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Stabilization beyond the distributions

J. |I. Diaz and E. Sanchez Palencia

Abstract.  We prove that for suitable evolution problems, the solutigh) corresponding to some
right hand side terny(¢) in V' (with VV some Hilbert space), only satisfies the stabilization priype
(f(t) = fs in V' implies thatu(t) — ueo, in V, whent — +o0, with us solution of the associated
stationary problem) when the spakteis taken strictly larger than the distribution space. Thijzetof
problems arise, for instance, in the study of sajuesi-stationary viscoelastic shell-like problemghe
presence of friction effects.

Estabilizaci 6n m as all & de las distribuciones

Resumen. Probamos que en ciertos problemas de evolucion, la soludifrespondiente a adecuados
terminos del lado derechf(t) en V'’ (con V cierto espacio de Hilbert), solo satisface la propiedad de
estabilizacion f(t) — foo enV’ implica queu(t) — uoo, €nV, cuandat — o0, cONu solucion del
problema estacionario asociado) cuando el espaa@s tomado estrictamente mas grande que el espacio
de distribuciones. Este tipo de situaciones aparecen,jpmpto, en el estudio de ciertas formulaciones
del estilo de los problemas de estructuras finas viscoedaston friccion.

1 Introduction

The fundamental role of Distribution Theory, offering thaect framework in which most of the models
of the Mathematical-Physics must be formulated is wellnan our days (L1, 5, 8, 7]). Nevertheless,
there is a large amount of singular problems, (arising inyntiffierent contexts as, e.g. in thin shell theory)
which lead to formulations beyond the distributions.

The main goal of this article is to present some results shgwat, even in this case, it is possible to
show the stabilization, asgoes to infinity, in a context more general than the spacesifiblutions. In
fact, this philosophy has many common points with a seriggmpers dealing with some singular stationary
problems (see, e.g9]and [6]). Our main contribution is to replace the direct role pldyyy a parameter
(which in the above mentioned papers is assumed conveigyd) by the derivative with respect to time
when we consider suitable evolution problems and we asshat¢he time converges to infinity.

In a first part of the paper (see Sectidhwe consider an academic problem for which we can prove
directly the stabilization of solutions beyoy;

du L
&(t)JrAu:f(zﬁ) t>0,inV’,
u(0) =0,
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whereV is a Sobolev space dn, a one-dimensional compact manifold without boundary ifistance a
circle), A = S*S andS is a suitable smoothing operator, i.e. verifying td#*(I")) ¢ H"(T") for any
s, € R (in particularS(D'(T")) C C°°(I")). HereS* denotes the adjoint df.

In a second part (see Secti@nhwe consider a problem related, in some sense, to shellythate
consider a special formulation for the transient displaeetsiof a thin shell under a viscoelastic constitutive
law. Then, following the general approach by G. Duvaut, and JLions [4, Section 6, Chapter 3] and
J. Sanchez-Hubert and E. Sanchez Paleri¢ipje arrive to a formulation of the type

ot2 ot

for suitable test functions in the energy spacda certain Sobolev space) and bilinear form$, andc.
The so calledjuasi-static problem corresponds to

2
oY +c <8U,V> +a(U,v) +%b(U,v) = (f,V)

c (aa—ltl, V) +a(u,v) +%b(u,v) = (f,v) 1)

and it provides a reasonable good approximation for the ptytin time since it was shown in] that
(under suitable conditions: see Corollary 6.1, Chapteh t

lu(t,-) —U(t, )|, < Ce and
ou 0U

vt _ 2 .

e <_8t _at) € L*(0, 400 : V),

for someC, v > 0.
The main goal of this work is to analyze the stabilizationa@itions of (L), ast — +o0, to the solutions
u$, of the stationary problem
a(us,,v) +e?b(us,,v) = (fro, v). (2)
Moreover, as it can be shown (following the ideas introduceithe papersq] and [6]) the solutionsu’
of (2) converge, whem — 0 (in a functional space which is not included in the distribos spac&’), to
a solutionu, of
a(Uso,v) = (foo, V). (3)
So that the double limit, as — +oc ande — 0 leads the solutions oflf to the solutions of3) in a
functional space beyori’.
We shall prove thatl) can be reformulated, in operator terms, as

dt

dCu 9 - . ,
(QSP){ (1) + Au(t) + e2Bu(t) = f(£), inV
CU(O) = CU()

where the operatord, B, C of L(V, V') are given by

(Au,v) = alu,v) Yu,v €V,
(Bu,v) = b(u,v) Yu,v €V,
(Cu,v) = c(u,v) Yu,v € V.

Which seems to be more extraordinary is that, in fact, theigstatic problem is well posed even fo= 0
and that the stabilization, as— +oo, holds on the spacg, (see P]) defined as the completion &f with
a norm defined byl (and so, such thai., ¢ D’ if, for instancef., € V' — C*).

As a matter of fact, we shall not work directly with the diggaentar since it can be shown that the
singular perturbation problem can be reduced to a formaratn its trace on a part of the boundarghere
assumed as a one-dimensional compact manifold withoutdsoypn The bilinear forms, b, ¢ and the
energy spac® must be also adapted to this trace formulation. We shalllriis, in Section3, following
the ideas of §].
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2 A special sensitive evolution problem
In this Section, for the sake of simplicity in the expositiove shall assume thdt = S' = T, the unit

circle. So that, we can assume that any function definél isr2r-periodic inz.
The sequence of functior§™ can be used to describe any functiom L?(T) (and its Fourier series)

—+oo
U= E VWi,
—o00

with )
U)k(IC) _ meikw
As, wy, is an orthonormal basis ih?(T), we have
+oo
ve LX(T) iff Jull7.= Y |okl* < oo
k=—oc0

Differentiating with respect te amounts to multiply anyy, by ik, so the following equivalence holds

+oo
ve H(T) it [ollfn = > |ul*(1+4%) < o0,

k=—o0

and by duality

“+o00 2
ve  H YT iff [ — [v] < 00
( ) H HH k;oo (1 —l—kj2)

Form > 1, m € N we can use (over the spaég™(T)) the norm (equivalent to the one obtained from
the conditionu € H™(T) iff u, € H™ ("))

+oo

ol = D Joul® (14 5°7)
k=—o0
and so, by duality
ol = 3 i
H-m e (1 + ka)'

Moreover, by interpolation the above equivalence can bengldd to anyn € R.
We can define
H>(T) = () H?(T)
peN
and we have that, for a general maniféld

D(T) Cc H(T) c C°(T).

So, by duality
H~°°(T) := (H*(T)) c D'(T).

Notice that, in our case, sin@gis boundedD(T) = H>°(T) = C*°(T).
We consider now a lineamoothing operatqrS: D’'(T) — D(T). For instance we can define

R RS ||
S< Z Ukwk> = Z Ve~ 2 Wy. (4)

k=—o0 k=—c
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Then we get tha(H*(T)) c H"(T)) foranys,r € R™ (in particularS(D’'(T)) c C>°(T)).
More generally, we can take @&any (linear) smoothing operator, i.8(H*(T)) c H"(T), for any
s, 7 € RT.We assume tha is injective
veV, Sv=0= v=0.

We then define oY the hermitian form
alu,v) :/Suﬂdx
T

and the operatad, of £L(V, V') given by
(Au,v) = a(u,v) Yu,v e V.

Notice thatA4 can be written in the form
A=8*S,

where we understand th&tand its adjointS* are considered as
SeL(H™ HY), S*e L(HY, H™™).
for some fixed (but arbitraryy € RY.
Lemma 1l The operatotd € L(V, V") is injective.
PROOF Letv € V be such thatlv = 0. Then
0 = (Av,v) = a(v,v) = ||Sv||2,
and from the injectivity ofS we obtainv = 0. B

Now, we follow an idea already adopted if],[ which will play an important role also in the next
Section. The previous lemma allows to define the followingmo

[vlly, = l[Avlly,

and we denote by, to the completion o¥” with [ - [, . By Lemma 2.3 and Lemma 2.4 di][we have
that the range off, R(A), is dense i/’ and that the operatot extends as an isomorphism frdf onto
V' (which we denote again a$). In particular, for anyF' € V'’ there exists a unique solutiane V4 of
Au = F.

We pass now to the consideration of the evolution problem

du
- Au =
€p)) @ (t)+ Au= foo t>0,
u(0) =0,
where
foo € H,
i.e. we know that
+oo ) +oo
foo = Zbke”” with Z |bk|2 < 0.
—o00 k=—o0
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—+oo

If we assume that(t, z) = > u(t)wy, satisfieEP)then we get
—o0o
du
(EPY) d—tk(t) +eFlug(t) =b, t>0,
k

UL (0) =0

and so,
ug(t) = byel¥! (1 - e_eiwt) .

It is not difficult to show that the function

x) = Jiobke‘kl (1 — e*e_wt) wy ()

is such that ¢ L (0, +00: H*m(’ﬂ‘)) (for some arbitrarily fixedn) since

s e (1 oY’
2
||U(t, ')HHfm = Z (1 + kQ’m)

is unbounded as — +oc. This implies that there is no reasonable hope to pass tarttieih 7~ (T)
ast — +oo. To follow a different approach, we introduce the sp&teas the completion of/ with
[vlly, = [[Av][y, for A= S*S. Then, the norm of the spaé& is given by

loll}, = Z o2 oy 2

k=—oc0

so that

= e 4142 2

) o
T, = D2 el (1= ™) < foclo

—00

Moreover
5‘u t, ) ou(t,-) 2

— 0 ast — .

ST

Then (at least)u(t, ) — too, weakly inVy4, ast — +oo, for someu,, € V4. As a matter of fact, if we
write the (unique) solutiom., of the stationary limit problem

(SP) Auss = fso

o L

as
+oo
Uoo = Z Uoo, kW
—o0

we get that
At = foo Iff Ui = brelFl

and we see that o,
ug(t) = brel*! (1 —e ¢ t) — Uso k
ast — +oo. Since
2 2
[, )y, — luslly,
we get thatu(t, -) — ue, Strongly inVy, ast — +oc.

Remark 1 This shows that, in fact, even if (for simplicityjt) = fo € H™(T) — C*°(T), for some
arbitrarily fixed m, the associate solution ¢8P) u.., is not a distribution ¢, ¢ D’(T)).
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3 Onsome quasi-static like-shell problems

We consider now a problem related to the evolution formaretor a thin shell with a viscoelastic constitu-
tive law. Then, according G. Duvaut, and J. L. Liod$ (Section 6, Chapter 3) and J. Sanchez-Hubert and
E. Sanchez Palencia(]] we arrive to a formulation of the type

0*U ou 9
Z - = —(f
52 +c( 5 ,v) +a(U,v) +e7b(U,v) = (f,v),
for suitable test functions in the energy spaceand suitable bilinear forms, b, andc. The so called
guasi-static problem corresponds to
ou 9
cl gV +a(u,v) +e“b(u,v) = (f,v)
and, as mentioned at the Introduction, it provides a reddengood approximation for the asymptotic
behavior ofU whent — +o0.
Motivated by the arguments mentioned in Sec2and the shell type formulation taken in(] and [6],
a “trace general formulation” can be obtained by startindpwi(x, D) andq(z, D), be two elliptic pseudo

differential operators of orden € R™ with real symbols(z, £) andg(z, &) continuous and coercive on
V = H™(T), i.e. satisfying

clloll, < llpe, Dyolly < Cloll,, Vo eV,
clloll,, < la(z, Dyvlly < Clloll,, Vv eV,

m —

(5)

with ¢, C > 0. Let S be a (linear) smoothing operator, i®(H*(I")) ¢ H"(T')) for anys, r € R™, where
now I is a given one-dimensional compact manifold without boundé/e assume thé is injective

veV Sv=0=v=0.

We then define oy’ the Hermitian forms
a(u,v) = ASu%dm,
b(u,v) :/Fp(x,D)up(TD)vdm,
c(u,v) = /Fq(x,D)u q(z, D)vdz.

We naotice that here we are neglecting the oscillation telisirey when taking into account the membrane
effects. We start with an abstract formulation: giver 0, uo € V andf € H'(0,T : V') foranyT > 0,
findu € L2(0,7 : V) with &% € L(0, T : V') such that for any € V

iC’LL v alu v 52 u v) = [
(QSP){SEO§ 1)+l + )0 = 100

where the bracket denotes the duality betw&&rand V' (it may depend on the small parameter 0).
In order to show that the problem is well posed we shall neaddke some additional assumptions (see
Showalter [LZ] for other alternatives). It is useful to reformuld@SP)in terms of operators

dCu o
(QSP){ )+ Ault) + e Bult) = £(), inV",
Cu(0) = Cuo,
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where the operatord, B, C of L(V, V') are given by

(Au,v) = a(u,v) Yu,v €V,

(Bu,v) = b(u,v) Yu,v €V,

(Cu,v) = c(u,v) Yu,v € V.
Notice that they can be written in the form

A=S5"S, B=pp and C =q'q,
where we understand th&tand its adjointS* are considered as
SeLH™ HY), S*e L(HY, H™™).

As in the previous section, the operatbe L(V, V') is injective, the operatot extends to an isomorphism
from V4 onto V' (which we denote again a$), and, in particular, for any” € V' there exists a unique
solutionu € V4 of Au = F.

From the assumptions afiz, D) we deduce, from Lax-Milgram’s Lemma, that operafbadmits an
inverseC~—! € L£(V’,V) and so, by introducing := Cu we can reformulate problef®SP)as to find
w € C([0,+00) : V') solution of the Cauchy problem

dw
R e AC-1 2po-1 _ S
Q8P { @ (t) + AC  w(t) + e2BC1w(t) = f(t), inV’,
w(0) = wo,
with wg = Cug.
Lemma 2 Assume that
q(z, D) commutes witty andp(zx, D), (6)
Su = Su, p(z,D)u=p(x,D)u and q(z,D)u = q(x, D)u foranyV. @)

Then, for any > 0 the operatord € L(V', V') defined asdw = AC~'w + ¢2BC~tw, for anyw € V’,
is a maximal monotone operator &ff. Moreover,A is self-adjoint and4 = 0, the subdifferential of the
convex lower semi-continuous function

1 2
o(w) = 3 HAI/QwH foranyw € V.

PrROOF  We first notice thatd is (single valued) defined in the whole Hilbert spa€e The monotonicity
of A comes from the fact that, denoting [y, -)) the scalar product i’ and ifw := Cu = ¢*qu,

(Aw, w)) = (S*Su+ *p*pu, ¢*qu) = (¢Su, gSu) yo + € (qpu, qpu) o > 0.

Moreover.A is a maximal monotone operator since, for d@lye V’ and\ > 0, there exists a (unique)
w € V' solution of
Aw + \w = F.

Indeed, this is equivalent to solve the equation
Au+e’Bu+ \Cu = F,

which has a solution (even if = 0) via Lax-Milgram’ Lemma. Finally,4 is aselfadjointoperator since
operatorsd andC verify

(Au,v) = a(u,v) = /FSu Svdz = (Av, u),
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(Cu,v) = c(u,v) = /Fq(x,D)u q(z, D)vda = (Cv,u),

and so,
(AC™'w,v)) = ((w, (C™1)Av)) foranyv,w € V.

Analogously((BC~w,v)) = ((w, (C~*)Bv)) for anyv, w € V’. Then, by Proposition 2.5 of Brezis][
A=0p. B

Remark 2 In concrete examples, the commutativity assumgpholds when the pseudo-differential op-
eratorsp(z, D) andq(x, D) are z-independent. Nevertheless, other assumptions (diffexé¢)) implying
the monotonicity of4 are possible since we can ha(/S*Su +e%p*pu, q*qu> > 0 for some appropriate
q(z, D), S andp(x, D), not necessarily commuting between them.

Concerning the stabilization we have:

Theorem 1 Assume the conditior($) and (7) of the above Lemma. Fary, € V and,e > 0 letu €
C(]0,+o0) : V) be the (unique) solution of

dCu . ,
(QSP) F(t) + Au(t) + e2Bu(t) = f(t), inV’,

Cu(0) = Cuy.
Then:

i) if e >0andf(t) — foo € L'(0,+00 : V') for somef., € V' thenlim_.ou(t) = us in V with
U the unique solution of
Ato 4+ €2 Buioe = foo.
i) ife=0andf(t) = fo for somef,, € V’ thenH%(t)‘ = O(3) andlim;—oou(t) = ts iN Va
with us, € V4 the unique solution aflu., = fo.

v’

PrROOFE Parti) is a consequence of the application of Théoreme 3.11]ofifce, from the coercivity
assumptionsg) onp(x, D) andg(z, D), the set{w eV’ ||Al/2w||2 + ||wH2 < C} is (strongly) compact
in V. To show parti) we use that, ag(t) = f, and problen{QSP)can be written as

dw . ,
@5p 4 @ )+ ew(t) = feo, IV
w(0) = wo.

then we get thaH 4 (t)Hv' = O(1) (see Theoreme 3.10 of]). In contrast to the case > 0, the

compactness of the s%tu eV’ Hcp(w(t))||2 + ||w|\2 < C} fails and we can not apply the abstract result
implying the convergence iiv. Nevertheless some direct arguments lead to the conclusimleed, let
Use € V4 be the unique solution oflu,, = fo. Then,lim, o Au(t,) = Aus in V', which, by
construction, implies thdtm,, ...u(t,) = u IN V4. Moreover, from the uniqueness of the solution of
Aus, = foo We get that the limit takes place for ahy—> +co. B
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