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On gradient estimates and other qualitative properties of
solutions of nonlinear non autonomous parabolic systems

S. Antontsev and J. |. Diaz

Abstract. We prove several uniforni' -estimates on solutions of a general class of one-dimealsion

parabolic systems, mainly coupled in the diffusion termialthin fact, can be of degenerate type. They
are uniform in the sense that they don’t depend on the caaffisi nor on the size of the spatial domain.

The estimates concern the own solution or/and its spataignt. This paper extends some previous
results by the authors to the case of nonautonomous coaf@ad possibly non homogeneous boundary
conditions. Moreover, an application to the asymptoticageaf the L' -norm of solutions, ag — +oo,

is also given.

Estimaciones sobre el gradiente y otras propiedades cualit ativas de las
soluciones de sistemas parab 6licos no lineales no aut 6nomos.

Resumen. En este articulo se obtienen varias estimaciones unifené' para las soluciones y su
derivada espacial de ciertos sistemas parabolicos naldisgue pueden estar acoplados en los terminos
de difusion y que, de hecho, puede ser de tipo degenerado.

Tales estimaciones son uniformes en el sentido de que nodiepele los coeficientes del sistema,
ni del tamafio del dominio espacial. Las estimaciones seregfia la normd.' de la propia solucién
oly de su gradiente espacial. Este trabajo extiende, aldmsweficientes no autbnomos y a posibles
condiciones de contorno no homogeéneas, ciertos resslfa@vios de los autores. Ademas, se ofrece
una aplicacion al estudio del decaimiento de la nofrhale la solucion, cuando— +oo.

1 Introduction

The main goal of this paper is double: by one hand, we shadineitto the case of nonautonomus coef-
ficients and with possibly nonhomogeneous boundary camdifia previous gradient estimaté 1]) for
solutions of nonlinear parabolic systems. by the authoms.th@ other hand, we shall obtain here some
L'-estimates on the norm of the own vector solution and to giveesapplication to the decay of to this
norm, as: — +oo.

To be more precise, we consider the following boundary viatablem for quasilinear parabolic systems
of the type

w = (A(t,z,u)uy), + B(t, z,u,u,) + £(¢, x), 1)

on@ = Q x (0,T) whereQ2 = (0,7). We add an initial condition
u(0,x) = up(z), x € Q, (2)
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and some boundary conditions, which, in order to fix ideasasgime, for instance,
u,(¢,0) =0, u(tl)=h, 0<t<T. (3)

Hereu = (us,...,u,) is the unknown vector valued function ahd= (h4,...,h,) is, for instance, a
given constant vector. To simplify the exposition, we assthat the matrixA is diagonalA = (A;;) but
that it may depend on all the componentsiadind thus coupling the different scalar equations. We assume
that the vector§ andu are given and satisfy some suitable regularity conditions.

As in ([11]), we shall pay a special attention to the case of degensyatems: i.e. to the case in which
the corresponding matriA is semidefinite positive and in fact vanishes at certaincatfitvalues of the
sought vector solution,.,, i.e. A(t, z, u.-) = 0. This contrast with theniformly paraboliccase in which
the matrixA is definite positive (and that some times is denotegslar case).

Systems the same a$) (frequently appear in many different contexts arising ioldygy, chemistry
or filtration problems. Our particular motivation correspls to the case in which syster) ([describes
the discharge of a laminar hot gas in a stagnant colder atmospf the same gas under assumptions the
boundary layer approximation (se8+4[9], [29-[39]). In that case: = 2, u; is the gas temperature, ang
is the horizontal component of the velocity. The existenwtuiqueness of weak solutions for this spacial
case were proved irl] 6, 7] under suitable conditions on the data (which guarantemgtpositiveness of
the matrixA on the considered vector solution).

We shall not discuss here any question related with theemdstand regularity of solutions of boundary
initial problems for systeml{j under the structural conditions on the coefficients whidh ve indicated
in the next section. By the contrary, we shall always assuratthe considered problem has a solution,
regular enoughWe recall that some existence and uniqueness resultsdamifiormly parabolic case can
be find, for instance, inJ6, 27] and [2] where the reader can find a long list of references undersbential
condition thatA is a positive definite matrix.

The degeneration of the matrix (A(u.-) = 0 at certain critical values., of the sought vector
solution) causes the necessity to understand the solutianneaker form as well as sevetatalization
propertiesof solutions such as tHaite speed of propagationthe waiting time effecetc. (see, e.g1p)]).

This creates some significant difficulties in order to get s@xistence and uniqueness results on weaker
classes of solutions. Nevertheless, many results are ktwthis respect (see, for instance, the treatment of
systems of degenerate equations madé]in YWe point out, that, as in the scalar case, most of the times
weak solutions of degenerate systertsare found by means of passing to the limit on classical snist

of suitable uniformly parabolic auxiliary systems obtalisy some approximation arguments. In this way,
some regularity properties of the weak solutions are obthiny proving it first for the approximate systems
and then by passing to the limit. That was also the philosgpbgosed already by E. HopfJ] in 1950 to
study the Burgers equation by passing to the limityas 0 on the solutions ofi; + uu, = .

As mentioned, we shall obtain herela(2) estimate on the (spatial) gradiemt which is, in some
sense “uniform” since it will not depend on the matAx(nor on the vectoB). In fact, our main result (see

Theorem3) if firstly obtained for a component; (for somei = 1, .. ., n) of vector solutionu and shows
that, under suitable conditions on the associated compoifigme data, we get the estimate
! ! t pl
/ (i (1, 2)] Az < / i (£, 0] dar + // \fia (72| dz dr, @)
0 0 0J0

foranyt € (0, T]. Obviously, if the conditions holds for ariy= 1, .. ., n then we conclude that

||U-m||L°o(0,T: L1(Q)) < HuOﬂC”Ll(Q) + ||fz||L1(0,T: L1(Q)) >

but notice that this property does not imp4).(

This estimate remains true for other boundary conditiorfse @xtension to higher dimensions and to
other quasilinear equations including the case of diffusiaith nonlinear terms on the gradient, under
suitable conditions on the coefficients, will be the objecaseparate work by the authors.(]). We
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Gradient estimates for parabolic systems

prove that this property implies a compactness criteriaafeequence of solutions leading to the limit (in a
suitable weak topology) satisfies, at least that

TV (uilt, ) < TV (uoi(.)) + / TV(fi(r,.) dr, (5)

whereTV(¢(t, -)) means the total variation of the Radon measur€, -). This kind of arguments can be
used, for instance, to show th&) ©r (4) remains true for the case of the Cauchy problem associat@dl t
(i.e. when the spatial domain is (—oo, +00)). We also present here an application to the study of some
stationary systems associated 1p(for instance by applying the implicit Euler scheme 1) (

The main idea to prove estimatd)(consists in multiplying the-equation by— %;9) where
o(r,0) — signy(r) asé — 0, and to show that other contributions different to the onésirey in (4)
converge to zero whefh — 0 under suitable conditions on the coefficients. It should b&ad that the
trick of using a sequence of test functions converging tosiga functions has been very familiar in the
realm of elliptic, parabolic and first order hyperbolic etioas for several decades in order to prove simpler
estimates of the type that we shall get for systems in the 8egtion) (see, for instance2q] and [13]).
Nevertheless, as far as we know, the use of such test fursgems to be new in the literature. Although a
formal integration by parts links our method with the on@atty used in the literature consisting of differ-
entiating the equation and applyitid -techniques tau;, (see, for instancelP] and [35]), our method has
several advantages: it needs less regularity on the ceeiffgcof the diffusion operator, it applies to Dirich-
let boundary conditions (avowing some complicated argumen the value of the second order operator
on the boundary) and it does not involve any constant in tte éistimate 4).

We send the reader t6.]] for some comments on this property and the study of somet exdations
of the scalar case (as, for instance, the so-cabBedenblatt solution®f the porous media equation), and
for some illustrative applications of these results to sspexial problems as it the case of the discharge of
a hot gas mentioned before, the case of one dimensional tasepfitration described by the degenerate
parabolic equation; — (a(s)s.). = V(¢)b(s)., and the (possibly degenerate) aplacian type equation
us — (P(uy)), = f whered is a continuous increasing real function. The reader carefiswlin [L1] some
applications to some first order Hamilton-Jacobi type syste + C(u, u,) = f(¢,z), z € R (including
some conservation laws).

A second goal of this paper is to show that an analogous uniéstimate (but simpler) holds for the
vector solutiona: of system (). More precisely, we shall prove that

1 1 t ol
/ |ui(t,x)—hi|dx§/ |ui(0,:17)—hi|dar—|—/ / |fildads, i1=1,...,n. (6)
0 0 o Jo

In contrast with the above gradient estimates, some previesults on it (by other authors) can be found
in the literature although not exactly under our generaifdation (see, e.g.2p, 28]) and mostly only
concerning the case of scalar equations. Moreover, we shall that this estimate can be very useful to
get someauniformasymptotic convergence, is~ +oo, of u(t, x) to the stationary solution = h, i.e. with

a convergence rate which is independent.on

2 Structural assumptions and main results
In this section we deal with (regular enough) solutions efgiistem

w = (A(t,z,w)uy), + Bt 2, u,us) + £(2, 2), (7)
on@ = Q x (0,7) whereQ2 = (0,) with the auxiliary conditions

u,(t,0) =0, u(t,l)=h, t e (0,7), (8)
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u(va) - UO(CC), T € Qa (9)
whereu = (uq,...,u,) is the unknown vector valued functioh, = (hy,...,h,) is a constant given
vector. On the data we assume at least that

feL'(Q) and ug € L'(Q). (10)

Note that our formulation is slightly different than the omeesented inJ1]: here the coefficients may
depend ort and/orz andh is not necessarily zero, among other details.
We assume that

(Ha) |52 (t, ,u)| < C < o, i,k=1,...,nforany(t,z,u) € [0,T] x Q x R",
A ) n
]65‘;(,, HL2 (omxe < O < i=1,...,nforanyu e R".
(11)
Notice that oA OA
(A(t,l’, u)um)z = Auz;ﬂ + (%um> Uy + a_xuwa
and thus, vectorial equatioi)(can be rewritten as a system of scalar equations
Uit = uuzzz Z Ujg + aax Ujg + B’L + fia 1= 1a RN (12)

k=
In most of the cases we shall assume that= (A;;) is diagonalA = (A4;;) and thatA is a semi-definite
positive matrix, i.e. such that

—

aol€]* < (A(t,z,p)E. &) =ZAus < a ¢ < o0, (13)

forany(¢,p) € R2", (t,z) € Q and for somé < ay < a;. We recall that the cage < a, corresponds to
uniformly parabolic systems and tHat= a, arises for degenerate systems.

Since the proof of our main estimaté) (will be obtained firstly for a single component (for some
1 =1,...,n)ofthe vector solutiom we shall assume that the main coupling among the equatidhs sys-
tem comes from the diffusion terms and that, by the conttheyyectorial lower order terB (¢, x, u, u,,)
is, in some sense, weakly coupled. The concrete structssahaptions oB (¢, =, u, u, ) we shall assume
start by the decomposition in a purely absorption part anahaective part

B(t,z,u,u,;) = B*(t,z,u) + B(t,x,u, u,).
On the components of the absorption parBoive shall assume that
B (t,x,r)sign(r; — h;) <0, forany(¢,z) € @ andr € R", (14)
or/and

Bi(t,x,r) = B (t, 1), Bl(t,h;) =0,Bf € C*  and

Ba(t,r; 15
w <0, foranyt € (0,7) and anyr; € R. 13)
T

On the components of the convective parBoive shall assume that
|BS (t, x,u,p)| < Bo(t,x)|pi|" for somey; > 1/2 and some, € L*(Q),

for any(t, ) € Q and any(u, p) € R?".

(16)

or
aC(u)

Bf(t,z,u,u,) = —a—uw
u

Ce CQ, C(U.) = (Cl (ul), CQ(UQ), ey Cn(un)) (17)
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2.1 L!- estimate: uniform asymptotic behavior (as t — +o0) with respect
to [, when ay > 0.

Our first result shows an uniforb! estimate on the own vectorial solution

Theorem 1 Assume that there exists a compongng {1,...,n} for which(14) and B =0 hold. Let
u = (u1,...,u,) be aweak solution of the problefM)—(9). Then, for any € [0, 7] we have the estimate

l l t l
/ iy (£, ) — hig | da < / htio (0,2) — iy | dae + / / fio] dads. (18)
0 0 0 0

Remark 1 We recall that in the scalar case = 1), and whem,; = 0, the LP-estimate

1 1 t 1 1
/0|u(t,a:)|pdx§/0|u(0,x)|pdx—|—/0 (/O|f(7’,:17)|pd:c) dr, (29)

are well known for any, 1 < p < oo (see, for instancg5], [13] and[14]).

PROOF OFTHEOREM1. We denotg, simply byi. For fixedd > 0, we introduce the real function

ui—hi

u;,0) = ) 20
O 0) = et (20)
Theng' (u;, 0) = —_0® > 0andwe have that
(024(u;—hi)?)2
d(u;, 0) — sign(u; — hy). (21)
Moreover, if we define
i s—h;
F(u;,0
(ui,0) = N EaeEmy

thenF'(u;,0) — |u; — h;|, whend — 0. Now, by multiplying equat|on](2) by ¢(u;,8) (which is a good
test function), by well known results (see, e.g. LioAg]] we get that

/Fult:c da:—i—// Aid (u;, 0 u dxds—i—// Bl p(u;,0)dxds
/FuZO:v )d:v—l—// fio(u;,0) dxds.

Thanks toA;;¢’ > 0 and assumptiond.4), (10) we can pass to the limit, #&— 0, we come to the desired
estimate{8). N

(22)

Let us use estimatel®) to study the asymptotic convergence of the vectorial smiuti(¢, ) to a
stationary solutionu(¢, ) = h whent — oo (uniformly on! € (0, oc]) under assumption, > 0. We
introduce theenergyfunction

= (/Ol|u(t,x) - h|2d:v)%. (23)

Theorem 2 Assumei, > 0 and that, foranyi = 1, ..., n (14 and Bf = 0 hold. Letu = (uy,...,u,)
be a weak solution of the problef®—(9). Letu, € L2(Q) with

/l|u0(x) —h|dx < Uy (24)
0
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for somel, > 0. Then, iff = 0, the solutionu(t, =) satisfies the decay estimate

wwségé%g@ (25)

and, in particularY (t) — 0, ast — oo. Moreover, iff # 0 and it satisfie € L?(Q) for anyT > 0 with

IECE )y < fo (1+6)7F, (26)

for somef, > 0 then there exists a constaht (fo, Y (0), ag, n, Uy), and thus independent dnsuch that

-

Y(t)<K(1+t) 1—0, ast— . 27)

PROOF  First we note that the solution(t, ) satisfies the energy relation

l
2dt/ lu(t, x) h|2d:c+/0 (Auz,uz)dx—/o(f u(t,z) — h)dz. (28)

Next we use the known interpolation inequalify?] Appendix, Lemma 3.2],

(/ lu(t, z) h|2dx> < 4Cy(n (/ lu(t, x) h|dx> </l|ugg|2dgc>7 (29)
0

Co(n) = 9n®/16. Then taking into accountg), we can rewrite last inequality in the form

YO(t) < 4C,U </Ol|um|2d:v> (30)

Using @3), (28) and applying Cauchy’s inequality to the right side 28), we arrive to the ordinary differ-
ential inequality

dY(t)
Y(t)——= (t,z),u(t dx. 31
O 4 v < [0 ue.0) ) (31)
Assume now thaf = 0. Integrating the last inequality, we obtain that
4/
Y(t) < Y < L VGl — 0, ast — oo. (32)

o Vi ao
\/1+tCOU4Y (0)

Assume now thaf # 0. By applying Cauchy’s inequality we get the estimate

l
/O [(E(t, ), u(t,z) —h)|de < [[f(Z, )|, Y (1) (33)

Then condition 26) leads to the following nonhomogeneous ordinary diffeedimequality

dY(f) an

_ "V 5 < ) < 7%.
a T 4COU51Y ) < [I£(t, )y < fo (1 +1¢) (34)

It is easy to verify that there is some constﬁﬁ(fo, Y (0), ap, Co, Ual) such that the function

1

W(t)=K(1+t) 1 (35)
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satisfies that?’(0) > Y (0) and that

5

W) WA > fo (L) E

dt 4C’0U4

Then, by the comparison principle for ordinary differehéiguations we get to
Y(t) < Wi(t) (36)

and the result is proved. B

Remark 2 Notice that the above result shows that,z) — h in C°([0,00); L?(0,1)) ast — oo,
uniformly with respect td. We also point out that there is a “regularizing effect” santhe coefficient
Uy only takes into account the!-integral although the conclusion is stated in terms of ifeintegral.

Remark 3 We send the reader to the book Chipat] for a collection of results concerning the case
I — +o0. For very general convergence results for systems of pdi@bquations see, for instancg(]
and their references.

2.2 A L'-gradient estimate: the possibly degenerate system

The other goal of this paper is to derivd.a-gradient universal estimate (i.e., which doesn’'t depanthe
constants, ag, C nor on By;(x,t)) generalizing the previous result aff]. In fact, we shall give a direct
proof of it without splitting it in a series of lemmas (as prated in [L1]).

Theorem 3 Assumé10), (11), (13). Assume that there exists a compongnt {1,...,n} for which
fio € L0, T : WHY(Q)), fi,(t,1) =0 fort e (0,7) andug;,, € WH1(Q). (37)

and that(15) and (16) or (17) hold. Letu = (uq, ..., u,) be a classical solution of proble(®)—(9). Then

l l t pl
[t o)lde < [ua@lde+ [ [ Ifiatro)dedr (38)
0 0 0J0

PrROOF We denoté, simply byi. For fixedd > 0 we introduce the functions

foranyt € [0, 7.

r

0) = ——, 39
01, 0) = ——s (39)
N Ry et
so that
o(r,0) — signr, F(r,0) — |r|, if 6 — 0. (42)
Notice that )
do _ = 7 . and that 09(uiz,0) _ _ O tiza -
dr (62 +r2)3 Ox (92 +u2)2
Multiplying i-th equation 12) by M and integrating oveR, we get
1 !
/ F(um(t, ,T), 9) doe+ I = / F(um(O,x), 6‘) de + Ir + I3 + 14, (42)
0 0
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where
2
Iy := // o ulm dIdT
(6% + u2,
92 2
L= // _ Yigw dxd7'>a0
92+u
0Ay 0 Uiz
I ::—// ulmumui3 dxdT,
0Jo Ouk (02 +uf,)>
t pl B 2, .
I3 ::—// 8A”uix 0 iz —dzdrT.
0Jo Oz (02 +ui,):
t ol _
n ::—// fiwdxdr
c ulLIJLE
I := // B; o %dl'dT.
Is = / / 3“7"”’9) dzdr
ox

Here we used the formulas

l 1

0 imae =

/Uitﬂui)dx:_/ Wint P iz, 0) A + wind(uiy, 0)| 24
0 Ox 0

l
__ / Usar(tin, 0) da (43)
0

l Uiz
= —— 0,s)ds|d
o/ UO 6(0.5) s] .
d 7
_E/o F(uiy,0)dax

(notice that, under the assumed regularity(t,l) = 0 for anyt € (0, 7)),

2(
/ A, 200z, 0) “”’ ) iy dar — / A”(’“i“”g da, (44)
(02 +u?)?
and l
) . .02,
8A“ Uz Uig 8¢(—Ulz, 0) dxr = / 8A“ Ukzuzx9 Ulﬁz dz (45)
o Ouyg ox o Oug (02 +u2)2

Using the Cauchy’s inequality we can estimate the tekms= 2, 3, 4 in (42) as follows:
ag 2 (Wizz) 2 30C? (& ’ 0 u?
CEVUAE 07+ u)? | dag (Z'”'> @ ra)i @) |
1 302 [t ’
< glo—l—t?m// <Z|um|> dzdr,

1 aA” 0 u?,
(62 +u2)? (0% + u?,)

|| dzdr

4&0
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8A“ 3C(T,1)

4a0 ’

t pl t pl
/ Fiob(usn, 0)| dadr < / / ool derdr,
0J0 0J0

1
—10 dedr < 3Ty +6

4@0

/fiL Wiz )dxdT
0Jo aZC

Moreover if (L6) holds then

14| =

BC “W s dadr <// Oluias] _ OBojuial™ 4, o
(02 + (62 +u2,)t (62 +u2)i
92 2 3 92 i 27i 362vi—1 t l
// 2_7%ee 4 O pgo 2 O uial ™ N gy < Ly // B2dxdr.
(02 4+u2,)z  4ao (92+u )2 3 dao  Jo Jo
In the case in which1(7) holds
. // AC; ity __92// dc; ' NV awar
du; (62 +u2)? du; Oz; \ (02 +u?2,)2
x=l
// s N\qgar- 9%t ||
d?u; 92 +u2)2 du; (02 +u?))> o

Finally applying the formula of the integration by parts arsihg (L5), we have

le = /t/l ) e dzdr <0
Lo or; (02 +ui,) N

Joining @2) and the above estimates, we arrive to the inequality

5] =

l l t pl
/OF(um(t,:c),H)d:cg/o F(uom(x),t?)d:r—i-/o/o | fiz| dadT

2 (46)
3¢2 [ [ (& C(T,1) 3021t

(if (16) holds) or

/Fumtx dx</ F(ugiz(z dx—i—/ / | fiz| dadT
(i )

x=l
/ / Ui dexdr — dC; ;1 .
d?ui \ (02 +u2) du; (02 +u?,))? o

(if (17) holds). Passing to the limit #s— 0, we get the desired estimate.l

=

209



S. Antontsev and J. I. Diaz

Remark 4 Let us consider more in detail the case= 1/2,in the conditiong16), (57). In that case we
can evaluatds in the following way

92 2
|I5) < = // Ay——HEE @ Yize da:dT—i— // 0 dxdr.
+uZ,

Then, if additionally, we assume the subordination betweensA; and By;: i.e.

BjiA; € LNQ) (48)

arguing as in the Proof of TheoreBwe arrive to a slightly different estimate 88): more precisely, we

get
! ! t ol ¢l g2
/ tia ()| d < / htia (, 0)] d + / / fiola, )] dz + Ay / / O drdr,  (49)
0 0 0Jo oJo Aii

foranyt € [0,T], where\; = 0if v; > 1/2,and\; = 3/4if v; = 1/2.

Remark 5 The statement of the above theorem remains valid if we reglacndary conditioné8) and
assumption(37) by one of the following alternative boundary conditionsdaiternative assumptions):
either

Uigz (£,1) = Ui (t,0) = 0, 0<t<T, (50)
and we assume merely
fio € L0, T:WhHQ))  and  wugi, € WHH(Q), (51)
or
Uy, (t, l) = Ujy, (t, 0) =0, 0<t<T, (52)
and we assume
fio € LYO,T: Wy ' (Q))  and  ugi, € WHHQ). (53)

Notice that in this last case Theoredmemains true if;, = 0 and we assum@l?) insteadB; = 0. Many
combined possibilities can be considered: for instancecareassume that for a subset of the components
the boundary condition@) hold but that there are other subsets of the components fahw(&0) or (52)

are prescribed.

One of the most important consequences of the above unifdrgradient estimate is the following
one:

Theorem 4 Let{u,,}..cn be a sequence of classical solutiong@f—(9) corresponding to the data

£, € LY0,T: WHY(Q)),f,.(t,1)=0  fort € (0,T)andug,, € W"(Q) (54)

l t pl
/|u0iz($)|d$+//|fim(Ta$)|d~TdT§C
0 0J0

for someC independent omn, for anyi = 1, ..., n andt € [0,7]. Assume also that,,, € L?(0,T :
L% (2)); W, Wz € L0, 7T : L1()) and that for such solutions the following conditions

such that

—

0 < aom < (A(t, 2, u)E, &) < a1m < oo, v e R™, (55)

A\’ n 04 \>
8uk 8:c

A7l <O < o0, (56)
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(15 and
(BS)® A;' < B Juiw|?, 0< BS, € L*(Q), ~i>1/2, i=1,...,n, (57)

or (17) are valid for anyi = 1, ..., n. Then estimat€38) holds for anyu,,, m € N. In particular,
there exists a subsequence{af,, },,n Which converges to a functiom of L>°(0,7 : BV(Q)) in the
weak*-topology and

TV(u(t, ) < TV(uo(-)) + /0 TV(E(r, ) dr, (58)

whereTV (¢(t, -)) means the total variation of the Radon measpyét, -), i.e.

l
TV (p(t,-)) = sup {/0 o(t,x)pz(z)da : ¢ € C5°(0,1), |p(x)] < 1forz e (O,l)}.

ProoE Clearly, assumption$g), (56) and 66) imply (10), (11, (13) and (6). Then, we can apply
Theorenm3 and, in particular, we get that

1
/ [tmix(t, )| da < C (59)
0

foranyi =1,...,n andt € [0, T]. SinceL>(0,T : BV(Q)) is the dual of a separable space (see, &9. [
p. 299]) we can apply Banach-Alaoglu-Bourbaki compacttiessrem (see, e.glf]). W

Remark 6 In many cases, by using some supplementary assumptionsgurdents it can be shown that,
in fact, the limit functionra € L*(0,7 : BV(Q)) is more regular andx € L} (0,7 : W11(Q)) (see,

loc

for instance,[1] for some systems arjd”] for some scalar equations, but many other references in the
literature contains other proofs of the strong convergeatthe gradients). In that case conclusi(s8))
can be replaced by the stronger one

! 1 t el
/ |u, (t, z)|da < / |u01(x)|d:c+// |f. (7, 2)| dedT.
0 0 00

We shall end this section by giving an application to the adghe associated stationary system
Au = (A(z,u)ug), + B(z, u, u,) + f(x), (60)
on () = (0, ) with the auxiliary conditions
u,(0) =0, u(l) = h, (61)

whereu = (uq,...,u,)andh = (hq, ..., h,) is a constant given vector. Note that this stationary system
associated tall), for instance, by applying the implicit Euler schemely) (vhen developing the semigroup
theory to the evolution problem (see, e.§3, [ 18] and [L4]).

Theorem 5 Assumég10), (11), (13) but for the stationary case and for a givan> 0. Assume that there
exists a componen§ € {1,...,n} for which

fio €WHHQ)  fio(1)=0, (62)

and that(15) and (16) or (17) hold. Letu = (u4,...,u,) be a classical solution of problef60)—61).
Then

l 1 l
[ @z < 5 [ stz (63
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PrRoOOFE It is similar to the one of Theorer® but replacing the “weak time dependence integration by
parts formula” (see also Lemma 3.1 of {])) by its (even easier) stationary version

l _ l
/ u, 20, 0) g / Ui (ttin, 0) dz + (g, 0)7=) (64)
0 Oz 0

which holds by a direct integration by parts (recall thafaict, w;¢(w;., 9)|Zé = 0 thanks to the boundary
conditions 61)). Then, it suffices to pass to the limit, &s— 0, and to use that W

Remark 7 Estimatg(63) can be understood as the gradient estimate similar to thainét in[16] for the
L'-norm of the solution of semilinear stationary scalar eqoas.
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