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On gradient estimates and other qualitative properties of
solutions of nonlinear non autonomous parabolic systems

S. Antontsev and J. I. Dı́az

Abstract. We prove several uniformL1-estimates on solutions of a general class of one-dimensional
parabolic systems, mainly coupled in the diffusion term, which, in fact, can be of degenerate type. They
are uniform in the sense that they don’t depend on the coefficients, nor on the size of the spatial domain.
The estimates concern the own solution or/and its spatial gradient. This paper extends some previous
results by the authors to the case of nonautonomous coefficients and possibly non homogeneous boundary
conditions. Moreover, an application to the asymptotic decay of theL1-norm of solutions, ast → +∞,
is also given.

Estimaciones sobre el gradiente y otras propiedades cualit ativas de las
soluciones de sistemas parab ólicos no lineales no aut ónomos.

Resumen. En este artı́culo se obtienen varias estimaciones uniformes enL1 para las soluciones y su
derivada espacial de ciertos sistemas parabólicos no lineales que pueden estar acoplados en los términos
de difusión y que, de hecho, puede ser de tipo degenerado.

Tales estimaciones son uniformes en el sentido de que no dependen de los coeficientes del sistema,
ni del tamaño del dominio espacial. Las estimaciones se refieren a la normaL1 de la propia solución
o/y de su gradiente espacial. Este trabajo extiende, al casode coeficientes no autónomos y a posibles
condiciones de contorno no homogéneas, ciertos resultados previos de los autores. Además, se ofrece
una aplicación al estudio del decaimiento de la normaL1 de la solución, cuandot → +∞.

1 Introduction

The main goal of this paper is double: by one hand, we shall extend, to the case of nonautonomus coef-
ficients and with possibly nonhomogeneous boundary conditions, a previous gradient estimate ([11]) for
solutions of nonlinear parabolic systems. by the authors. On the other hand, we shall obtain here some
L1-estimates on the norm of the own vector solution and to give some application to the decay of to this
norm, ast → +∞.

To be more precise, we consider the following boundary valueproblem for quasilinear parabolic systems
of the type

ut = (A(t, x,u)ux)x + B(t, x,u,ux) + f(t, x), (1)

onQ = Ω × (0, T ) whereΩ = (0, l). We add an initial condition

u(0, x) = u0(x), x ∈ Ω, (2)
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and some boundary conditions, which, in order to fix ideas, weassume, for instance,

ux(t, 0) = 0, u(t, l) = h, 0 < t < T. (3)

Hereu = (u1, . . . , un) is the unknown vector valued function andh = (h1, . . . , hn) is, for instance, a
given constant vector. To simplify the exposition, we assume that the matrixA is diagonalA = (Aii) but
that it may depend on all the components ofu and thus coupling the different scalar equations. We assume
that the vectorsf andu0 are given and satisfy some suitable regularity conditions.

As in ([11]), we shall pay a special attention to the case of degeneratesystems: i.e. to the case in which
the corresponding matrixA is semidefinite positive and in fact vanishes at certain critical values of the
sought vector solutionucr, i.e.A(t, x,ucr) = 0. This contrast with theuniformly paraboliccase in which
the matrixA is definite positive (and that some times is denoted asregular case).

Systems the same as (1) frequently appear in many different contexts arising in biology, chemistry
or filtration problems. Our particular motivation corresponds to the case in which system (1) describes
the discharge of a laminar hot gas in a stagnant colder atmosphere of the same gas under assumptions the
boundary layer approximation (see [4]–[9], [29]–[33]). In that casen = 2, u1 is the gas temperature, andu2

is the horizontal component of the velocity. The existence and uniqueness of weak solutions for this spacial
case were proved in [4, 6, 7] under suitable conditions on the data (which guarantee strong positiveness of
the matrixA on the considered vector solution).

We shall not discuss here any question related with the existence and regularity of solutions of boundary
initial problems for system (1) under the structural conditions on the coefficients which will be indicated
in the next section. By the contrary, we shall always assume that the considered problem has a solution,
regular enough. We recall that some existence and uniqueness results for the uniformly parabolic case can
be find, for instance, in [26, 27] and [2] where the reader can find a long list of references under the essential
condition thatA is a positive definite matrix.

The degeneration of the matrixA (A(ucr) = 0 at certain critical valuesucr of the sought vector
solution) causes the necessity to understand the solution in a weaker form as well as severallocalization
propertiesof solutions such as thefinite speed of propagations, the waiting time effect, etc. (see, e.g. [12]).
This creates some significant difficulties in order to get some existence and uniqueness results on weaker
classes of solutions. Nevertheless, many results are knownto this respect (see, for instance, the treatment of
systems of degenerate equations made in [1]). We point out, that, as in the scalar case, most of the timesthe
weak solutions of degenerate systems (1) are found by means of passing to the limit on classical solutions
of suitable uniformly parabolic auxiliary systems obtained by some approximation arguments. In this way,
some regularity properties of the weak solutions are obtained by proving it first for the approximate systems
and then by passing to the limit. That was also the philosophyproposed already by E. Hopf [23] in 1950 to
study the Burgers equation by passing to the limit, asµ → 0 on the solutions ofut + uux = µuxx.

As mentioned, we shall obtain here aL1(Ω) estimate on the (spatial) gradientux which is, in some
sense “uniform” since it will not depend on the matrixA (nor on the vectorB). In fact, our main result (see
Theorem3) if firstly obtained for a componentui (for somei = 1, . . ., n) of vector solutionu and shows
that, under suitable conditions on the associated component of the data, we get the estimate

∫ l

0

|uix(t, x)| dx ≤
∫ l

0

|uix(t, 0)| dx +

∫ t

0

∫ l

0

|fix(τ, x)| dxdτ, (4)

for anyt ∈ (0, T ]. Obviously, if the conditions holds for anyi = 1, . . ., n then we conclude that

‖ux‖L∞(0,T :L1(Ω)) ≤ ‖u0x‖L1(Ω) + ‖fx‖L1(0,T :L1(Ω)) ,

but notice that this property does not imply (4).
This estimate remains true for other boundary conditions. The extension to higher dimensions and to

other quasilinear equations including the case of diffusions with nonlinear terms on the gradient, under
suitable conditions on the coefficients, will be the object of a separate work by the authors ([10]). We
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prove that this property implies a compactness criteria, for a sequence of solutions leading to the limit (in a
suitable weak topology) satisfies, at least that

TV(ui(t, ·)) ≤ TV(u0i(.)) +

∫ t

0

TV(fi(τ, .)) dτ, (5)

whereTV(ϕ(t, ·)) means the total variation of the Radon measureϕx(t, ·). This kind of arguments can be
used, for instance, to show that (5) or (4) remains true for the case of the Cauchy problem associated to (1)
(i.e. when the spatial domainΩ is (−∞, +∞)). We also present here an application to the study of some
stationary systems associated to (1) (for instance by applying the implicit Euler scheme to (1)).

The main idea to prove estimate (4) consists in multiplying thei-equation by− ∂ φ(uix,θ)
∂ x

, where
φ(r, θ) → sign0(r) as θ → 0, and to show that other contributions different to the ones arising in (4)
converge to zero whenθ → 0 under suitable conditions on the coefficients. It should be noted that the
trick of using a sequence of test functions converging to thesign functions has been very familiar in the
realm of elliptic, parabolic and first order hyperbolic equations for several decades in order to prove simpler
estimates of the type that we shall get for systems in the nextSection) (see, for instance, [25] and [13]).
Nevertheless, as far as we know, the use of such test functionseems to be new in the literature. Although a
formal integration by parts links our method with the one already used in the literature consisting of differ-
entiating the equation and applyingL1-techniques touix (see, for instance [19] and [35]), our method has
several advantages: it needs less regularity on the coefficients of the diffusion operator, it applies to Dirich-
let boundary conditions (avowing some complicated arguments on the value of the second order operator
on the boundary) and it does not involve any constant in the final estimate (4).

We send the reader to [11] for some comments on this property and the study of some exact solutions
of the scalar case (as, for instance, the so-called,Barenblatt solutionsof the porous media equation), and
for some illustrative applications of these results to somespecial problems as it the case of the discharge of
a hot gas mentioned before, the case of one dimensional two phase filtration described by the degenerate
parabolic equationst − (a(s)sx)x = V (t)b(s)x, and the (possibly degenerate)p-Laplacian type equation
ut − (Φ(ux))x = f whereΦ is a continuous increasing real function. The reader can findalso in [11] some
applications to some first order Hamilton-Jacobi type system ut + C(u,ux) = f(t, x), x ∈ R (including
some conservation laws).

A second goal of this paper is to show that an analogous uniform estimate (but simpler) holds for the
vector solutionsu of system (1). More precisely, we shall prove that

∫ l

0

|ui(t, x) − hi| dx ≤
∫ l

0

|ui(0, x) − hi| dx +

∫ t

0

∫ l

0

|fi| dxds, i = 1, . . . , n. (6)

In contrast with the above gradient estimates, some previous results on it (by other authors) can be found
in the literature although not exactly under our general formulation (see, e.g. [25, 28]) and mostly only
concerning the case of scalar equations. Moreover, we shallshow that this estimate can be very useful to
get someuniformasymptotic convergence, ast → +∞, of u(t, x) to the stationary solutionu ≡ h, i.e. with
a convergence rate which is independent onl.

2 Structural assumptions and main results

In this section we deal with (regular enough) solutions of the system

ut = (A(t, x,u)ux)x + B(t, x, u, ux) + f(t, x), (7)

onQ = Ω × (0, T ) whereΩ = (0, l) with the auxiliary conditions

ux(t, 0) = 0, u(t, l) = h, t ∈ (0, T ), (8)
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u(0, x) = u0(x), x ∈ Ω, (9)

whereu = (u1, . . . , un) is the unknown vector valued function,h = (h1, . . . , hn) is a constant given
vector. On the data we assume at least that

f ∈ L1(Q) and u0 ∈ L1(Ω). (10)

Note that our formulation is slightly different than the onepresented in [11]: here the coefficients may
depend ont and/orx andh is not necessarily zero, among other details.

We assume that

(HA)

{

|∂Aii

∂uk
(t, x,u)| ≤ C < ∞, i, k = 1, . . . , n for any(t, x,u) ∈ [0, T ]× Ω × Rn,

∥

∥

∂Aii

∂x
(·, ·,u)

∥

∥

L2((0,T )×Ω)
≤ C(T, l) < ∞, i = 1, . . . , n for anyu ∈ Rn.

(11)
Notice that

(

A(t, x,u)ux

)

x
≡ Auxx +

(

∂A

∂u
ux

)

ux +
∂A

∂x
ux,

and thus, vectorial equation (7) can be rewritten as a system of scalar equations

uit = Aiiuixx +

n
∑

k=1

∂Aii

∂uk

ukxuix +
∂Aii

∂x
uix + Bi + fi, i = 1, . . . , n. (12)

In most of the cases we shall assume thatA = (Aij) is diagonalA = (Aii) and thatA is a semi-definite
positive matrix, i.e. such that

a0|~ξ|2 ≤ (A(t, x,p)~ξ, ~ξ) =
n
∑

i=1

Aiiξ
2
i ≤ a1|~ξ|2 < ∞, (13)

for any(~ξ,p) ∈ R2n, (t, x) ∈ Q and for some0 ≤ a0 ≤ a1. We recall that the case0 < a0 corresponds to
uniformly parabolic systems and that0 = a0 arises for degenerate systems.

Since the proof of our main estimate (4) will be obtained firstly for a single componentui (for some
i = 1, . . ., n) of the vector solutionu we shall assume that the main coupling among the equations ofthe sys-
tem comes from the diffusion terms and that, by the contrary,the vectorial lower order termB(t, x,u,ux)
is, in some sense, weakly coupled. The concrete structural assumptions onB(t, x,u,ux) we shall assume
start by the decomposition in a purely absorption part and a convective part

B(t, x,u,ux) = Ba(t, x,u) + Bc(t, x,u,ux).

On the components of the absorption part ofB we shall assume that

Ba
i (t, x, r) sign(ri − hi) ≤ 0, for any(t, x) ∈ Q andr ∈ R

n, (14)

or / and

Ba
i (t, x, r) = Ba

i (t, ri), Ba
i (t, hi) = 0, Ba

i ∈ C1 and

∂Ba
i (t, ri)

∂ri

≤ 0, for anyt ∈ (0, T ) and anyri ∈ R.
(15)

On the components of the convective part ofB we shall assume that

|Bc
i (t, x,u,p)| ≤ B0(t, x)|pi|γi for someγi > 1/2 and someB0 ∈ L2(Q),

for any(t, x) ∈ Q and any(u,p) ∈ R
2n.

(16)

or

Bc
i (t, x,u,ux) = −∂C(u)

∂u
ux C ∈ C2, C(u) = (C1(u1), C2(u2), . . . , Cn(un)). (17)
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2.1 L
1- estimate: uniform asymptotic behavior (as t → +∞) with respect

to l, when a0 > 0.

Our first result shows an uniformL1 estimate on the own vectorial solutionu.

Theorem 1 Assume that there exists a componenti0 ∈ {1, . . . , n} for which (14) andBc
i0

=0 hold. Let
u = (u1, . . . , un) be a weak solution of the problem(7)–(9). Then, for anyt ∈ [0, T ] we have the estimate

∫ l

0

|ui0(t, x) − hi0 | dx ≤
∫ l

0

|ui0(0, x) − hi0 | dx +

∫ t

0

∫ l

0

|fi0 | dxds. (18)

Remark 1 We recall that in the scalar case (n = 1), and whenhi ≡ 0, theLp-estimate

∫ l

0

|u(t, x)|p dx ≤
∫ l

0

|u(0, x)|p dx +

∫ t

0

(

∫ l

0

|f(τ, x)|p dx
)

1

p

dτ, (19)

are well known for anyp, 1 ≤ p ≤ ∞ (see, for instance[25], [13] and [14]).

PROOF OFTHEOREM 1. We denotei0 simply byi. For fixedθ > 0, we introduce the real function

φ(ui, θ) =
ui − hi

√

θ2 + (ui − hi)2
. (20)

Thenφ′(ui, θ) = θ2

(θ2+(ui−hi)2)
3

2

> 0 and we have that

φ(ui, θ) → sign(ui − hi). (21)

Moreover, if we define

F (ui, θ) =

∫ ui

hi

s − hi
√

θ2 + (s − hi)2
ds

thenF (ui, θ) → |ui − hi|, whenθ → 0. Now, by multiplying equation (12) by φ(ui, θ) (which is a good
test function), by well known results (see, e.g. Lions [27]) we get that

∫ l

0

F (ui(t, x), θ) dx +

∫ t

0

∫ l

0

Aiiφ
′(ui, θ)u

2
ix dxds +

∫ t

0

∫ l

0

Ba
i φ(ui, θ) dxds

=

∫ l

0

F (ui(0, x), θ)) dx +

∫ t

0

∫ l

0

fiφ(ui, θ) dxds.

(22)

Thanks toAiiφ
′ ≥ 0 and assumptions (14), (10) we can pass to the limit, asθ → 0, we come to the desired

estimate (18). �

Let us use estimate (18) to study the asymptotic convergence of the vectorial solution u(t, x) to a
stationary solutionu(t, x) ≡ h whent → ∞ (uniformly on l ∈ (0,∞]) under assumptiona0 > 0. We
introduce theenergyfunction

Y (t) :=
(

∫ l

0

|u(t, x) − h|2 dx
)

1

2

. (23)

Theorem 2 Assumea0 > 0 and that, for anyi = 1, . . ., n (14) andBc
i = 0 hold. Letu = (u1, . . . , un)

be a weak solution of the problem(7)–(9). Letu0 ∈ L2(Ω) with

∫ l

0

|u0(x) − h| dx ≤ U0 (24)
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for someU0 > 0. Then, iff ≡ 0, the solutionu(t, x) satisfies the decay estimate

Y (t) ≤ 1
4
√

t

4

√

C0(n)U0

4
√

a0
(25)

and, in particular,Y (t) → 0, ast → ∞. Moreover, iff 6= 0 and it satisfiesf ∈ L2(Q) for anyT > 0 with

‖f(t, ·)‖2 ≤ f0 (1 + t)
−

5

4 , (26)

for somef0 > 0 then there exists a constantK (f0, Y (0), a0, n, U0), and thus independent onl, such that

Y (t) ≤ K (1 + t)−
1

4 → 0, ast → ∞. (27)

PROOF. First we note that the solutionu(t, x) satisfies the energy relation

1

2

d

dt

∫ l

0

|u(t, x) − h|2 dx +

∫ l

0

(Aux,ux) dx =

∫ l

0

(f ,u(t, x) − h) dx. (28)

Next we use the known interpolation inequality [12, Appendix, Lemma 3.2],

(

∫ l

0

|u(t, x) − h|2 dx

)3

≤ 4C0(n)

(

∫ l

0

|u(t, x) − h| dx

)4(
∫ l

0

|ux|2 dx

)

, (29)

C0(n) = 9n3/16. Then taking into account (18), we can rewrite last inequality in the form

Y 6(t) ≤ 4C0U
4
0

(

∫ l

0

|ux|2 dx

)

. . . . (30)

Using (13), (28) and applying Cauchy’s inequality to the right side of (28), we arrive to the ordinary differ-
ential inequality

Y (t)
dY (t)

dt
+

a0

4C0U4
0

Y 6(t) ≤
∫ l

0

|(f(t, x),u(t, x) − h)| dx. (31)

Assume now thatf ≡ 0. Integrating the last inequality, we obtain that

Y (t) ≤ Y (0)

4

√

1 + t
a0

C0U4
0

Y 4(0)

≤ 1
4
√

t

4
√

C0U0

4
√

a0
→ 0, ast → ∞. (32)

Assume now thatf 6= 0. By applying Cauchy’s inequality we get the estimate

∫ l

0

|(f(t, x), u(t, x) − h)| dx ≤ ‖f(t, ·)‖2 Y (t). (33)

Then condition (26) leads to the following nonhomogeneous ordinary differential inequality

dY (t)

dt
+

a0

4C0U4
0

Y 5(t) ≤ ‖f(t, ·)‖2 ≤ f0 (1 + t)
−

5

4 . (34)

It is easy to verify that there is some constantK
(

f0, Y (0), a0, C0, U
4
0

)

such that the function

W (t) = K (1 + t)
−

1

4 (35)

206



Gradient estimates for parabolic systems

satisfies thatW (0) ≥ Y (0) and that

dW (t)

dt
+

a0

4C0U4
0

W 5(t) ≥ f0 (1 + t)−
5

4 .

Then, by the comparison principle for ordinary differential equations we get to

Y (t) ≤ W (t) (36)

and the result is proved. �

Remark 2 Notice that the above result shows thatu(·, x) → h in C0([0,∞); L2(0, l)) as t → ∞,
uniformly with respect tol. We also point out that there is a “regularizing effect” since the coefficient
U0 only takes into account theL1-integral although the conclusion is stated in terms of theL2-integral.

Remark 3 We send the reader to the book Chipot[17] for a collection of results concerning the case
l → +∞. For very general convergence results for systems of parabolic equations see, for instance,[20]
and their references.

2.2 A L
1-gradient estimate: the possibly degenerate system

The other goal of this paper is to derive aL1-gradient universal estimate (i.e., which doesn’t depend on the
constantsl, a0, C nor onB0i(x, t)) generalizing the previous result of [11]. In fact, we shall give a direct
proof of it without splitting it in a series of lemmas (as presented in [11]).

Theorem 3 Assume(10), (11), (13). Assume that there exists a componenti0 ∈ {1, . . . , n} for which

fi0 ∈ L1(0, T : W 1,1(Ω)), fi0(t, l) = 0 for t ∈ (0, T ) andu0i0 ∈ W 1,1(Ω). (37)

and that(15) and (16) or (17) hold. Letu = (u1, . . . , un) be a classical solution of problem(7)–(9). Then

∫ l

0

|ui0x(t, x)| dx ≤
∫ l

0

|u0i0x(x)| dx +

∫ t

0

∫ l

0

|fi0x(τ, x)| dxdτ, (38)

for anyt ∈ [0, T ].

PROOF. We denotei0 simply byi. For fixedθ > 0 we introduce the functions

φ(r, θ) =
r√

θ2 + r2
, (39)

F (r, θ) =

∫ r

0

φ(s, θ) ds =

∫ r

0

s√
θ2 + s2

ds, (40)

so that
φ(r, θ) → sign r, F (r, θ) → |r|, if θ → 0. (41)

Notice that
dφ

dr
=

θ2

(θ2 + r2)
3

2

and that
∂φ(uix, θ)

∂x
=

θ2uixx

(θ2 + u2
ix)

3

2

.

Multiplying i-th equation (12) by ∂φ(uix,θ)
∂x

and integrating overΩ, we get

∫ l

0

F (uix(t, x), θ) dx + I1 =

∫ l

0

F (uix(0, x), θ) dx + I2 + I3 + I4, (42)
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where

I0 :=

∫ t

0

∫ l

0

θ2(uixx)2

(θ2 + u2
ix)

3

2

dxdτ

I1 :=

∫ t

0

∫ l

0

Aii

θ2u2
ixx

(θ2 + u2
ix)

3

2

dxdτ ≥ a0

I2 := −
∫ t

0

∫ l

0

∂Aii

∂uk

ukxuix

θ2uixx

(θ2 + u2
ix)

3

2

dxdτ,

I3 := −
∫ t

0

∫ l

0

∂Aii

∂x
uix

θ2uixx

(θ2 + u2
ix)

3

2

dxdτ.

I4 := −
∫ t

0

∫ l

0

fi

∂φ(uix, θ)

∂x
dxdτ.

I5 := −
∫ t

0

∫ l

0

Bc
i

θ2uixx

(θ2 + u2
ix)

3

2

dxdτ.

I6 := −
∫ t

0

∫ l

0

Ba
i

∂φ(uix, θ)

∂x
dxdτ

Here we used the formulas

∫ l

0

uit

∂φ(uix, θ)

∂x
dx = −

∫ l

0

uixtφ(uix, θ) dx + uitφ(uix, θ)|x=l
x=0

= −
∫ l

0

uixtφ(uix, θ) dx (43)

= − d

dt

∫ l

0

[∫ uix

0

φ(θ, s) ds

]

dx

= − d

dt

∫ l

0

F (uix, θ) dx,

(notice that, under the assumed regularity,uit(t, l) = 0 for anyt ∈ (0, T )),

∫ l

0

Aii

∂φ(uix, θ)

∂x
uixx dx =

∫ l

0

Aii

θ2(uixx)2

(θ2 + u2
ix)

3

2

dx, (44)

and
∫ l

0

∂Aii

∂uk

ukxuix

∂φ(uix, θ)

∂x
dx =

∫ l

0

∂Aii

∂uk

ukxuixθ2uixx

(θ2 + u2
ix)

3

2

dx. (45)

Using the Cauchy’s inequality we can estimate the termsIi, i = 2, 3, 4 in (42) as follows:

|I2| ≤
∫ t

0

∫ l

0





a0

3

θ2(uixx)2

(θ2 + uix)
3

2

+
3θC2

4a0

(

n
∑

k=1

|ukx|
)2

θ

(θ2 + u2
ix)

1

2

u2
ix

(θ2 + u2
ix)



dxdτ

≤ 1

3
I0 + θ

3C2

4a0

∫ t

0

∫ l

0

(

n
∑

k=1

|ukx|
)2

dxdτ,

|I3| ≤
1

3
I0 +

3θ

4a0

∫ t

0

∫ l

0

∣

∣

∣

∣

∂Aii

∂x

∣

∣

∣

∣

2
θ

(θ2 + u2
ix)

1

2

u2
ix

(θ2 + u2
ix)

dxdτ
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≤ 1

3
I0 +

3θ

4a0

∫ t

0

∫ l

0

∣

∣

∣

∣

∂Aii

∂x

∣

∣

∣

∣

2

dxdτ ≤ 1

3
I0 + θ

3C(T, l)

4a0
,

|I4| =

∣

∣

∣

∣

∣

∫ t

0

∫ l

0

fi

∂φ(uix, θ)

∂x
dxdτ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ t

0

∫ l

0

fixφ(uix, θ)

∣

∣

∣

∣

∣

dxdτ ≤
∫ t

0

∫ l

0

|fix| dxdτ,

Moreover if (16) holds then

|I5| =

∣

∣

∣

∣

∣

∫ t

0

∫ l

0

Bc
i

θ2uixx

(θ2 + u2
ix)

3

2

dxdτ

∣

∣

∣

∣

∣

≤
∫ t

0

∫ l

0

θ|uixx|
(θ2 + u2

ix)
3

4

θB0|uix|γi

(θ2 + u2
ix)

3

4

dxdτ

≤
∫ t

0

∫ l

0

(

a0

3

θ2u2
ixx

(θ2 + u2
ix)

3

2

+
3

4a0
B2

0

θ2 |uix|2γi

(θ2 + u2
ix)

3

2

)

dxdτ ≤ 1

3
I0 +

3θ2γi−1

4a0

∫ t

0

∫ l

0

B2
0 dxdτ.

In the case in which (17) holds

I5 =

∫ t

0

∫ l

0

dCi

dui

uixθ2uixx

(θ2 + u2
ix)

3

2

dxdτ = −θ2

∫ t

0

∫ l

0

dCi

dui

∂

∂xi

(

1

(θ2 + u2
ix)

1

2

)

dxdτ

= θ2





∫ t

0

∫ l

0

d2Ci

d2ui

(

uxi

(θ2 + u2
ix)

1

2

)

dxdτ − dCi

dui

1

(θ2 + u2
ix)

1

2

∣

∣

∣

∣

∣

x=l

x=0



 .

Finally applying the formula of the integration by parts andusing (15), we have

I6 =

∫ t

0

∫ l

0

∂Ba
i (t, ui)

∂ri

u2
ix

(θ2 + u2
ix)

dxdτ ≤ 0

Joining (42) and the above estimates, we arrive to the inequality

∫ l

0

F (uix(t, x), θ) dx ≤
∫ l

0

F (u0ix(x), θ) dx +

∫ t

0

∫ l

0

|fix| dxdτ

+θ
3C2

4a0





∫ t

0

∫ l

0

(

n
∑

k=1

|ukx|
)2

dxdτ +
C(T, l)

C2



+
3θ2γi−1

4a0

∫ t

0

∫ l

0

B0 dxdτ.

(46)

(if (16) holds) or

∫ l

0

F (uix(t, x), θ) dx ≤
∫ l

0

F (u0ix(x), θ) dx +

∫ t

0

∫ l

0

|fix| dxdτ

+ θ
3C2

4a0





∫ t

0

∫ l

0

(

n
∑

k=1

|ukx|
)2

dxdτ +
C(T, l)

C2



 (47)

+ θ2





∫ t

0

∫ l

0

d2Ci

d2ui

(

uxi

(θ2 + u2
ix)

1

2

)

dxdτ − dCi

dui

1

(θ2 + u2
ix)

1

2

∣

∣

∣

∣

∣

x=l

x=0



 .

(if (17) holds). Passing to the limit asθ → 0, we get the desired estimate.�

209



S. Antontsev and J. I. Dı́az

Remark 4 Let us consider more in detail the caseγi = 1/2,in the conditions(16), (57). In that case we
can evaluateI5 in the following way

|I5| ≤
1

3

∫ t

0

∫ l

0

Aii

θ2u2
ixx

(θ2 + u2
ix)

3

2

dxdτ +
3

4

∫ t

0

∫ l

0

B2
0i

Aii

dxdτ.

Then, if additionally, we assume the subordination betweentermsAi andB0i: i.e.

B2
0iA

−1
ii ∈ L1(Q) (48)

arguing as in the Proof of Theorem3 we arrive to a slightly different estimate to(38): more precisely, we
get

∫ l

0

|uix(x, t)| dx ≤
∫ l

0

|uix(x, 0)| dx +

∫ t

0

∫ l

0

|fix(x, τ)| dx + λi

∫ t

0

∫ l

0

B2
0i

Aii

dxdτ, (49)

for anyt ∈ [0, T ], whereλi = 0 if γi > 1/2, andλi = 3/4 if γi = 1/2.

Remark 5 The statement of the above theorem remains valid if we replace boundary conditions(8) and
assumption(37) by one of the following alternative boundary conditions (and alternative assumptions):
either

ui0x(t, l) = ui0x(t, 0) = 0, 0 < t < T, (50)

and we assume merely

fi0 ∈ L1(0, T : W 1,1(Ω)) and u0i0 ∈ W 1,1(Ω), (51)

or
ui0(t, l) = ui0(t, 0) = 0, 0 < t < T, (52)

and we assume
fi0 ∈ L1(0, T : W 1,1

0 (Ω)) and u0i0 ∈ W 1,1(Ω). (53)

Notice that in this last case Theorem3 remains true ifhi0 = 0 and we assume(17) insteadBc
i0

= 0. Many
combined possibilities can be considered: for instance, wecan assume that for a subset of the components
the boundary conditions(8) hold but that there are other subsets of the components for which (50) or (52)
are prescribed.

One of the most important consequences of the above uniformL1-gradient estimate is the following
one:

Theorem 4 Let{um}m∈N be a sequence of classical solutions of(7)–(9) corresponding to the data

fm ∈ L1(0, T : W1,1(Ω)), fm(t, l)= 0 for t ∈ (0, T ) andu0,m ∈ W1,1(Ω) (54)

such that
∫ l

0

|u0ix(x)| dx +

∫ t

0

∫ l

0

|fix(τ, x)| dxdτ ≤ C

for someC independent onm, for anyi = 1, . . ., n and t ∈ [0, T ]. Assume also thatumx ∈ L2(0, T :
L∞(Ω)); umt,umxx ∈ L∞(0, T : L1(Ω)) and that for such solutions the following conditions

0 < a0m ≤ (A(t, x,um)~ξ, ~ξ) ≤ a1m < ∞, ∀~ξ ∈ Rn, (55)

[

(

∂Aii

∂uk

)2

+

(

∂Aii

∂x

)2
]

A−1
ii ≤ Cm < ∞, (56)
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(15) and

(Bc
i )

2 A−1
ii ≤ Bc

m|uix|2γi , 0 < Bc
m ∈ L2(Q), γi > 1/2, i = 1, . . . , n, (57)

or (17) are valid for anyi = 1, . . ., n. Then estimate(38) holds for anyum, m ∈ N. In particular,
there exists a subsequence of{um}m∈N which converges to a functionu of L∞(0, T : BV(Ω)) in the
weak*-topology and

TV(u(t, ·)) ≤ TV(u0(·)) +

∫ t

0

TV(f(τ, ·)) dτ, (58)

whereTV(ϕ(t, ·)) means the total variation of the Radon measureϕx(t, ·), i.e.

TV(ϕ(t, ·)) = sup

{∫ l

0

ϕ(t, x)φx(x) dx : φ ∈ C∞

0 (0, l), |φ(x)| ≤ 1 for x ∈ (0, l)

}

.

PROOF. Clearly, assumptions (55), (56) and (56) imply (10), (11), (13) and (16). Then, we can apply
Theorem3 and, in particular, we get that

∫ l

0

|umix(t, x)| dx ≤ C (59)

for anyi = 1, . . ., n andt ∈ [0, T ]. SinceL∞(0, T : BV(Ω)) is the dual of a separable space (see, e.g. [3,
p. 299]) we can apply Banach-Alaoglu-Bourbaki compactnesstheorem (see, e.g. [15]). �

Remark 6 In many cases, by using some supplementary assumptions and arguments it can be shown that,
in fact, the limit functionu ∈ L∞(0, T : BV(Ω)) is more regular andu ∈ L1

loc(0, T : W1,1(Ω)) (see,
for instance,[1] for some systems and[22] for some scalar equations, but many other references in the
literature contains other proofs of the strong convergenceof the gradients). In that case conclusion(58))
can be replaced by the stronger one

∫ l

0

|ux(t, x)| dx ≤
∫ l

0

|u0x(x)| dx +

∫ t

0

∫ l

0

|fx(τ, x)| dxdτ.

We shall end this section by giving an application to the caseof the associated stationary system

λu = (A(x,u)ux)x + B(x, u, ux) + f(x), (60)

onΩ = (0, l) with the auxiliary conditions

ux(0) = 0, u(l) = h, (61)

whereu = (u1, . . . , un) andh = (h1, . . . , hn) is a constant given vector. Note that this stationary systemis
associated to (1), for instance, by applying the implicit Euler scheme to (1)) when developing the semigroup
theory to the evolution problem (see, e.g. [13], [18] and [14]).

Theorem 5 Assume(10), (11), (13) but for the stationary case and for a givenλ > 0. Assume that there
exists a componenti0 ∈ {1, . . . , n} for which

fi0 ∈ W 1,1(Ω) fi0(l)=0, (62)

and that(15) and (16) or (17) hold. Letu = (u1, . . . , un) be a classical solution of problem(60)–(61).
Then

∫ l

0

|ui0x(x)| dx ≤ 1

λ

∫ l

0

|fi0x(x)| dx. (63)
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PROOF. It is similar to the one of Theorem3 but replacing the “weak time dependence integration by
parts formula” (see also Lemma 3.1 of ([11])) by its (even easier) stationary version

∫ l

0

ui

∂φ(uix, θ)

∂x
dx = −

∫ l

0

uixφ(uix, θ) dx + uiφ(uix, θ)|x=l
x=0 (64)

which holds by a direct integration by parts (recall that, infact, uiφ(uix, θ)|x=l
x=0 = 0 thanks to the boundary

conditions (61)). Then, it suffices to pass to the limit, asθ → 0, and to use that �

Remark 7 Estimate(63) can be understood as the gradient estimate similar to the obtained in[16] for the
L1-norm of the solution of semilinear stationary scalar equations.

Acknowledgement. The work of the first author was supported by the research project MTM2008-
06208 of the Ministerio de Ciencia e Innovacion, Spain and the one by the second author by the projects
MTM2008-06208 of the Ministerio de Ciencia e Innovación, Spain and CCG07-UCM/ESP-2787 of the
DGUIC of the CAM and the UCM.

This paper was written when the first author was Sabbatical Professor at the Departamento de Mate-
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