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Abstract.  Pascal’s classic theorem states that: “the three intéosepbints of opposite sides of a
closed hexagonal line, inscribed in a nondegerated comgccallinear”. The following extension of
Pascal theorem to 3D is considered: “given a closed dechtipeainscribed in a nondegerated quadric,
whose opposite side-lines are secant, the five interseptiorts of opposite side-lines are coplanary”.
(A polygonal line with10 sides is considered, becausg — 1 points determine a quadric, &s— 1
points determine a conic). Obviously, in this extension Bb& Pascal theorem some vertices of the
polygonal line can not be freely chosen, but an interestiopgrty has been found: the five diagonal
lines passing through opposite vertices share a point. prbjgerty leads to a simple method to generate
the configuration. Moreover, conditions of existence of tlunfiguration are determined and the so called
complete configuration is also described in detail. As l@sg@essions appear when coordinates are used,
we have developed a package on a computer algebra systefmethatus to find and to automatically
generate this configuration.

Obtenci 6n de una extensi 6n a 3D del teorema de Pascal para cu adricas no
degeneradas y su configuraci  6n completa con la ayuda de un sistema de
computo algebraico

Resumen. El teorema clasico de Pascal afirma: “los tres puntos desiteion de lados opuestos de
una linea hexagonal cerrada, inscrita en una conica nenedegda, son colineales”. Se considera la si-
guiente extension a 3D del teorema de Pascal: “dada usediecagonal cerrada, inscrita en una cuadrica
no degenerada, cuyos lados opuestos sean secantes, @uitios de interseccion de lados opuestos
son coplanarios”. (Se considera una linea poligonaltddos, porque 0 — 1 puntos determinan una
cuadrica, del mismo modo géie- 1 puntos determinan una conica). Obviamente, en esta &xtea8D

del teorema de Pascal algunos vértices de la linea paliganpueden ser libremente elegidos, pero se
ha encontrado una propiedad interesante: las cinco |diegsnales que pasan por vértices opuestos de
la poligonal son concurrentes en un punto. Esta propiedaduce a un método sencillo para generar la
configuracion. Aun mas, se determinan las condicionesideacia de la configuracion y se describe en
detalle su configuracion completa. Como al introducir deoadas aparecen expresiones extensas, se ha
desarrollado un paquete sobre un sistema de computo algebque ayuda a determinar la configuracion
y a generarla automaticamente.
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"Mathematics is not a deductive science. When
you try to [solve a problem]. .. what you do
is trial and error, experimentation, guesswork.
You want to find out what the facts are, and
what you do is in that respect similar to what a
laboratory technician does, but it is different
in its degree of precision and information.”

Paul Halmos

1 Introduction

We have been working for some time in the extension of clagstametric theorems to 3D using computa-
tional methodsT, 8, 9, 10, 11, 12, 13, 14].

In Section 4 of 3] and, more deeply, in1[4], we had been able to extend Pappus 2D theorem classic
configurationto 3D. As this configuration can be considessalgarticular case of that of Pascal 2D theorem
(when the conic degenerates into two lines), it is naturaldiwsider as the next step the 3D extension of
Pascal 2D theorem classic configuration. Such is the goakobtesent work.

1.1 Pascal 2D classic theorem

Pascal 2D theorem classic configuration can be found in amdatd geometry textbook. Let us begin
revisiting it, trying to extract ideas about how to extenid theorem to 3D.

Given a conice (for instance, an ellipse) and a sequence of six points lgimg: A, Ao, As, Ay,
As, Ag, (all different two by two), the closed polygonal which vees are those points is considered.
Now, denoting the sides of the polygonal the following way; = AjAs, Lo = AsAs, Ly = AszAy,

L, = A4As, Ly = A5 Ag, Lg = AgAy, if each side intersects it opposite one, then those thiteesiction
points,P, = L1 N Ly, P, = Lo N L5, P3 = L3 N Lg, are collinear (see Figur®. This result is known as
Pascal (classic) theorem

Figure 1. Pascal 2D classic configuration.

As the opposite sides (segments) could not intersect¢beld be disjoint), it is advisable to substitute
the “sides” of the polygonal by “side-lines”. In case two ogite side-lines are parallel, that they intersect
at their point at infinity can be considered, and therefoiis @dvisable to consider this configuration in
the projective plane. In this space, the result can be eatettias follows:ithe opposite side-lines of a
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hexagonal closed polygonal inscribed in a conic interseatdlinear points(see Figure2). The line,p,
passing through those three points, is den®&stal line

Figure 2. Configuration with intersecting side-lines.

1.2 Determining Pascal 2D configuration

Summarizing, Pascal classic configuration involves thiefiohg elements: the conic; the six vertices of
the closed inscribed polygonaly, As, As, A4, As, Ag; the six side-lines of the polygondly, Lo, L3, Ly,
Ls, Lg; the three intersection points of opposite side-lings, P, Ps; and Pascal ling, passing through
the latter points.

The anomalous cases when two vertices are coincident or thiedPascal line passes through a vertex,
are excluded. Therefore, the six vertices of the polygorilabs supposed to be different two by two and
the Pascal line will be supposed not to pass through anyweftée polygonal.

As a conic is determined by five points in the plane, Pascakiaconfiguration is determined by five
vertices of the polygonal and by a sixth vertex on the congsjay through the other five points.

The following proposition details another way to determihe configuration, that will be useful to
extend the problem to 3D.

Proposition 1  Pascal classic configuration is also determined by cenithe four first verticesA;, A,
As, A4 of the polygonal line and Pascal line

ProOF With the notation used above, from the given elements wescanessively determind.; =
AyAg, Ly = AgAz, Ly = AzAy, PL = LiNp, Ly = A4P, As = LyNc(As # Ay), Po = Lo Np,
Ls = A5P2, A() =LsNc (A() 7é A5), Lg = A(;Al, P; = L3 np, where Only tha]Pd lies onlLg is left, but
this membership relation holds as a consequence of Pascaeth. B

Remark 1 Obviously, in the previous Propositidnthe four first vertices can be substituted by the three
first SideSLl, Lo, Ls.

1.3 The state of Pascal theorem extension to 3D

The classic theorem due to Pascal (1623-1662) has alreadyelé&ended in different ways.

Its extension to plane curves of degree greater thams initiated by Clifford B] and later developed
by C. Fox [] in different ways: 1) substituting the conic by a plane @und the hexagon by an octogon;
2) substituting the conic by a plane quartic and the hexag@mhdecagon; 3) proving that it is not possible
to extend the result to algebraic curves of degree greaderith
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Another way to extend Pascal classic 2D theorem appearg @3 of section 144b of George Salmon
treatise 5. The 3D extension consists on substituting conic by ruleddyic and the six sides of the
hexagon by two sets of three planes. If each of the planesesktkets intersects two of the planes in the
other set in lines contained in the quadric, then the inteies of those planes with the third planes in the
other set are coplanary lines. An analogous result, foligvei simpler and more intuitive way, has recently
been obtained by one of the coauthors of this artiglelf is the most modern result we know regarding the
3D extension of Pascal theorem, but it does not treat polygwstribed in a quadric, but polygons whose
side-lines are generatrices of the quadric (that is coresgtyua ruled quadric).

Another extension of Pascal 2D theorem was enunciatedduiitbroof) by M. Chasles?], proven by
G. Salmon in section 144b (pages 141-142) of its treatiSegnd rediscovered by N. A. Cour][ It can
be enunciated this way: given a tetrahedron of vertiGes = 1, 2, 3, 4 and four planesy;; i = 1, 2, 3 /4,
for each planey;, the three intersection points with the three side-linetheftetrahedron passing through
vertexV; (thatis, the three pointd,; = «; N V;Vj; j # 4) and linep;, intersection ofy; with the face-plane
of the tetrahedron opposite to vertgx are considered. Then, the twelve poiAts lie on a certain quadric
if the four linesp; are coplanary. This 3D result was later extend to dimensiby O. Bottema ].

The work below treats the 3D extension of Pascal theoremytman-degenerated quadric (needless to
be ruled).

The case when the quadrics degenerate into a pair of pldresRascal 3D theorem turns into Pappus
3D theorem) has already been studied by this authgis [

For our approach to Pascal 3D configuration, the conversasdfd? 2D theorem is of special interest.
It can be enunciated the following way: given a conricand a coplanar liney, it is always possible to
inscribe an hexagon in whose Pascal line is. The proof of this result can be found in the article by
C. Fox mentioned abové] and will be used constructively in this article.

Summarizing, as far as we know, the 3D extension of Pascah2bDrém treated in this article has
nothing to do with those extensions previously developed.

2 Our 3D extension of Pascal configuration

When trying to extend to 3D Pascal classic configuratiomgnss natural to substitute “conic” by “quadric”.
Italso seems natural to substitute the six sides closedjpoBl by a ten sides one, H$—1 points determine
a quadric (the same way és- 1 points determine a conic).

On the other hand, in the projective plane two differentdinvays share a common point, meanwhile
in the 3D projective space two different line can be disjdirg., without common points). Consequently,
when trying to extend to 3D Pascal classic configuratiort, ¢élagh pair of opposite sides of the ten sides
polygonal share a common point has to be firstly required.

Finally, it seems natural to consider as thesis that thesdrftersection points of opposite sides of the
polygonal are coplanary (the same way as the three int@aguobints of opposite sides of the polygonal
are collinear in the 2D case).

These considerations lead to the following definition.

Definition 1 In the real projective 3D space, a non-degenerated quadij@nd a ten vertices4;, Ao,
..., Ayp) closed polygonal, which side lines are denofed = A; Ay, Lo = AsAs, Ly = AszAy, ...,
Loy = AgAyy, L1y = AigAy1 are considered (as the polygonal is closetl,; = A, what shortens
notation). If all the following conditions are verified:

1) the polygonal is inscribed in the quadric, that is, its vees verifyd; € S; i =1, ..., 10,
2) all vertices are different two by two, that id; # A; ; for i # j,
3) each side-line and its opposite orlg,and L, 5, do intersect, foi = 1, . . ., 5,

4) each plane containing a side-line and its oppositeand L, 5, is different from the plane containing
the following side-line and its opposite;; andL;1¢; i = 1, ..., 5, (WhereLq; is L4),
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5) the five intersection points of opposite side-lines, dehBte= L1NLg, P» = LoNL7, P3 = L3NLg,
Py =LyN Ly, Ps = L5 N Lyg, are coplanary,

then we shall say that these geometric elements constitBéseal 3D configuration. The plane through
the five points’;, P, Ps, Py, P5 will be named “Pascal plane of the configuration” and will berbtedr
(see Figures).

Figure 3. Pascal 3D configuration.

Now two questions arise: do such configurations exist?;iarahse the answer to the previous question
is affirmative: how to construct them?

We shall begin by showing two very simple example, that vailel bring ideas about how to construct
Pascal 3D configurations.

2.1 Configuration obtained from a pentagonal prism inscribe d in a sphere

Given a pentagonal prism inscribed in a spherical surfaeechosed polygonal, which sides are the diago-
nals of the faces of the prism, is considered (Figt)re

More precisely, given the spherical surfacg,with equationz? + 23 + 23 — 322 = 0, the closed
polygonal line which vertices ard, = (1,1,-1,1), A, = (1,1,1,-1), A3 = (1,—-1,1,1), Ay =

\/2 ), As = (1, 1 -1,1), A¢ = (1,1,-1,-1), A = (1,1,1,1), As = (1,—1,1,-1),
\/2 ), A10 = (1,—1,—1,—1), different two by two and lying o, is considered.

Its ten S|de lines also satlsfy conditioBsand4) of Definition 1. The intersection points of opposite
side- Iinesturn outto beP; = (1,1,0,0), P, = (1,0,1,0), Py = (—2,1,—1++/(2),0), P, = (—2,1,1+
V(2), —~1,0,1,0).

The Pascal planer, passing throughP,, P, P3, Py and Ps turns out to bers = 0 (as shown in
Figure4). Therefore this is a Pascal 3D configuration in the senseefififion 1.
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Figure 4. Configuration obtained from a pentagonal prism

2.2 Pascal 3D configuration with centre of symmetry

Given a polyhedron consisting of a cube with two opposite sates pointed, inscribed in a spherical
surface,S, the decagon of Figurg, which sides are edges of this polyhedron and that admitsratsecof
symmetry the centre) of the cube, is considered.

More precisely, given the spherical surfaewith equation(zy — 1) + (22 — 1) + (23 — 1)? — 32% =
0, the closed polygonal line which vertices atte = (1,2,0,0), A2 = (1,2,2,0), 43 = (1 ,2,0,2)
Ay = (1,1, 1,1 4+4/(3), 45 = (1,2,2,2), 4s = (1,0,2,2), A7 = (1,0,0,2), As = (1,0,2,0),

Ag = 1, 1,1,1— \f3 , A10 = (1,0,0,0), different two by two and lying o¥, is considered.

Its ten side-lines also satlsfy conditioB¥ and 4) of Definition 1. The intersection points of op-
posite side-lines turn out to beP; = (0,0,1,0), P, = (0,0,—1,1), P3 = (0,~1,1,—1 + /(3))
Py =(0,1,1,1—+/3), Ps = (0,1,0,0).

Let us observe that, as the polygonal admits a centre of symneach side-line is parallel to its
opposite one, and therefore they do intersect at their @aimtfinity. Consequently, the five intersection
points of opposite side-lines lie on the plane at infinity,= 0. Therefore, this is a Pascal 3D configuration
in the sense of Definitiofh, andzy = 0 is its Pascal plane.

3 Package for calculations automation

Extraordinary long expressions arise when trying to aiily calculate the coordinates and equations of
the elements of the configuration in not so simple cases.fabisnakes it advisory to use a computational
system enabling non-assigned variable handling and extutreetic.

We have used thparamGeo3Dpackage, implemented in the computer algebra sydtaple that
we had developed and implemented for the work describedldh [t has been complemented with other
commands and procedures that are useful for the compusatiahappear in the present work. We detail
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Figure 5. Configuration with centre of symmetry.

below those most frequently used.

point(A)  returns the list¢o,a1,a2,a3], which elements are the projective coordinates of thetpoin
A = (ap,a1,az,as).

plane(A,B,C)  returns the equation of the plane through the three point8, C, that are sup-
posed to be non collinear (it returns an error message intbagere collinear).

line(A,B) returns the list of equations of two planes through poihtnd B, that are supposed to
be different (it returns an error message if the points aiecadent).

pointOnLine(A,B,r) , returns the poinP on the line through pointd and B, such thatd P =
—_—
r - AB, wherer is a real number oso.

sphere returns the equation of the corresponding spherical serfaben applied (indistinctly) to
its center and a point on it, or to its center and the radiualsar to four non-coplanary points.

quadric returns the equation of the corresponding quadric, whehetpi nine points that define
it.

intersection when applied to two previously defined algebraic varietidsich sum of degrees
is < 3, returns their intersection points.

vertex(A,S) returns the listdo, a1, a2, as] of projective coordinates of poit = (ag, a1, as, as)
and adds listdo, a1, as, as] to the listV ERTICES, in caseA is on quadricS and it is not yet in
such list (it returns an error message in other case).

newVertex(r,S) returns the intersection point of linewith quadric.S, not contained in list
VERTICES, and adds this point to such list.
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e isIn(A,0b) returnstrue/false depending on whether point is on objectOb (line, plane or
quadric) or not.

e isPlaced(A,Ob) returns the result of substituting the coordinates of pdinh the equation or
equations of objeadb (line, plane or quadric).

e equalPoints(A,B) returnstrue/false depending on whethet and B are projective coordinates
of the same point or of different points.

e equalVertices(L) returns the positions of the pairs of equal points in thedlisterticesL.

e coplanarPoints(A,B,C,D) returnstrue/false depending on whether the four poinis B, C,
D are coplanary or not.

e polarPlane(A,S) returns the equation of the polar plane of paintvith respect to quadri¢,
that is, the equation

[(;mf” [ff((ac{))]fl i [e?(g:i))L“ " [e?((aiﬂﬁg -

wheref(xg, 21, 22, z3) = 0 is the equation of quadri§.

Remark 2 Two points,A and B, are said to be conjugated respect quadfidf they are harmonically
separated by the intersection points of liAé and S. The locus of the conjugated points4ivith respect
to S'is a plane, named polar plane df with respect taS.

4 Experimenting to generate Pascal 3D configuration

Let us begin by testing a parametric method to generate P2aanfiguration, inspired by the method of
the proof of PropositioA.

The quadric, the five first side-lines of the polygonal anddbi@mon point to the first side-line and its
opposite, are considered as initial objects.

Given the quadric, the first five side-lines of the polygoirae lare determined by its six first vertices
(different two by two and laying on the quadric).

The common pointP;, to the first side-lined; A, and its opposite one can be left undetermined,
defining it using a parametex;, the following way:P; = A; + A1 - (A2 — A;), where); # 0,1, in order
P, to be be different fromd; and As.

As Py is the common point td,; andLg, the side-linelg is the lineAg Py, being A~ the other intersec-
tion point of L and.S, apart fromAg.

The other vertices can be obtained iterating the processl@seribed to determing-, as detailed in
the Sectiort. 1

On the other hand, it is immediate to check that condiipof Definition 1 can be substituted by an
equivalentone, but easier to check: that the four verties!; 1, A;r5, A;+2 are not coplanary for= 1,
2,...,5.

Finally, it is also immediate to check that, if the Pascahpl@oes not pass through any vertex, then
the following property holds: if.,, Lo, L3 are not coplanary, the®,, P», P are not collinear, and,
consequently, these three points determine ptane

4.1 Parametric generation method

The process to construct Pascal 2D configuration describ@ildpositionl, suggests a way to generate
Pascal 3D configuration that is detailed in the following @dithm 1 (where the command of Secti@rthat
can be used to execute each step is detailed).
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Algorithm 1 Input quadricS; verticesA;,i =1, ..., 6 (with commandrertex )

Output verticesAr, .. ., Ajo; Pascal plana; pointsPy, ..., Ps
Steps

1.L;:= AjAi4q;i=1,...,5 (withcommandine )

2.P1 Z:A1+)\1 '(AQ_Al)

3. Lg := AgP; (with commandine )

4. A7 := Lg N S, such thatd; # Ag (with commanchewVertex )
5. P2 = AQ -+ )\2 . (A5 — AQ)

6. L; := A; P, (with commandine )

7. Ag := L7 NS, such thatdg # A; (with commanchewVertex )
8.P3 Z:A3+)\3-(A4—A3)

9. Lg := AgP3; (with commandine )

10. Ag := Lg N S, such thatdg # Ag (with commanchewVertex )

11.m:= planePy, P, P; (with commanddlane )

12. Py := Ly Nw (with commandntersection )

13. Lg := AgP; (with commandine )

14. Ay := Lo N S, such thatd,y # Ag (with commanchewVertex )

15. Lo := A19A; (with commandine )

16. Ps := L; N« (with commandntersection )

17. substitute the coordinates Bf in the equations of. ;o (with commandsPlaced )

18. solve the system of step 17 w.ib, A3 (with Maplesolve command)

19. from among the solutions of step ¥8\>(A1), A3(A1)}, choose those that verify the three conditions:
19.1 the vertices are different two by two (with commagialVertices )
19.2A;, Ajy1, Aigs, Ajyo are not coplanary, far= 1, 2, .. ., 5 (with commandcoplanarPoints )
19.3 the planer does not pass through vertices of the polygonal (with conthign ).

Remark 3 In stepsl2 and16that P, € = and P; € 7 was required. It would seem more natural to
defineP; = L5 N Lig and to check later thaP; € «. But this would require to make sure thag and
Ly intersected, what is not possible, as it depends on the salfithe parameters. That is why to define
Ps = Ls; N and to impose later thaP; € L1y has been chosen (what is equivalent).

Example of execution of Algorithm 1 In order to simplify the calculation, a quadric and vertices
such that the coordinates of the latter have simple exmesshave been chosen. They are ellipsgjiadf
equatiorBx? + 222 + 22 — 3622 = 0, and the closed polygonal which first six vertices die= (1,0, 0, 6),

Ay = (17 0,0, 76)! Az = (17 1,2, 5)! Ay = (1a 2,-2, 74)! As = (1a 3,0, 3)! Ag = (17 —2,-2, 74)
When executing Algorithm with this input data, three solutions are obtained at Step 18

15t Solution: { Xy = 0, A3 = 22
As X2 = 0, obviouslyP, = A, and therefore plane passes through vertex,. Moreover, substituting
these values of the parameters, that= A, andA;o = A; (for any value\;) is obtained, so the polygonal
has two coincident vertices, and therefore this solutiomsdwot provide a Pascal 3D configuration in the
sense of Definitiord. Moreover, planer also passes through verticds, As, Ag andA;y = A;y. (This
will be interpreted below).

3A1A2+6—4X2—6X
Substituting these values of the parameters, thaadnd A, coincide is obtained, and ald®, = A; (for
any values of\; and)\.), so the polygonal has two coincident vertices, and theedfas solution does not
provide a Pascal 3D configuration in the sense of Definitiohhatr passes through these two coincident
vertices will be interpreted below.

2M Splution: { Aa = Ao, A3 = M}

P —60(A\;—1 74X\ —5
3d Solut|on.{>\2 = ﬁ,kg = 52719

Substituting these values of the parameters, the conditibSteps 19.1, 19.2 and 19.3 of Algorittinare
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verified, and therefore this solution does provide a Padgadhfiguration in the sense of Definitidn The
long expressions obtained for the coordinates of the fairdaints are omitted for the sake of brevity,, as
well as those of the five point8;, P, .. ., Ps (all depending on parametgy).

Summarizing, only thé™ solution provides a Pascal 3D configuration in the sense @hifien 1. More
precisely, in such case, a sheaf of Pascal 3D configuratieperdling on parametai is obtained.

4.2 Conjectures regarding Pascal 3D configurations

In the previous example a one dimensional family of Pasaafigorations depending on paramelgrhas
been obtained. Consequently, for any possible valug ¢b # A\, # 1), that is, for any possible position
of P, on the side-lind.; (A; # P; # As), a Pascal configuration is obtained. The result obtainéddes
to formulate the following conjecture.

Conjecture 1 Given a quadricS, the first five side-line€,, Lo, L3, L4, Ls of a polygonal (or, what is
equivalent, its first six verticed;, Ay, As, A4, A5, Ag € S) and a pointP; on Ly, such thatP; ¢ S, a
Pascal 3D configuration with these initial elements doestexi

On the other hand, in the example of Sectibf the five diagonal-lines passing through each pair of
opposite vertices of the polygonal do all share the poimfatity (0,0, 0, 1). Moreover, the polar plane of
this point with respect to spheseis the Pascal plane; = 0.

In the example of SectioR.2, the five diagonal-lines passing through each pair of oppaesirtices of
the polygonal do all pass through the centre of the spligré&/oreover, the polar plane @ with respect
to sphereS is the Pascal planey = 0.

That leads to wonder if these properties also hold in the @@ configuration of th&™ example
of the preceding section. In effect, in such case, the compoant, I/, of the side-lines passing through
opposite verticesl; Ag and A; A; (that can be obtained using commaintersection ), turns out to
be[—10A; + 5,121, 12X, 30]. This pointV lies on all the other side-lines passing through two opposit
side-lines: A3 Ag, A4 A9 and A5 Ao (what can be checked with commaisth ). Finally, the polar plane
of V with respect to the ellipsoid (obtained with commangolarPlane  of our package) turns out to
be (60A; — 30)xo + 6A1x1 + 4\ 22 + Sz = 0, that is the same Pascal planebtained in the example of
Section4.1for the 3" solution.

The same result has been reached in other examples, thab&anemitted for the sake of brevity. It
leads to formulate the following conjecture.

Conjecture 2 Given a Pascal configuration on a quadi$; the five lines passing through each two op-
posite vertices polygonal do all share a point, which polkme with respect t& is its Pascal plane.

In order to prove these conjectures, a projective refersystem that allowed to choosg, A, .. ., A5
as the points of coordinat¢s, 0, 0, 0), (0, 1,0,0), (0,0,1,0), (0,0,0,1),(1,1,1,1) could be adopted, and
a 4-dimensional family of quadrics passing through those fiom{s cold be considered, but calculations
are extraordinarily complicated.

In the following section these conjectures are treated iméhetic way, that has been reached applying
the parametric generation method to concrete cases.

5 Pascal 3D complete configuration

Definition 2 Given a closed polygonal line wittD vertices,A;, As, ..., Ao (different two by two), the
five lines passing through opposite vertices of the polybwitizbe namedmain diagonalsf the polygonal,
and will be denoted?; = A Ag, Ry = As A7, Ry = A3As, Ry = AyAg, Rs = A5Aqg

Now, Conjecture2 of Section4 can be enunciated as follows a Pascal 3D configuration, all the
main diagonals share a point, which polar plane with respiecthe quadric is the Pascal plane of the
configuration To prove it we shall use the following well-known lemma.
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Lemmal Let A, B, C, D be four points on a non-degenerated conic, Then the intersection points
V =ABNCDandP = AD n BC are harmonically separated by the intersection points @nd line
V P (that is,V and P are conjugated with respect conic—see Figures).

Figure 6. V and P are conjugated points with respect to o.

We shall begin by proving the following result, that is sormetthe reciprocal of Conjectutz

Theorem 1 LetL be a closed polygonal with) vertices (different two by two) and side-lines differerd tw
by two, inscribed in a non-degenerated quad#fc,|f the five main diagonals af share a point}/, then
each side-line of. intersects its opposite one, and the five intersection pahbpposite side-line$, .
Ps, lie on a same plane. Such plane is the polar plane of pdimtith respect to quadri® (Figure 7).

Figure 7. Concurrency of the main diagonals.
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PrRoOOFE According to the notation of DefinitioB, as R; and Ry do intersect, the four vertice$;, Ag,

As, A7 are coplanary, and, consequently, the side-libgand L are coplanary. Therefore, &5 and Lg

are different form each other (by hypothesis), they shaeethxone point,”;. On the other hand, as

is a polygonal inscribed it%, verticesA;, Ag, Ao, A7 lie on S, and therefore they also lie on the conic
o (intersection ofS with the plane through those for points). Moreoverass the intersection point of
Ly = A1 As andLg = AgA7 andV is the intersection point of aR; = A; Ag andRy = A A7, according

to Lemmal, P, andV are conjugated with respect to comicand, consequently, they are also conjugated
with respect to quadris.

That the other pair of opposite side-lines of the polygdnadtersect, and that their respective intersec-
tion points, P, Ps, Py, P5, are conjugated of poirit’ with respect to quadri§, can be proven the same
way.

Consequently, point8y, P», P3, Py, Ps lie on the polar plane of poirit with respect to quadri§ (that
is, the locus of the conjugated pointsidfwith respectta5). B

Corollary 1 Let L be a closed polygonal withO vertices (different two by two) and side-lines different
two by two, inscribed in a non-degenerated quad§c,If the five main diagonals of share a pointV/,
then polygonal. determines a Pascal 3D configuration Sh

PROOFE As pointsP,, P, Ps, Py, P5 are coplanary, it is a Pascal 3D configuration in the senseetihiD
tionl. MW

The following result solves Conjectute

Theorem 2 Given a quadric,S, the five first side-lined., ..., L5, of a polygonal inscribed ir$' (that

is, which vertices lie ot%) and a pointP; € Ly, P; ¢ S, such that Conditiod of Definition1 is verified,
then a Pascal 3D configuration with those initial elementgssiexist. Moreover, its five main diagonals
are concurrent at a pointl”, which polar plane with respect t§ is the Pascal plane of the configuration
(that is, the plane containing point8,, ..., Ps, intersection of opposite sides of the polygonal). Such
configuration is unique for those initial points.

PROOF Let us suppose that quadiit the six first vertices of the inscribed polygondl, . .., Ag (or,
what is equivalent, its first five side-linds,, ..., Ls) and a point,P;, € Ly, P, ¢ S, are fixed. From
these elements, the following elements are successivédyrdmed (Figurer): side Lg = AgPy; vertex
A7 = Lg N S (their other intersection point, apart frony); the main diagonakR; = A; Ag; the main
diagonalRy; = AsA7; pointV = Ry N Ry and the polar planey, of V' with respect toS. Now the
following elements are also determined: lineg = AsV, Ry = A4V, Rs = A5V pointsds = Rg N S
(Ag # A3), Ag = R4NS (Ag # Ay), A1g = R5NS (419 # As). According to Theorerth and Corollaryl,
the polygonal of vertices!y, ..., A1y constructed this way determines a Pascal 3D configuratibighw
Pascal plane is.

We still have to prove that the Pascal 3D configuration is uaifpr the already mentioned initial
elements. In effect, once Pascal planehas been determined, the following elements are sucedgsiv
determined (Figur@): sideLg = AgPy; vertexA; = LgN S (A7 # Ag); point P, = Lo N mr; the side-line
L; = A7P,; vertexAg = L7y NS (Ag # Ay); point Ps = L3 N 7; the side-lineLs = AgPs; vertex
Ag=LgNS (Ag 75 Ag), pOintP4 = LyNm; the Side-lineLg = AgPy; vertexAg = LgN S (AIO 7& Ag)
And, on the other hand, for the already mentioned initialedets, the Pascal plane can not be different from
planer, determined previously. In effect, if the Pascal plane wag , then the pole oft’ with respect
to quadricS would be a point’’ # V. Consequently, for the corresponding main diagofls= V' A,
and R}, = V' A,, at least one of the following inequalities would be verifié] # R; or R, # R», what
would imply that R} either would not pass through verte; or R, would not pass through vertex;
(these vertices were determined in a unique way by the aineaahtioned initial elements). Consequently,
the Pascal 3D configuration is unique for the given initiaheénts. B

Let us observe that for the three inequalitigs# A3, Ag # A4, A1g # As considered in the previous
proof to hold, that linesks, R4, R5 are not tangent t§' is required, or, what is equivalent, thag, A4, As
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are not contained in the cone of vertéxtangent to the quadric is required. For this condition tadhdl
is enough that none of those three points lie on the polaepddi’ with respect taS, that is, it is enough
that they do not lie on the conic intersection of this polamng withS, denotedamification conic ofS with
respect tol/. In such assumption, the following result, that solves €onjre2, follows from Theoren?®.

Corollary 2 In a Pascal 3D configuration, all the main diagonals share @njpowhich polar plane with
respect to the quadric is the Pascal plane of the configumatio

PROOFE The pointl” mentioned in Theorer lies on the five main diagonal3,, Rs, R3, Ry, R5. N

Now, Corollary2 allows to complete the configuration considered in Definifipas detailed afterwards.

Definition 3 The geometric configuration consisting of the elementsideredd in Definitionl, together
with the five main diagonals of the polygonal and its pointariaurrency, will be referred to as Pascal 3D
complete configuration (see Figurg. Point1, of concurrency of the five main diagonals, will be named
Pascal centre of the configuration hereinafter.

6 Generating the complete configuration

The results of Sectioh suggest a simple method to generate a Complete Pascal 3Qweatiton, based on
the concurrency of the five main diagonals of tkeside closed polygonal inscribed in the non-degenerated
quadric.

We shall begin by considering the same initial elements &sttiord, that is: the quadric, the five first
side-lines of the polygonal and the common point of the fidd4ine and its opposite one (determined by
a parameter);, as in Sectior).

We shall describe another method later, considering aalielements: the quadric, the Pascal centre
and the four first side-lines of the polygonal (or, what isiealent, the first five vertices of the polygonal).

On the other hand, that Conditi@nof Definition 1 can be substituted by an equivalent one, but much
simpler to check (that the four points, A;, A; 11, A;yo, fori = 1, 2, ..., 5, are not coplanary), can be
checked immediately.

6.1 Generation based on the concurrency of the main diagonal S

The process described in the proof of Theoizsuggests a way to generate the Pascal 3D complete config-
uration, that is detailed in Algorithra below (where the command of Secti8that can be used to execute
each step is detailed).

Algorithm 2 Input quadricS; verticesA;,i =1, ..., 6 (with commandrertex )

Output verticesAr, As, Ag, A1p; Pascal centr&’; Pascal plane; pointsPy, .. ., Ps
Steps

1.L;:=A;Ai4q;i=1,...,5 (withcommandine )

2. P1 = A1 -+ )\1 . (A2 — Al)

3. Lg := AP, (with commandine )

4. A7 := Lg N S, such thatd; # Ag (with commanchewVertex )

5. Ry := A1 Ag (with commandine )

6. Ry := A3 A; (with commandine )

7.V := R1 N Ry (with commandntersection )

8. R, :=A;V;i=3,4,5 (withcommandine )

9. A5 := R;NS,suchthatd; ;5 # A;,i=3,4,5 (with commanchewVertex )

10.L; := A;A;41;1=17,8,9 (withcommandine )
11. Lo := A19A; (with commandine )

105



E. Roanes-Macias, E. Roanes-Lozano and J. FernandegeBia

12. 7 := polar plane oft” with respect taS (with commandolarPlane )
13.P,:=L;Nm;i=2,3,4,5 (withcommandntersection )
14. check that it is is a complete Pascal configuration byldhgchat:
14.1 the vertices are different two by two (with commagialVertices )
142V, A;, A;+1, Ai42 are not coplanary, far= 1, 2, .. ., 5 (with commanccoplanarPoints )
14.3 planer does not pass through verticds, i = 3, 4, 5 (with commandsin ).

Remark 4 It is enough thatd; ¢ =; i = 3, 4, 5 to assure thatd,; 5 ¢ 7; ¢ = 3, 4, 5, becaused,; 5
and A; are harmonically separated with respecttand P;. On the other hand, from Theore®and
Corollary 2, it follows thatP; lies ont and thatPs, P3, Py, Ps lie on Ly, Ls, Lo, L1g (What can now also
be experimentally checked using comméshd ).

Example of execution of Algorithm 2 In order to simplify the calculations, we shall considerasal

elements a quadric and vertices which coordinates havdesimpressions. They are the hyperbolSidf

equationtz? +92% — 2% — 3623 = 0 and the verticesl; = (1,5,0,8), A> = (1,5,0,—8), A3 = (1,2,2,4),

Ay = (1,2,-2,-4), A5 = (1,6,2,12), As = (1,3,0,0). The execution of Algorithn2, for these initial
data is detailed afterwards.

S:=4 »x1"2+9 *x2°2-x372-36  *x072=0;

A[l]:=vertex([1, 5, 0, 8],S);

A[2]:=vertex([1, 5, 0, -8],S);

A[3]:=vertex([1, 2, 2, 4],S);

Al4]:=vertex([1, 2, -2, -4],S);

A[5]:=vertex([1, 6, 2, 12],S);

A[6]:=vertex([1, 3, 0, 0],S);

for i to 5 do L[i]:=line(A[i],A[i+1]) od;

P[1]:=pointOnLine(lambda[1],A[1],A[2]);
P[1]:=[1,5,0,8,—16A4]

VVVVVYVYVYVYV

L6:=line(P[1],A[6]);
A[7]:=newVertex(L6,S);
R[1]:=line(A[1],A[6]);
R[2]:=line(A[2],A[7]);
V:=intersection(R[1],R[2]);

V V.V V V

V= [16A1 — 3,48\ — 15,0, —24]
for i from 3 to 5 do RJi]:=line(A[i],V) od;
for i from 3 to 5 do A[i+5]:=newVertex(R[i],S) od;
for i from 7 to 9 do LJi]:=line(A[il,A[i+1]) od;
L[10]:=line(A[10],A[1]);
pi:=polarPlane(V,S);
™ i= (71152)\1 + 216)56() + (384)\1 - 120)1‘1 + 48%5 =0

V V V V V

> for i from 2 to 5 do PJi]:=intersection(L[i],pi) od;
Py = [—39 4+ 48)\1, —99 + 144\, 64\, — 64, —72]
P3:=[4,8,16)\; + 1,32\ + 2]
Py :=[-16X\1 — 3,—48\; — 15,16A; — 3, —24]

Ps =161 + 3,48\ + 15,4, 24]
> equalVertices(VERTICES);
> for i to 5 do coplanarPoints(V, A[i],Ali+1], Afi+2]) od;
false, false, false, false, false
> isIn(A[3],pi), isIn(A[4],pi), isIn(A[5],pi);
false, false, false
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Remark 5 Comparing the parametric method of Sectibwith this method based on the concurrency of
the main diagonals, the advantage of the latter is clearg#@tes with much shorter expressions, involving
just one parameter instead of three).

6.2 Generation from Pascal point

The generation process is even more simplified when cornisgles initial elements the quadri, the
Pascal centr& and the five first verticesly, A,, A3, A4, As (that must not lie on the polar plane bf
with respect taS, so that they do not lie on the ramification conicofvith respect td”). The process is
detailed in the following Algorithn8 (where the command of Secti@that can be used to execute each
step is detailed).

Algorithm 3 Input quadricS; Pascal centr® (V ¢ S); vertices4, (A; #V),i=1,...,5
Output verticesAg, A7, As, Ag, Ajg; pointsPy, ..., Ps; Pascal plane
Steps
R, :=A;V;i=1,...,5 (withcommandine )
Aiys := R;N S, suchthatd; 5 # A; (with commanchewVertex )
. A1 := A; (in order to obtainl in a briefer way)
L;:=A;A;41;i=1,...,10 (withcommandine )
.Pi=L;NLisi=1,...,5 (with commandntersection )
. 7 := polar plane of” with respect ta5' (with commandoolarPlane )
. Check that it is complete Pascal 3D configuration, by y&Tif:
7.1 the vertices are different two by two (with commalalVertices )
7.2V, A;, Aiy1, Aiqo are not coplanary for= 1, 2, .. ., 5 (with commandtoplanarPoints )
7.3 planer passes through poinf3; i = 1, ..., 5 (with commandsin ).

NOoOUTAWNE

Remark 6 The planer can also be obtained as the plane through three non-coltipeats from among
the five pointsdy, P, ..., Ps.

Example of execution of Algorithm 3 In order to simplify the calculations, we shall considenragal
points a quadric and vertices which coordinates have simypbeessions. They are the parabol6idf
equationz? + 323 + 4xoxz = 0, the Pascal point’ = (1,2,1,12) and the closed polygonal which
first five vertices ared; = (1,0,2,-3), 42 = (1,1,1,-1), A5 = (1,2,0,—-1), A4, = (1,1,—-1,-1),
As = (1,0,—2,-3).

When executing Algorithm with these data, the following geometric objects are sigicely obtained:
the main diagonals of the polygonal; the five remaining eerj of coordinateds = (7, —96,62, —741),
A7 = (1,-53,1,-703), Ag = (3,6, 52, —679), Ag = (13,29, —97, —559), A1y = (31, —48, —134,
—453) (the ten vertices are automatically allocated in the glalaaiable VERTICES; the ten side-lines
of the polygonal; the five intersection points of oppositiesiines, of coordinateB, = (1, 8,10, —19),
Py = (—1,-28,26,1), Py = (—5,16,26,5), P, = (3, —4,—10,—17), Ps = (—117,96,158,1071) and
the Pascal plane, of equati@dxy + 2z; + 32 + 223 = 0. Finally, that the steps 7.1, 7.2 and 7.3 of
Algorithm 3 are verified is checked.

Remark 7 Inthis example, the four first point3 of intersection of opposite side-lines of the close polygo-
nal are exterior to the corresponding sides (segments)aade easily checked (the fifth can not be exterior,
as the polygonal is closed).

7 Conclusions

In order to extend Pascal 2D to 3D in a natural way, substigutionic by quadric, the six sides closed
polygonal has been substituted by a ten sides one, bet@use points determine a quadric, the same way
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as6 — 1 points determine a conic. But in the 3D case, that each sideof the polygonal intersects its
opposite one has to be checked. In case this holds, thosatirsection points lie on a plane (that we have
namedPascal plang the same way as in the 2D case the intersection points afsigpside-lines lie on a
line (Pascal ling.

Once this 3D configuration is defined, simple particular sdse/e been considered (Sect®)n that
have suggested ideas to advance in the problem. But, whieg tiyanalytically treat not so simple cases,
long expressions arise, what has made advisory to use a tengbyebra systenMaple), where an ad-hoc
package has been implemented (it is described in Se8fiddsing its commands, a parametric generation
method to generate the 3D configuration in an analytic wanfifee following initial elements: the quadric,
the first five side-lines and the common point to the first side-and its opposite one, has been applied
(Sectiord). With this method, that in all the examples tested the fivendegonals of the polygonal share a
point, which polar plane with respect the quadric is the Bligslane, has been checked. These observations
have lead to conjecture their general validity, that wasesbin a synthetic way in Sectidh The common
point to all the main diagonals have been dend?adcal centre These new elements that complete our
Pascal 3D configuration have allowed to simplify the corcdtam process of the configuration in Secti@n

We finish comparing Pascal 2D classic configuration with theo@e developed in this article. In the
first one, three consecutive sides and two intersectiontp@hopposite sides (that is, Pascal line), can
be freely chosen. Meanwhile, in our extension to 3D the fivesegutive sides can be freely chosen, but
only one of the intersection points of opposite sides canréelyf chosen. Therefore, in both cases half
the side-lines can be freely chosen, three out of six in the&& and five out of ten in the 3D case. But,
meanwhile in the 2D case two points in the Pascal line candsdyfichosen, in the 3D case only one point
on the Pascal plane can be freely chosen. This loss of degfreleedom is motivated by the need to assure
that in 3D the opposite side-lines of the polygonal do irgets
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