in Table 2. Fixed

values for the covariate X (first, second and third quartiles) were used for the conditional

distributions. Of course, the empirical default rate does not depend on the value of X .

Although no goodness-of-fit tests have been applied for the proposed models, the

results of the estimation can be checked by simple inspection of Figures 4–7 and the

descriptive statistics collected in Table 2. The results for each model can be compared

with those of the aggregated default rates in the whole portfolio. Such values should be

considered as a reference value for the three models.

6 Proofs

Proof of Theorem 1

Recall equations (1) and (4). Let us write

ϕ(t|x) = 1− P

Q
,

ϕ̂n(t|x) = 1− P̂

Q̂
,

with P = S (t +b|x), Q = S (t|x), P̂ = Ŝh (t +b|x) and Q̂ = Ŝh (t|x). Using Theorem 2 in

Iglesias-Pérez and González-Manteiga (1999) we have

(
P̂, Q̂

)
−→ (P,Q) a.s.

Since the function g(x,y) =
x

y
is continuous in (P,Q), then we obtain

ϕ̂n(t|x) −→ ϕ(t|x) a.s.

and the first part of the proof is concluded.
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For the second part of the proof we use Corollary 2.1 in Dabrowska (1989) to obtain

sup
t∈[0,τ∗H−b]

sup
x∈I

∣∣Ŝh (t +b|x)−S (t +b|x)
∣∣ → 0 a.s. (11)

sup
t∈[0,τ∗H−b]

sup
x∈I

∣∣Ŝh (t|x)−S (t|x)
∣∣ → 0 a.s. (12)

We now use the following identity:

1

z
= 1− (z−1)+ · · ·+(−1)p (z−1)p +(−1)p+1 (z−1)p+1

z
, (13)

that is valid for any p ∈ N. Applying (13) with p = 1 and
1

z
=

Q

Q̂
we obtain:

1− ϕ̂n(t|x) =
P̂

Q̂
=

P̂

Q

Q

Q̂

=
P̂

Q

[
1−
(

Q̂

Q
−1

)
+

Q

Q̂

(
Q̂

Q
−1

)2
]

=
P̂

Q
− P̂

(
Q̂−Q

)

Q2
+

P̂

Q̂

(
Q̂−Q

)2

Q2
,

thus

|(1− ϕ̂n(t|x))− (1−ϕ(t|x))| ≤ A1 +A2 +A3 (14)

where

A1 =

∣∣P̂−P
∣∣

Q
,

A2 =
P̂
∣∣Q̂−Q

∣∣
Q2

,

A3 =
P̂

Q̂

(
Q̂−Q

)2

Q2
.

On the other hand if x ∈ I and t ≤ τ∗H −b,

A1 ≤

sup
t∈[0,τ∗H−b]

sup
x∈I

∣∣Ŝh (t +b|x)−S (t +b|x)
∣∣

inf
x∈I

S(τ∗H |x)
, (15)
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A2 ≤
sup

t∈[0,τ∗H−b]
sup
x∈I

∣∣Ŝh (t|x)−S (t|x)
∣∣

inf
x∈I

S(τ∗H |x)2
, (16)

A3 ≤
sup

t∈[0,τ∗H−b]
sup
x∈I

∣∣Ŝh (t|x)−S (t|x)
∣∣2

inf
x∈I

S(τ∗H |x)2
. (17)

Finally using (11) and (12) in (15), (16) and (17), equation (14) gives

sup
t∈[0,τ∗H−b]

sup
x∈I

|ϕ̂n(t|x)−ϕ(t|x)| → 0 a.s.

and the proof is concluded.

Proof of Theorem 2

To study the bias, we use (13) for p = 1 and
1

z
=

E
(
Q̂
)

Q̂
to obtain:

1− ϕ̂n(t|x) =
P̂

Q̂
=

P̂

E
(
Q̂
) E
(
Q̂
)

Q̂

=
P̂

E
(
Q̂
)



1−
(

Q̂

E(Q̂)
−1

)
+

E
(
Q̂
)

Q̂

(
Q̂

E
(
Q̂
) −1

)2




=
P̂

E
(
Q̂
) − P̂

(
Q̂−E

(
Q̂
))

(
E
(
Q̂
))2

+
P̂

Q̂

(
Q̂−E

(
Q̂
))2

(
E
(
Q̂
))2

. (18)

As a consequence

E (1− ϕ̂n(t|x)) = A1 +A2 +A3, (19)

with

A1 =
E
(
P̂
)

E
(
Q̂
) , (20)

A2 = −Cov
(
P̂, Q̂

)
(
E
(
Q̂
))2

, (21)

A3 =
E
[

P̂

Q̂

(
Q̂−E

(
Q̂
))2
]

(
E
(
Q̂
))2

. (22)
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Theorem 2 and Corollary 3 in Iglesias-Pérez and González-Manteiga (1999) give

E
(
P̂
)

= P

(
1− 1

2
cKAH (t +b|x)h2 +o

(
h2
))

, (23)

E
(
Q̂
)

= Q

(
1− 1

2
cKAH (t|x)h2 +o

(
h2
))

, (24)

where

AH (t|x) =
∫ t

0

[
Ḧ(s|x)+2

m′ (x)

m(x)
Ḣ(s|x)

]
dH1(s|x)

+

(
1+2

m′ (x)

m(x)

)∫ t

0

dḢ1(s|x)
1−H(t|x) . (25)

Recall expressions (8) and (25). Then equations (23) and (24) can be used to find

asymptotic expressions for (20) and (21):

A1 =
P
(
1− 1

2
cKAH (t +b|x)h2 +o

(
h2
))

Q
(
1− 1

2
cKAH (t|x)h2 +o(h2)

)

= (1−ϕ(t|x)) 1− 1
2
cKAH (t +b|x)h2 +o

(
h2
)

1− 1
2
cKAH (t|x)h2 +o(h2)

= (1−ϕ(t|x))
[

1− 1

2
cK (AH (t +b|x)−AH (t|x))h2

]
+o
(
h2
)

= (1−ϕ(t|x))− 1

2
cKBH (t, t +b|x)(1−ϕ(t|x))h2 +o

(
h2
)
, (26)

A2 = −Cov
(
P̂, Q̂

)
(
E
(
Q̂
))2

= O

(
1

nh

)
. (27)

Finally, since 1− ϕ̂n(t|x) =
P̂

Q̂
∈ [0,1], the term (22) can be easily bounded:

0 ≤ A3 ≤
Var

[
Q̂
]

(
E
(
Q̂
))2

= O

(
1

nh

)
. (28)

Using (26), (27), (28) and (6) in (19) we get

E (ϕ̂n(t|x))−ϕ(t|x) = b(t|x)h2 +o
(
h2
)
. (29)
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To deal with the variance we use (13) for p = 3 and
1

z
=

(
E
(
Q̂
))2

Q̂2
to obtain:

(
E
(
Q̂
))2

Q̂2
= 1+

3

∑
i=1

(−1)i

(
Q̂2 −E

(
Q̂
)2

(
E
(
Q̂
))2

)i

+

(
Q̂2 −E

(
Q̂
)2

(
E
(
Q̂
))2

)4 (
E
(
Q̂
))2

Q̂2
. (30)

On the other hand

Q̂2 −
(
E
(
Q̂
))2

=
[
Q̂−E

(
Q̂
)]2

+2E
(
Q̂
)[

Q̂−E
(
Q̂
)]

gives

(
Q̂2 −

(
E
(
Q̂
))2

(
E
(
Q̂
))2

)i

=
i

∑
j=0

(
i

j

)[(
Q̂−E

(
Q̂
))2

(
E
(
Q̂
))2

] j [
2E
(
Q̂
)[

Q̂−E
(
Q̂
)]

(
E
(
Q̂
))2

]i− j

=
i

∑
j=0

(
i

j

)
2i− j

(
Q̂−E

(
Q̂
)) j+i

(
E
(
Q̂
)) j+i

(31)

Substituting (30) in (31) we obtain:

(
E
(
Q̂
))2

Q̂2
= 1+

3

∑
i=1

(−1)i
i

∑
j=0

(
i

j

)
2i− j

(
Q̂−E

(
Q̂
)) j+i

(
E
(
Q̂
)) j+i

+
4

∑
j=0

(
4

j

)
24− j

(
Q̂−E

(
Q̂
)) j+4

(
E
(
Q̂
)) j+4

(
E
(
Q̂
))2

Q̂2
. (32)

Equation (32) is useful to obtain an expansion for the second moment:

E
[
(1− ϕ̂n(t|x))2

]
= E

(
P̂2

Q̂2

)
= E

(
P̂2

(
E
(
Q̂
))2

(
E
(
Q̂
))2

Q̂2

)

=
E
[(

P̂−E
(
P̂
))2
]

(
E
(
Q̂
))2

+
E
(
P̂
)2

(
E
(
Q̂
))2

+
3

∑
i=1

(−1)i
i

∑
j=0

(
i

j

)2i− jE
[
P̂2
(
Q̂−E

(
Q̂
)) j+i

]

(
E
(
Q̂
)) j+i+2

+
4

∑
j=0

(
4

j

)24− jE
[

P̂2

Q̂2

(
Q̂−E

(
Q̂
)) j+4

]

(
E
(
Q̂
)) j+4

. (33)
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Defining, for i, j = 0,1, . . ., the notation

Ai j = E
[(

P̂−E
(
P̂
))i (

Q̂−E
(
Q̂
)) j
]
, (34)

Bi j = E
[
P̂i
(
Q̂−E

(
Q̂
)) j
]
, (35)

Ci =
(
E
(
Q̂
))i

, (36)

Di j = E
[
(1− ϕ̂n(t|x))i

(
Q̂−E

(
Q̂
)) j
]

(37)

and using

A2 j = B2 j −2B10A1 j +B2
10A0 j,

expression (33) can be rewritten as

E
[
(1− ϕ̂n(t|x))2

]
=

A20

C2

+
B2

10

C2

+
3

∑
i=1

(−1)i
i

∑
j=0

(
i

j

)
2i− j B2 i+ j

C j+i+2

+
4

∑
j=0

(
4

j

)
24− j D2 j+4

C j+4

=
A20

C2

+
B2

10

C2

+
3

∑
i=1

(−1)i
i

∑
j=0

(
i

j

)
2i− j A2 i+ j +2B10A1 i+ j −B2

10A0 i+ j

C j+i+2

+
4

∑
j=0

(
4

j

)
24− j D2 j+4

C j+4

(38)

It is easy, but long and tedious, to show that

E
[(

P̂−E
(
P̂
))i
]

= o

(
1

nh

)
, for i ≥ 3,

E
[(

Q̂−E
(
Q̂
))i
]

= o

(
1

nh

)
, for i ≥ 3.

Now recalling (34), (35), (36) and (37), and using Cauchy-Schwartz inequality and

straight forward bounds, it can be proven that

A01 = A10 = 0, (39)

Ai j = o

(
1

nh

)
, whenever i+ j ≥ 3, (40)
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Bi j = o

(
1

nh

)
, for j ≥ 3, (41)

Di j = o

(
1

nh

)
, for j ≥ 3. (42)

Using (39), (40), (41) and (42) in (38), we conclude:

E
[
(1− ϕ̂n(t|x))2

]
=

A20

C2

+
B2

10

C2

− 4B10A11

C3

− 3B2
10A02

C4

+o

(
1

nh

)

=
Var

(
P̂
)

(
E
(
Q̂
))2

+
E
(
P̂
)2

(
E
(
Q̂
))2

− 4E
(
P̂
)

Cov
(
P̂, Q̂

)
(
E
(
Q̂
))3

+
3E
(
P̂
)2

Var
(
Q̂
)

(
E
(
Q̂
))4

+o

(
1

nh

)
(43)

On the other hand, plugging (18) in the term A3 of expression (19), using (39), (40), (41)

and (42) and some simple algebra gives:

E (1− ϕ̂n(t|x)) =
B10

C1

− A11

C2

+
A12 +B10A02

C3

− A13 +B10A03

C4

+
D14

C4

=
E
(
P̂
)

E
(
Q̂
) − Cov

(
P̂, Q̂

)
(
E
(
Q̂
))2

+
E
(
P̂
)

Var
(
Q̂
)

(
E
(
Q̂
))3

+o

(
1

nh

)
(44)

The residual term R′
n (y|x) in Theorem 2 of Iglesias-Pérez and González-Manteiga

(1999) was proved to be uniformly negligible almost surely. A uniform rate for the

moments of R′
n (y|x) can be also obtained similarly. As a consequence of this, Theorem

2 and Corollary 4 in Iglesias-Pérez and González-Manteiga (1999) are applicable to

obtain asymptotic expressions for the covariance structure of the process Ŝh (·|x). This

can be used to find and asymptotic expression for variances of P̂ and Q̂:

Var
(
P̂
)

=
1

nh
v1 (t +b|x)+o

(
1

nh

)
, (45)

Var
(
Q̂
)

=
1

nh
v1 (t|x)+o

(
1

nh

)
, (46)

Cov
(
P̂, Q̂

)
=

1

nh
v2 (t, t +b|x)+o

(
1

nh

)
, (47)
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where

v1 (t|x) =
(1−F (t|x))2

m(x)
dKCH (t|x) , (48)

v2 (t,s|x) =
(1−F (t|x))(1−F (s|x))

m(x)
dKCH (t ∧ s|x) , (49)

CH (t|x) =
∫ t

0

dH1 (s|x)
(1−H (s|x))2

. (50)

Now using the orders found in (45), (46) and (47) in expressions (43) and (44) gives:

Var (ϕ̂n(t|x)) = Var (1− ϕ̂n(t|x)) =
Var

(
P̂
)

(
E
(
Q̂
))2

− 2E
(
P̂
)

Cov
(
P̂, Q̂

)
(
E
(
Q̂
))3

+

(
E
(
P̂
))2

Var
(
Q̂
)

(
E
(
Q̂
))4

+o

(
1

nh

)
.

Finally, the asymptotic expressions (23), (24), (45), (46) and (47) and the definitions

(48), (49), (50), (9) and (7) can be used to conclude:

Var (ϕ̂n(t|x)) =
1

nh

v1 (t +b|x)
(S(t|x))2

− 2

nh

v2 (t, t +b|x)S(t +b|x)
(S(t|x))3

+

1

nh

v1 (t|x)(S(t +b|x))2

(S(t|x))4
+o

(
1

nh

)

=
1

nh

dKCH (t|x)
m(x)

(S(t +b|x))2 −2(S(t +b|x))2 +(S(t +b|x))2

(S(t|x))2

+
1

nh

dK [CH (t +b|x)−CH (t|x)]
m(x)

(
S (t +b|x)

S(t|x)

)2

+o

(
1

nh

)

=
1

nh

dKDH (t, t +b|x)
m(x)

(1−ϕ(t|x))2 +o

(
1

nh

)

=
1

nh
v(t|x)+o

(
1

nh

)
. (51)

Finally collecting expressions (29) and (51) we conclude (5). The formula for the

asymptotic optimal bandwidth, (10), can be easily derived from (5).

To prove the last part of Theorem 2, we use Corollaries 3 and 4 in Iglesias-Pérez and

González-Manteiga (1999) to show that

√
nh
[(

P̂, Q̂
)t − (P,Q)t

]
d−→ N2 (b,V) ,
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where

b = (b1,b2)
t = −c1/2 1

2
cK (AH (t +b|x)P,AH (t|x)Q)t ,

V =

(
v11 v12

v21 v22

)
=

(
v1 (t +b|x) v2 (t, t +b|x)

v2 (t, t +b|x) v1 (t|x)

)
.

Now applying the continuous function g(u,v) = u
v

to the sequence of the bivariate

random variable above and using the delta method, simple but long and tedious algebra

gives

√
nh

(
P̂

Q̂
− P

Q

)
d−→ N

(
µ,σ2

)
, (52)

with

µ =

(
∂g(u,v)

∂u
,
∂g(u,v)

∂v

)∣∣∣∣
(u,v)=(P,Q)

b

=
1

Q
b1 −

P

Q2
b2 = −c1/2 1

2
cK

P

Q
(AH (t +b|x)−AH (t|x))

= −c1/2b(t|x) ,

σ2 =

(
∂g(u,v)

∂u
,
∂g(u,v)

∂v

)∣∣∣∣
(u,v)=(P,Q)

V

(
∂g(u,v)

∂u
,
∂g(u,v)

∂v

)t∣∣∣∣
(u,v)=(P,Q)

=
1

Q2
v1 (t +b|x)− 2P

Q3
v2 (t, t +b|x)+

P2

Q4
v1 (t|x)

= v(t|x) .

This concludes the proof by substituting
P̂

Q̂
= 1− ϕ̂n(t|x) and

P

Q
= 1−ϕ(t|x) in (52).
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The present paper deals with the estimation of the probability of default (PD) which

is a very important parameter in many models for consumer credit risk in the literature.

If T denotes the time to default of a client, then it is immediately clear that in

many cases T will not be observed, due to the ending of the observation period or the

occurrence of some other event that happens earlier in time. This perfectly fits into the

classical model of right random censoring in survival analysis. Here the observations are

Y = min(T,C) and δ = I(T ≤C) where T is the time to default and C is the censoring

time.

Classical survival analysis tools like Kaplan-Meier estimation and Cox estimation

allow to obtain estimates for the distribution function of T . Moreover it is also possible

to incorporate a vector X of explanatory variables and to estimate the conditional

distribution function of T , given that X = x.

Since the probability of default just the conditional residual life distribution function

(see Veraverbeke (2008)), it can be expressed as a simple function of the conditional

distribution function and different estimation methods of the latter lead to different

estimators for the PD.

Three methods are explored in this paper. The first is based on Cox’s proportional

hazards regression model, the second on a generalized linear model and the third on

Beran’s (1981) nonparametric product limit estimator for the conditional distribution

function. For the third method, some new asymptotic properties are derived for the

conditional residual life distribution function estimator. The illustration with real data

clearly shows that the covariate information is essential and that methods 1 and 3 give a

good fit.

I want to congratulate the authors for their contribution to this field of modelling

credit risk using regression techniques from survival analysis. The results are very

promising and I hope to see further work in that direction. My comments/questions

below are meant to stimulate this.

1) It would be interesting to explore the use of time-dependent covariates. In

particular, how could this be done for the nonparametric method?

2) The theoretical results and also the real data application are shown for one single

covariate. Is the extension to more than one covariate straightforward?
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3) An assumption throughout is the conditional independence of T and C, given

X . But there are more and more examples in survival analysis where this

is questionable. See, for example, Zheng and Klein (1995), Braekers and

Veraverbeke (2005). How realistic is the independence assumption in credit risk

modelling and how could this assumption possibly be relaxed?

4) Is it possible to generalize the asymptotic normality result in Theorem 2 in order

to obtain practical confidence bands for the default rate curves?

5) The third method relies on a good choice for the bandwidth. Is there a suggestion

for an optimal choice?

It was a pleasure for me to be invited as a discussant for this interesting paper.
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The paper deals the default intensity of consumer to determine the probability of

defaults. Because the authors use the fact that a large proportion of consumers does not

have default, they use censored models in the estimation.

I would like to point out to authors some important details. In consumer credit

data, the amount of information from real data is very small. Indeed, depending on

the definition of what is a default, we can suppose that a default can arise continuously.

However the default will only be observable on a small period of time since consumer

only pays his debt at the beginning of each month. Consequently, we must deal with even

less information than what is assumed in the paper. For the Cox proportional hazard

model, Malik and Thomas (2006) worked with a modified likelihood function when

dealing with this situation.

This problem shares similarities with insurance data. Indeed, with aggregate

insurance data, it is impossible to know at what time insureds had their accident (see

for example Boucher and Denuit (2007)). A major difference between credit and claim

count analysis is the fact that a default of credit happens only once, while it is possible to

see more than one claim in a single insurance period. However, even with this difference,

for a parametric approach such as the GLM model proposed by the authors, it is possible

to construct credit risk models based on models of Boucher and Denuit (2007).

Conceptually, let τ be the waiting time between the beginning of the loan and the

default. Let I(t) be the indicator of a default during the interval [0, t]. Hence,

P(I(t) = 0) = P(τ> t) (1)

P(I(t) = 1) = 1−P(τ> t)

For a loan of one year, we only have up to 12 partial informations on the credit default.

Consequently, we then observed intervals [0, 1
12

], ] 1
12

, 2
12

], ] 2
12

, 3
12

], . . ., ] 11
12

, 12
12

].

In count data, duration dependence occurs when the outcome of an experiment

depends on the time that has elapsed since the last success (Winkelmann (2003)). Then,

the occurrence of an event modifies the expected waiting time to the next occurrence of

the event. For credit risk, a positive (negative) duration dependence would mean that the
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probability of default decreases (increases) over time. Consequently, the true probability

depends on which interval the default happens and can be expressed:

P(I(1) = y) =






P(τ≤ 1
12

) for a default y occuring in [0, 1
12

]

P( 1
12

< τ≤ 2
12

) for a default y occuring in ] 1
12

, 2
12

]

...

P( 11
12

< τ≤ 12
12

) for a default y occuring in ] 11
12

, 12
12

]

1−P(τ> 12
12

) for a non-registered default

, (2)

By comparison with this last equation, for an individual i, the contribution of conditional

likelihood function of the authors, involving the conditional density, was written as

f (τ)δ(1−F(τ))1−δ, where δ = 1 if an individual did a default. Less information is

available with (2) since differences in cumulative distributions is used rather than density

functions.

Except when working with the Exponential distribution that is known to be

memoryless, it is not possible to simply express all the probabilities of a default as:

P(I(t) = 0) = P(τ>
1

12
),

for all possible values of t because it is only valid for the first interval. Indeed, for

illustration, let us assume that τ is Gamma distributed, with density

f (τ;α,λ) =
λα

Γ(α)
τα−1e−λτ, (3)

where Γ(·) is the gamma function, α > 0 and λ > 0. Note that the Gamma hazard

function is increasing for α> 1 and is decreasing for α< 1 (and shows constant hazard

of α = 1). Thus, for α ≤ 1, the model exhibits positive duration, while α ≥ 1 implies

negative duration (and does not show duration dependence for α = 1, from which we

find the Exponential distribution). It can be interesting to see how well real data can

estimate these parameters. Indeed, with the use of (2), the model can be expressed by

using this useful notation:

P(ta < τ≤ tb) =
1

Γ(α)

∫ tb

ta

λανα−1e−λνdν

where the integral is known as an incomplete gamma function. This probability can be

evaluated using integrations approximations or asymptotic expansions (Abramowitz and

Stegun (1968)).

It would be interesting to apply the unusual non-parametric approach of the authors

using equation (0.2).



Jean-Philippe Boucher 37

References

Abramowitz, M. and Stegun, I. A. (1968). Handbook of Mathematical Functions. National Bureau of

Standards, Applied Mathematics Series Nr. 55, Washington, D.C.

Boucher, J.-P. and Denuit, M. (2007). Duration Dependence Models for Claim Counts. Deutsche

Gesellschaft fur Versicherungsmathematik (German Actuarial Bulletin), 28, 29-45.

Malik, M. and Thomas, L. (2006). Modeling Credit Risk of Portfolio of Consumer Loans. University of

Southampton, School of Management, Working Paper, Series No. CORMSIS-07-12.

Winkelmann, R. (2003). Econometric Analysis of Count Data. Springer-Verlag, Berlin, 4th ed.





Jan Beran

Department of Mathematics and Statistics

University of Konstanz, Germany

Since Basel II, the modeling of credit risks has become an important practical issue

that has to be addressed in a mathematically tractable manner while taking into

account particular characteristics of the market and available data. One general approach

discussed in the literature is modelling probability of default (PD) by applying survival

analysis. The idea is quite natural, since in the financial context the time until default

can be interpreted directly as a survival time and such data are readily available. As in

usual survival analysis, the observed times until default are partially censored. In spite

of the obvious analogy to the biological context, survival analysis may not be very well

known among practitioners in finance. The paper by Cao, Vilar and Devia is therefore a

welcome contribution.

The authors essentially discuss three methods of estimation:

1. Cox’s proportional hazard model;

2. generalized linear models; and

3. nonparametric conditional distribution estimation.

For the third method, the asymptotic mean squared error and a formula for the

asymptotically optimal bandwidth ho are given. While 1 and 2 and their properites

are well known, the asymptotic result for the third method appears to be new. From

the practical point of view, the question is which of the three methods perform best

when applied to real data, and also whether there may be any alternative methods

that even outperform any of these. Before answering this question, one needs to

define a criterion for judging the performance. In the paper here, empirical and

estimated PDs are compared. Thus, the criterion is simply to what extent a model

fits the data. More interesting would be to use predictive out of sample criteria

and also financial risk measures. Furthermore, the fitted PDs reported in table 2 are

of varying quality. One may therefore ask whether any of the models considered

here reflect the underlying mechanism with sufficient accuracy. In particular, the

perfomance of standard models in survival analysis depends on the amount of

censoring. Typically for credit default data, a large majority (often more than 95%)

of the observations are censored. In such situations, maximum likelihood estimates

based on unimodal distributions tend to be highly biased. For this reason, Beran

and Djaı̈dja (2007) adopted an idea originally introduced by Maller and Zhou

(1996) in a medical context. Observations are assumed to come from a mixture

distributions consisting of a usually large proportion p of ”immunes” and a smaller
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proportion 1− p of clients who may default. Thus, the time until a randomly chosen

client number i defaults can be written as

Yi = ςi ·∞+(1−ςi)Wi

where P(ςi = 1) = 1−P(ςi = 0) = p and Wi is a continuous distribution FW (.;λ) with

density fW (.;λ) (λ ∈ Λ ⊆ Rk) on R+. Conditionally on the censoring constants ci, the

maximum likelihood estimate of θ = (p,λ) is obtained from observed survival times

xi = yi ∧ ci by maximizing

L(θ) = n1 log(1− p)+∑
i∈I

log fW (yi;λ)+ ∑
i∈Ic

log [1− (1− p)FW (ci;λ)]

where I = {i : yi ≤ ci} and n1 = |I|. In practice estimates of PDs and prediction of

defaults turned out to be much more accurate in the case of retail clients where defaults

are (or used to be) very rare. It may therefore be worth the effort to see whether the same

applies to the consumer loans considered in this discussion paper.
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Rejoinder

First of all we would like to thank the discussants for their kind words and suggestions

concerning this paper. According to the topics mentioned in the comments we will

organize this rejoinder in four sections. These sections deal with other censoring models,

predictive criteria, bandwidth selection and extensions to other settings.

1 Other censoring models

As mentioned by Prof. Beran, some other alternative models are available for heavy

censoring situations like in credit risk. In this rejoinder we will adopt the approach by

Maller and Zhou (1996) and Beran and Djaı̈dja (2007) for the generalized linear model

presented in the paper. Using the notation of Subsection 3.3, we have considered the

model

F(t|x) = (1− p)g(θ0 +θ1t +θ2x) , (1)

where p ∈ (0,1) is the proportion of credits that are immune to default and F is any

of the two parametric distributions considered in Subsection 5.1.2 of the paper. Using

equation (1), the log-likelihood function in Subsection 3.3 results in

ℓ(θ0,θ1,θ2, p) = [ln(1− p)+ lnθ1]
n

∑
i=1

δi +
n

∑
i=1

δi lng′ (θ0 +θ1Yi +θ2Xi)

+
n

∑
i=1

(1−δi) ln [1− (1− p)g(θ0 +θ1Yi +θ2Xi)]

For dealing with the high complexity of the model and the minimization of the

log-likelihood equations, we have used a differential evolution based program called

DEoptim, implemented in R. See, for instance, Price et al. (2005) for details about this

numerical optimization approach.

Figure 1 shows the estimated PD using these heavy censoring models when

conditioning to X = 5.44, the median value of the covariate. The P̂D curves for the

GLM and the modified GLM (MGLM) are shown in a range of maturity times given

by the depth of the sample. The GLM curves in the left panel are those presented in

Figure 5 of the paper. Using the same link functions, the heavy censoring models with
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Figure 1: Left panel: P̂D curves for the GLM and the MGLM. Right panel: P̂D curves for the MGLM,

Cox’s proportional hazard model and the nonparametric approach. All these P̂D curves were obtained

conditioning on X = 5.44.

single parameter Pareto and Snedecor’s F distributions are also plotted in the left panel.

The estimated parameters were α = 0.6 and p = 0.01 for the Pareto distribution and

8.553 and 0.525 for the degrees of freedom of Snedecor’s F distribution with p = 0.01.

The right panel plots a graphical comparison of the MGLM, Cox’s proportional hazard

model and the nonparametric approach.

The results obtained with the GLM approach are not good in general, and the

modified version proposed in equation (1) did not produced a significant improvement in

the estimated PD for our data set. The P̂D curve computed with the F link fits better than

that with the Pareto link function for a range of covariate values. Thus, in the following

we will only present results concerning the MGLM approach with the Snedecor’s F link

function. The estimated default probabilities with both links were extremely large for

those values of X smaller than 1, or extremely small for values of X larger than the third

quartile (28.2703).

An alternative way to deal with heavy censoring, not considered here, is to use the

transfer tail models introduced by Van Keilegom and Akritas (1999) and Van Keilegom,

Akritas and Veraverbeke (2001). This consists in using nonparametric regression

residuals to transfer tail information from regions of light censoring to regions of heavy

censoring in conditional distribution function estimation.

The possible discrete nature of the defaults, mentioned by Prof. Boucher, gives rise to

an interval censored model for the time to default (see his equation (2)). This censoring

model is very useful when the defaults are reported in multiples of a given time unit

(e.g., a month). This is not the case for our data set with 1800 defaults corresponding to

576 different values. The highest frequency of these values is only 15 and the average

frequency of these 576 different values is only 3.156.
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Our data set has been facilitated by a financial company. This company records the

contract date and sends a payment order on a fixed date in the second month following

the contract formalization date. This fixed date may change from month to month. When

a client does not make one of these payments and this situation is maintained for more

than 90 days, the 91st day after the due payment date is considered as the default time.

However there are even a few exceptions in which default may be considered even before

than four months from the contract date. For all these reasons it is virtually impossible,

at least for this data set, that default times occur in multiples of one month.

Nevertheless, there may exist practical situations where defaults exhibit a discrete

nature. In these cases the nonparametric estimator given by Beran (1981) can be

extended to interval-censored response lifetimes. The idea is to adapt the estimator

proposed by Turnbull (1976) to the conditional setting, in a general framework of

censoring and truncation (which includes interval censoring). This adaptation could be

very similar to the one used in Beran (1981) to extend the Kaplan-Meier estimator to a

conditional setup.

As Professor Veraverbeke points out, one could consider more general censoring

models that allow for some sort of conditional dependence between the censoring time,

C, and the life time, T , of a credit. The hypothesis of conditional independence is very

common in survival analysis and it is also very convenient in credit risk applications.

In principle, when the censoring times come from time from contract formalization

to end of the study, the conditional independence assumption seems a natural

one. However, this is not the only source of censored data. For instance credit

cancellation, which also causes censoring, may be correlated to possible time to default.

Unfortunately it is often very difficult to test such an assumption from real data. This

is because most of the times there is no available information about jointly observed

values of (C,T ). As Professor Veraverbeke mentions, copula models are useful tools for

constructing more flexible models that allow for conditional dependence. An interesting

future study would be to extend the results on nonparametric estimation of default

probability to copula models as those proposed in Braekers and Veraverbeke (2005).

2 Predictive criteria

As Professor Beran explains in his report interesting model adequacy tests for a financial

firms are based on predictive criteria. The estimated probability of default can be used to

classify a credit in default or nondefault. Using the three methods proposed in the paper

and fixing a maturity time of t = 5 months and a forecast time horizon of b = 12 months,

the estimated PD has been computed for every single credit of a real loan portfolio.

Starting from the sample of credits alive at time t, the two subsamples of defaulted

and non-defaulted credits at time t + b have been considered. In order to study the

discrimination power of the three models, we have considered the pertaining estimated
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Figure 2: ROC curves for the three PD approaches: MGLM, Cox’s PHM, and NPM.

PD and computed the ROC curves. This tool has been used in financial setups by

Thomas (2000), Stein (2005), Blöchlinger and Leippold (2006) and Engelmann (2006),

among others. The area under the ROC curve (AUC), which is a measure of the the

discrimination power of the methods, has also been computed.

The study was performed by just dividing our data set of size 25000 in a training

sample of size 20000 and a test sample of size 5000. The choice of these two samples

was made at random. The test sample was split up into defaulted and non-defaulted

credits. The PD estimates, obtained for the three approaches using the training sample,

were applied to the test sample and the out-of-sample ROC curves are plotted in Figure

2. The areas under these curves and their confidence intervals are collected in Table 1.

Figure 2 shows a surprisingly poor discrimination power of the MGLM model. This

is also reflected by the AUC values in Table 1. An open question is how important is the

choice of the link function in order to produce much better results. The performance of

Cox’s proportional hazard model and the nonparametric approach is very comparable.

Their discrimination power (measured via the AUC) is about 74%.

A first conclusion is that the modification of the original GLM approach was not

able to produce the expected improvement in the original GLM setting, but it may

be interesting to study the problem of choice of the link function in a deeper way.

On the other hand PD estimates obtained by Cox’s proportional hazards model and

the nonparametric approach provide quite powerful discrimination between default and

non-default credits.



Rejoinder 45

Table 1: Area under the ROC curves for the three approaches

computed by using the validation sample.

Model AUC
95% asymptotic

confidence interval

MGLM 0.265 0.234 0.297

Cox’s PHM 0.735 0.703 0.766

NPM 0.738 0.706 0.770

3 Bandwidth selection

As Professor Veraverbeke points out, the nonparametric approach relies on a good

choice for the bandwidth. Direct plug-in methods for the selection of the smoothing

parameter require the estimation of plenty of population functions involved in equation

(10): H1(t|x), H(t|x), Ḣ(t|x), Ḧ(t|x), m(x), m′(x) and ϕ(t|x). This turns out to be a

tedious procedure. Furthermore, since the method is based on an asymptotic expression,

it may not produce accurate results for samples with a moderate number of uncensored

data. See, for instance Cao, Janssen and Veraverbeke (2001) for similar ideas in a

different context.

A good alternative for bandwidth selection in this context is the bootstrap method.

This method can be used to find a bootstrap analogue of the mean squared error

of ϕ(t|x) = PD(t|x) (see, for instance, Cao (1993) for the use of the bootstrap for

estimation of the mean integrated squared error in a different context). This method

would require the use of two pilot bandwidths, g1 and g2, for estimating F(t|x) and

G(t|x) and a pilot bandwidth, g3, for the density m. The method proceeds as follows:

1. Compute, F̂g1
(t|x), Beran’s estimator of F(t|x) and Ĝg2

(t|x), Beran’s estimator of

G(t|x).
2. Estimate m(x) by m̂g3

(x).

3. Draw a sample (X∗
1 ,X∗

2 , . . . ,X∗
n ) from m̂g3

(x).

4. For every i = 1,2, . . . ,n, draw T ∗
i from F̂g1

(t|x) and C∗
i from Ĝg2

(t|x).
5. Compute, for every i = 1,2, . . . ,n, Y ∗

i = min{T ∗
i ,C∗

i } and δ∗i = 1{T ∗
i ≤C∗

i }.

6. Use the sample {(Y ∗
1 ,δ∗1,X

∗
1 ) ,(Y ∗

2 ,δ∗2,X
∗
2 ) , . . . ,(Y ∗

n ,δ∗n,X
∗
n )} to compute ϕ̂∗

h(t|x),
the bootstrap analogue of ϕ̂h(t|x).

7. Approximate the mean squared error of ϕ̂h(t|x) by its bootstrap version:

MSE∗
t,x (h) = E∗

[
(ϕ̂∗

h(t|x)− ϕ̂g1
(t|x))2

]
.
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8. This bootstrap MSE can be approximated by drawing a large number, B, of

bootstrap replications following steps 4-6 and computing

1

B

B

∑
j=1

(
ϕ̂

∗ j

h (t|x)− ϕ̂g1
(t|x)

)2

.

9. Finally the bootstrap bandwidth, h∗MSE,t,x, is the minimizer of MSE∗
t,x (h) in h.

Since this resampling plan may be very time consuming, a possible way to make this

approach feasible for very large sample sizes (like n = 25000) is the following. Fix some

smaller subsample size (for instance m = 2500), i.e., n = λm, with λ typically large (in

this example λ = 10). Use the bootstrap resampling plan to get a bootstrap bandwidth,

h∗MSE,m,t,x, for sample size m. Based on the asymptotic formula (10), in the paper, obtain

h∗MSE,n,t,x = λ−1/5h∗MSE,m,t,x.

Consistency and practical behaviour of this bootstrap method is left for future work.

4 Extensions to other settings

Professor Veraverbeke raises the question of extension of the nonparametric default

probability estimator to the multiple covariate case. We believe that this extension

is rather straightforward, as it is for the conditional distribution estimator. From the

theoretical viewpoint, it is expected that the convergence rate gets worse when the

dimension of the covariate vector increases. In fact, it is very likely that the PD

nonparametric estimator is worthless for covariates of dimension larger to 3 or 4, except

for huge sample sizes (curse of dimensionality). A possible way to overcome this

problem is to use the dimension reduction ideas proposed by Hall and Yao (2005) to

produce a semiparametric estimator of the default probability that is free of the curse of

dimensionality. At the same time, the projection of the covariate vector obtained by such

a procedure would probably be interpretable as a kind of overall scoring that accounts

for propensity of credits to default.

The time-dependent covariate case mentioned by Professor Veraverbeke can be

treated using ideas of McKeague and Utikal (1990), who extended Beran’s estimator

to time-dependent covariates. Last, but not least, although convergence of the default

probability process could be studied and used to derive asymptotic theory for confidence

bands, in our opinion this is out of the scope of the present paper. On the other hand

we believe that, for practical reasons, financial companies are more interested (for

prediction) in the estimation of the default probability at a given maturity and with fixed

values of the covariates, than in a confidence band.
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