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Regression Models�

Nirian Martíny and Leandro Pardoz
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Abstract

It sometimes occurs that one or more components of the data exerts a disproportionate in�uence
on the model estimation. We need a reliable tool for identifying such troublesome cases in order to
decide either eliminate from the sample, when the data collect was badly realized, or otherwise take
care on the use of the model because the results could be a¤ected by such components. Since a
measure for detecting in�uential cases in linear regression setting was proposed by Cook [7], apart
from the same measure for other models, several new measures have been suggested as single-case
diagnostics. For most of them some cuto¤ values have been recommended (see Belsley et al. [4], for
instance), however the lack of a quantile type cuto¤ for Cook�s statistics has induced the analyst to
deal only with index plots as worthy diagnostics tools. Focussed on logistic regression, the aim of this
paper is to provide the asymptotic distribution of Cook�s distance in order to look for a meaningful
cuto¤ point for detecting in�uential and leverage observations.

1 Introduction

Logistic regression is a model associated with I integer responses yi, i = 1; :::; I, each of them the
number of successful observations of ni trials, which come from independent Binomial random variables
Yi, i = 1; :::; I. This model establishes that the probabilities of success �(xTi �) = Pr(Yi = 1), i = 1; :::; I,
depend on unknown parameters � = (�0; :::; �k)

T and as well as explanatory variables xi = (xi0; :::; xik)
T ,

xi0 = 1, i = 1; :::; I, according to the formula

�(xTi �) =
expfxTi �g

1 + expfxTi �g
; i = 1; :::; I: (1)

We denote by X the I � (k + 1) matrix with rows xTi , i = 1; :::; I. This matrix involve I realizations,
(x1h; :::; xIh)

T 2 RI , for k real explanatory variables Xh, h = 2; :::; k + 1, i.e. once an intercept �0 is
included by setting a �rst column of X equals (1; :::; 1)T , the rest of the columns of X correspond with
a sample of Xh, h = 2; :::; k + 1, and all samples belong to a common set of I individuals. We also shall
assume that rank(X) = k + 1.
The maximum likelihood estimator (MLE) of � is de�ned by

b� = arg min
�2�

logL (�) ; (2)
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where � = f�=(�0; :::; �k)T : �i 2 (�1;1) ; i = 0; :::; kg is the parameter space and L(�) is the
likelihood function for the logistic regression model

L(�) =
IQ
i=1

�
ni
yi

�
�(xTi �)

yi(1� �(xTi �))ni�yi :

It is well-known that b� can be obtained as the solution � of the nonlinear system of equations

XT (y � �) = 0(k+1)�1; (3)

being y = (y1; ::::; yI)
T and � = (n1�

�
xT1 �

�
; :::; nI�

�
xTI �

�
)T . For more details about logistic regression

model see Agresti [1] and references therein.
Let N =

PI
i=1ni be the sum of trials considered in the model. If we omit all the trials associated

with the random variable Yj (j 2 f1; :::; Ig), we have in total N � nj trials and the MLE of � is de�ned
by b�(j) = arg min

�2�
logL(j)(�); (4)

where

L(j)(�) =
IQ
i=1
i 6=j

�
ni
yi

�
�(xTi �)

yi(1� �(xTi �))ni�yi :

It is well-known that in�uential observations in logistic regression models are those points which
greatly change the results of the statistical analysis when omitted from the sample. Johnson [16] con-
sidered the following in�uence measure associated with the j-th observation of the logistic regression
model

D(j)(b�) = N(b� � b�(j))TXTWN (b�)X(b� � b�(j)); j 2 f1; :::; Ig; (5)

where
WN (�) = diag

��
ni
N �(x

T
i �)

�
1� �(xTi �)

��
i=1;:::;I

�
: (6)

The in�uence measure D(j)(b�) is the natural adaptation, to the context of logistic regression, of Cook�s
distance (see Cook [7]) for detecting in�uential observations in linear regression. Based on the similarity
of D(j)(b�) with the quadratic form,

N(b� � �0)TXTW (�0)X(
b� � �0);

where �0 is the true value of the vector of unknown parameters in the logistic regression model and
W (�0) = limN!1WN (�0), Johnson considered that the asymptotic distribution of D

(j)(b�) can be
compared with a chi-square distribution with k + 1 degrees of freedom. This idea of Johnson was based
on some ideas considered by some authors in linear regression. In linear regression models with N
observable normal distributed responses and k unknown parameters for a full rank design matrix, Cook
[7] and Weisberg [23, page 108] recommended the 50-th percentile of the F distribution with (k,N � k)
degrees of freedom as a rule-of-thumb for determining in�uential observations. This rule has been used for
many years until on one hand Muller and Chen Mok [17] and on the other hand Jensen and Ramirez [15]
presented the statistical theory for using Cook�s distance as a test for determining in�uential observations
by deriving the exact distribution of Cook�s distance. While the �rst authors considered the classical
Cook�s distance, the others took into account the version related with Welsch-Kuh�s distance (DFFITS).
Following the same idea to distinguish the internally and externally Studentized residuals, the essential
di¤erence between both of them is based on the sample to build the estimator of the variance, i.e. it
is considered the fact of maintaining or deleting the observation studied by Cook�s distance. The exact
distribution of the classical Cook�s distance multiplied by a constant is the F -Snedecor distribution with
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(1,N � k� 1) degrees of freedom and the square of the Welsch-Kuh�s distance multiplied by a constant is
the Beta distribution with (1=2,(N � k � 1)=2) degrees of freedom. Furthermore, Muller and Chen Mok
[17] considered random coe¢ cients rather than �xed coe¢ cients xi0; :::; xik (i 2 f1; :::; Ig). Recently these
results are being extending to di¤erent models as for example generalizations of the linear regression (see
Díaz-García et al. [9]).
Pregibon [21] considered the one-step Newton-Raphson method for logistic regression with initial

point b� in order to get an approximation, b�(j)� , of b�(j). Based on b�(j)� he got an approximation, eD(j)(b�),
of D(j)(b�) and even it seems that it performs accurately in most cases he demonstrated through an
example that however this approximation can be not very good (see Figure 7 in [21] which is referred to
Example 1 in Section 5 of this paper). Remind that in linear regression there exists a version of the same
formula in which an equality holds rather than an approximation (see for instance, Rao and Toutenburg
[22, Section 7.5]).
Our interest in this paper is focussed on obtaining the asymptotic distribution of D(j)(b�) through the

de�nition of b�(j) given in (4). Section 2 is devoted to provide the expressions of some asymptotic results
that will be necessary in Section 3 which is the most important part of the paper because in it we present
the main result from which arises the idea of decompose the distribution of Cook�s distance in interpretable
components. In Section 4 a distribution based cuto¤ is presented and Section 5 is devoted to apply such
cuto¤ values for some well-known examples in which some troublesome observations are encountered.
Furthermore, the same examples will be useful to investigate more thoroughly the appropriateness of
approximating D(j)(b�) by eD(j)(b�).
2 Some distributional results in logistic regression models

Let

bpN � �y1N ; n1 � y1N
;
y2
N
;
n2 � y2
N

; ::::;
yI
N
;
nI � yI
N

�T
;

pN (�0) �
�
n1
N �(x

T
1 �0);

n1
N (1� �(x

T
1 �0)); :::;

nI
N �(x

T
I �0);

nI
N (1� �(x

T
I �0))

�T
;

two probability vectors, the �rst one composed by normalized relative frequencies and the second one by
normalized theoretical probabilities. It is well-known (see for instance Pardo et al. [20, Section 2]) that

b� = �0 + �XTWN (�0)X
��1

XT
IM
i=1

cN;i(�0)
T diag

�
pN (�0)

�1=2
�
(bpN � pN (�0)) + o(kbpN � pN (�0)k)

= �0 +
�
XTWN (�0)X

��1
XT

IM
i=1

c�i (�0)
T (bpN � pN (�0)) + o(kbpN � pN (�0)k) ; (7)

where

cN;i(�0) �
�
ni
N �(x

T
i �0)

�
1� �(xTi �0)

��1=2 �
1� �(xTi �0)

�1=2
��(xTi �0)1=2

!
; i = 1; ::::; I;

c�i (�0) �
� �

1� �(xTi �0)
�

��(xTi �0)

�
; i = 1; ::::; I; (8)

and WN (�0) was de�ned in (6). Based on Limit Central Theorem we have

p
N (bpN � pN (�0)) L�!

N!1
N (02I�1;�) ; (9)
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where

� �
IM
i=1

�
(�i��(xTi �0))i=1;:::;I

�
; (10)

��(xTi �0) �
�

�(xTi �0)
�
1� �(xTi �0)

�
��(xTi �0)

�
1� �(xTi �0)

�
��(xTi �0)

�
1� �(xTi �0)

�
�(xTi �0)

�
1� �(xTi �0)

� �
(11)

and
�i � lim

N!1

ni
N
:

By using (7) and (9), it is not di¢ cult to establish that
p
N(b� � �0) L�!

N!1
N
�
0(k+1)�1; (X

TW (�0)X)
�1
�

(12)

where
W (�0) = lim

N!1
WN (�0) = diag

��
�i�(x

T
i �0)

�
1� �(xTi �0)

��
i=1;:::;I

�
:

We assume now that all the trials associated with the random variable Yj (j 2 f1; :::; Ig), nj , have
been deleted. In this setting we denote the normalized vector or frequencies and the normalized vector
of theoretical probabilities by

bp(j)N �
�

y1
N � nj

;
n1 � y1
N � nj

; ::;
yj�1
N � nj

;
nj�1 � yj�1
N � nj

;
yj+1
N � nj

;
nj+1 � yj+1
N � nj

; :::;
yI

N � nj
;
nI � yI
N � nj

�T
;

p
(j)
N (�0) �

�
n1

N�nj �(x
T
1 �0);

n1
N�nj (1� �(x

T
1 �0)); :::;

nj�1
N�nj �(x

T
j�1�0);

nj�1
N�nj (1� �(x

T
j�1�0));

nj+1
N�nj �(x

T
j+1�0);

nj+1
N�nj (1� �(x

T
j+1�0)); :::;

nI
N�nj �(x

T
I �0);

nI
N�nj (1� �(x

T
I �0))

�T
;

and we have

b�(j) = �0 + �XT
(j)W

(j)
N (�0)X(j)

��1
XT
(j)

IM
i=1
i 6=j

c�i (�0)
T
�bp(j)N � p(j)N (�0)

�
+ o
�


bp(j)N � p(j)N (�0)




� ;
where c�i (�0) is given by (8), X(j) is obtained through X by deleting the j-th row and

W
(j)
N (�0) � diag

 �
ni

N�ni�(x
T
i �0)

�
1� �(xTi �0)

��
i=1;:::;I
i 6=j

!
:

3 The distribution of Cook�s distance

The next theorem establishes the asymptotic distribution of the di¤erence between the estimators b� andb�(j):
Theorem 1 Let b� and b�(j) the MLE of parameters � based on the full observations and the MLE based
on the full observations minus j-th observation. Then

p
N(b� � b�(j)) L�!

N!1
N
�
0(k+1)�1;�

(j)
�

(13)

where

�(j) � wj(�0)
1�hjj(�0)

�
XTW (�0)X

��1
xjx

T
j

�
XTW (�0)X

��1
being hjj(�0) � wj(�0)

1=2xTj

�
XTW (�0)X

��1
xjwj(�0)

1=2 and wj(�0) � �j�(x
T
j �0)

�
1� �(xTj �0)

�
is the j-th diagonal element of W (�0), j 2 f1; :::; Ig.
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Proof. Denoting each component of (8) by c�j1(�0) and c
�
j2(�0) respectively, and the j-th unit vector in

R2I by ej = (0; :::; 0; 1j); 0; :::; 0)T , we have

XT
(j)

IM
i=1
i 6=j

c�i (�0)
T bp(j)N =XT

 
IM
i=1

c�i (�0)
T �ej eT2j�1c�j1(�0)� ejeT2jc�j2(�0)

!
N

N�nj bpN
=XT

 
IM
i=1

c�i (�0)
T � ej

�
eT2j�1c

�
j1(�0) + e

T
2jc

�
j2(�0)

�!
N

N�nj bpN
and

XT
(j)

IM
i=1
i 6=j

c�i (�0)
Tp

(j)
N (�0) =X

T

 
IM
i=1

c�i (�0)
T � ej

�
eT2j�1c

�
j1(�0) + e

T
2jc

�
j2(�0)

�!
N

N�nj pN (�0):

Therefore,

XT
(j)

IM
i=1
i 6=j

c�i (�0)
T
�bp(j)N � p(j)N (�0)

�
=XT

 
IM
i=1

c�i (�0)
T � ej

�
eT2j�1

�
1� �(xTj �0)

�
� eT2j�(xTj �0)

�!

� N
N�nj (bpN � pN (�0)) : (14)

Now denoting wj;N (�0) �
nj
N �(x

T
j �0)

�
1� �(xTj �0)

�
the j-th diagonal element ofWN (�0) we can write�

XT
(j)W

(j)
N (�0)X(j)

��1
=

N�nj
N

�
XTWN (�0)X � wj;N (�0)xjxTj

��1
and

N
N�nj

�
XT
(j)W

(j)
N (�0)X(j)

��1
=
�
XTWN (�0)X

��1
+
�
XTWN (�0)X

��1 wj;N (�0)xjxTj
1�hjj;N (�0)

�
XTWN (�0)X

��1
; (15)

where hjj;N (�0) � wj;N (�0)
1=2xTj

�
XTWN (�0)X

��1
xjwj;N (�0)

1=2. Based on this last equality we

have p
N � nj(b�(j) � �0) L�!

N!1
N
�
0(k+1)�1;�

�
(j)

�
;

where

��(j) = (1� �j)
��
XTW (�0)X

��1
+
�
XTW (�0)X

��1 wj(�0)xjxTj
1�hjj(�0)

�
XTW (�0)X

��1�
;

wj(�0) = limN!1 wj;N (�0) and hjj(�0) = limN!1 hjj;N (�0). Now we are going to express
p
N(b� �b�(j)) as a linear combination of pN (bpN � pN (�0)). Applying (14) and denoting

lj(�0) = (1� �(xTj �0))e2j�1 � �(xTj �0)e2j 2 R2I
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we have

b�(j) � �0
=
�
XT
(j)W

(j)
N (�0)X(j)

��1
XT

�
IL
i=1

c�i (�0)
T � ejlj(�0)T

�
N

N�nj (bpN � pN (�0)) + oP ((N � nj)�1=2)

=
N�nj
N

��
XTWN (�0)X

��1
+
�
XTWN (�0)X

��1 wj;N (�0)xjxTj
1�hjj;N (�0)

�
XTWN (�0)X

��1�
�XT

�
IL
i=1

c�i (�0)
T � ejlj(�0)T

�
N�nj
N (bpN � pN (�0)) + oP �N�njN (N � nj)�1=2

�
and after some algebra we can write

p
N(b� � b�(j)) = �A(j)

N (�0) +B
(j)
N (�0)

�p
N (bpN � pN (�0)) + oP (1);

where

A
(j)
N (�0) =

1
1�hjj;N (�0)

�
XTWN (�0)X

��1
xjlj(�0)

T

and

B
(j)
N (�0) = �

�
XTWN (�0)X

��1 wj;N (�0)xjxTj
1�hjj;N (�0)

�
XTWN (�0)X

��1
XT

IL
i=1

c�i (�0)
T :

In order to get the asymptotic distribution of
p
N(b��b�(j)) and taking into account (9) we need to obtain

the following expressions:

i) A
(j)
(�0) � A(j)(�0)�A

(j)(�0)
T ,

ii) B
(j)
(�0) � B(j)(�0)�B

(j)(�0)
T ,

iii) C
(j)
(�0) � B(j)(�0)�A

(j)(�0)
T ,

with A(j)(�0) � limN!1A
(j)
N (�0) and B

(j)(�0) � limN!1B
(j)
N (�0), and � is given by (10).

In relation to i) we have

A
(j)
(�0) =

1
(1�hjj(�0))2

�
XTW (�0)X

��1
xjlj(�0)

T�lj(�0)x
T
j

�
XTW (�0)X

��1
;

but lj(�0)
T�lj(�0) = c

�
j (�0)

T�j��(xTj �0)c
�
j (�0) and

c�j (�0)
T�j��(xTj �0)c

�
j (�0) = �jc

�
i (�0)

T diag((�(xTi �0); 1� �(xTi �0))T )c�i (�0)

� �jc�i (�0)T (�(xTi �0); 1� �(xTi �0))T (�(xTi �0); 1� �(xTi �0))c�i (�0)
= wj(�0) (16)

because

c�i (�0)
T diag((�(xTi �0); 1� �(xTi �0))T )c�i (�0) = (�(xTi �0))(1� �(xTi �0));

c�i (�0)
T (�(xTi �0); 1� �(xTi �0))T = 0:

Therefore,

A
(j)
(�0) =

1
(1�hjj(�0))2

wj(�0)
�
XTW (�0)X

��1
xjx

T
j

�
XTW (�0)X

��1
:
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In relation to ii) we have

B
(j)
(�0) =

�
XTW (�0)X

��1 wj(�0)2xjxTj
(1�hjj(�0))2

�
XTW (�0)X

��1
XT

�
IL
i=1

c�i (�0)
T

�
�

�
�

IL
i=1

c�i (�0)

�
X
�
XTW (�0)X

��1
xjx

T
j

�
XTW (�0)X

��1
:

But taking into account (16) 
IM
i=1

c�i (�0)
T

!
�

 
IM
i=1

c�i (�0)

!
=

IM
i=1

c�i (�0)
T�i��(xTi �0)c

�
i (�0)

=
IM
i=1

wi(�0) =W (�0):

Therefore,

B
(j)
(�0) =

wj(�0)

(1�hjj(�0))2

�
XTW (�0)X

��1
xjhjj(�0)x

T
j

�
XTW (�0)X

��1
= wj(�0)

hjj(�0)

(1�hjj(�0))2

�
XTW (�0)X

��1
xjx

T
j

�
XTW (�0)X

��1
:

Finally, in relation to iii) we have

C
(j)
(�0) = � 1

(1�hjj(�0))2

�
XTW (�0)X

��1
xjlj(�0)

T�
IL
i=1

c�i (�0)

�X
�
XTW (�0)X

��1
xjx

T
j wj(�0)

�
XTW (�0)X

��1
:

But

lj(�0)
T�

�
IL
i=1

c�i (�0)

�
X = lj(�0)

T

�
IL
i=1

�i��(xTi �0)c
�
i (�0)x

T
i

�
= c�j (�0)

T�j��(xTj �0)c
�
j (�0)x

T
j

= wj(�0)x
T
j ;

and thus

C
(j)
(�0) = �

wj(�0)hjj(�0)

(1�hjj(�0))2

�
XTW (�0)X

��1
xjx

T
j

�
XTW (�0)X

��1
:

Then we have �
A(j)(�0) +B

(j)(�0)
�T
�
�
A(j)(�0) +B

(j)(�0)
�

=
wj(�0)

(1�hjj(�0))2

�
XTW (�0)X

��1
xjx

T
j

�
XTW (�0)X

��1
and the result follows.
Once the asymptotic distribution of

p
N(b��b�(j)) is known, the next step is to consider Cook�s distance

(5) as a quadratic form of
p
N(b� � b�(j)) de�ned by the inverse of the asymptotic variance-covariance

matrix of
p
N b�. In the next theorem the asymptotic distribution of D(j)(�0) is established.
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Theorem 2 Let b� and b�(j) be the MLE�s of parameters � based on the full observations and the full
observations minus the j-th observation respectively. Then

D(j)(�0)
L�!

N!1

hjj(�0)

1� hjj(�0)
�21; (17)

where
D(j)(�0) � N(b� � b�(j))TXTW (�0)X(

b� � b�(j)):
Proof. We shall use the following result �Suppose (W 1; :::;Wq)

T , a q� 1 random variable, is distributed
as N (0q�1;�W ) and M is any real symmetric matrix of order q. Let r = rank(�WM�W ) � 1 and
let �1,..., �r be non-zero eigenvalues of M�W (r � q). Then (W 1; :::;Wq)M(W 1; :::;Wq)

T�
Pr

i=1 �iZ
2
i

where fZigri=1are independent random variables so that Zi�N (0; 1), i = 1; :::; r�(see Dik and de Gunst
[10, Corollary 2.1]).
Based on (13) we need to calculate

rank(�(j)��1�(j)) = rank
�
(XTW (�0)X)

�1xjx
T
j (X

TW (�0)X)
�1xjx

T
j (X

TW (�0)X)
�1
�
:

Let R� (XTW (�0)X)
�1=2xj . Since rank(RR

TRRT ) = rank(RRT (RRT )T ) = rank(RRT ) = rank(R)

and R is a (k + 1) � 1 matrix, the rank of �(j)��1�(j) is equal to r = 1. On the other hand since the
nonzero eigenvalues of FG are equal to the nonzero eigenvalues of GF, when the dimensions of the F
and GT matrices are equal, we have that the nonzero eigenvalue of

�(j)��1 =
wj(�0)

1�hjj(�0)

�
XTW (�0)X

��1
xjx

T
j = FG;

where F=wj(�0)
�
XTW (�0)X

��1
xj=(1�hjj(�0)) and G = xTj , coincides with the eigenvalue of

GF =
1

1� hjj(�0)
wj(�0)x

T
j

�
XTW (�0)X

��1
xj=

1

1� hjj(�0)
hjj(�0):

Therefore, hjj(�0)=(1�hjj(�0)) is the nonzero eigenvalue of �(j)��1 and we obtain the desired result.

To conclude this section, because according to Theorem 2 the statisticD(j)(�0) and also its asymptotic
distribution depend on the same unknown parameter �0, we shall now establish the really useful result
in the practice.

Corollary 3 Let b� and b�(j) be the MLE�s of parameters � based on the full observations and the full
observations minus the j-th observation respectively. Then

D(j)(b�) L�!
N!1

hjj(�0)

1� hjj(�0)
�21; (18)

where D(j)(b�) is given by (5).
Proof. It is straightforwardly obtained following Slutsky�s Theorem in the same manner as in Ferguson
[11, Lemma 2 of page 56] is establishes that Hottelling�s T 2 statistic associated with an i.i.d. sample of
d-dimensional random vectors is asymptotically Chi-squared with d degrees of freedom.
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4 Looking for a distribution based cuto¤ for Cook�s distance

In�uence is the e¤ective impact that an observation yj has on the �t of the model. Traditionally, in logistic
regression, one observation yj1 is said to be more in�uential than another one yj2 , j1; j2 2 f1; :::; Ig, if
D(j1)(b�) > D(j2)(b�). In order to classify an observation as in�uential, based on such idea jointly the result
obtained through Theorem 2, arises the necessity of having a common cuto¤ once a signi�cance level �
is associated with the test of outliers through standardized residuals. However, the main inconvenience
in (18) is that the quantile type cuto¤ of D(j)(b�) depends on the index j, i.e. hjj(�0)�2�;1=(1�hjj(�0)),
where �2�;1 is a quantile of order � for a �

2
1 random variable, and thus it is not a valid cuto¤ for the rest

of D(i)(b�) values, i = 1; :::; I, i 6= j. In this section a cuto¤ for the Cook�s distance is proposed which is
in relationship with the criterions to classify an observations as outlier and leverage. Above all it should
be remarked that once (18) is established, it is not possible to provide the usual quantile type cuto¤
given a signi�cance level (for more details see Obenchain [19]), however it is possible to maintain as much
as possible coherent criterion according to the asymptotic distribution of Cook�s distance as well as the
criterions chosen to classify outliers and leverage observations. We shall start revising some de�nitions
in which we shall later base our criterion for a distribution based cuto¤.

De�nition 4 The i-th Pearson residual, ri(b�), i = 1; :::; I, is given by
ri(b�) =

vuut (yi � ni�(xTi b�))2
ni�(xTi

b�) +
(ni � yi � ni(1� �(xTi b�)))2

ni(1� �(xTi b�)) =

vuut (yi � ni�(xTi b�))2
ni�(xTi

b�)(1� �(xTi b�)) : (19)

In vector notation, r(b�) = (r1(b�); :::; rI(b�))T is given as
r(b�) = � IL

i=1

JT2

�
diag

�
pN (

b�)�� 1
2 p

N(bpN � pN (b�)) =W (b�)� 1
2

�
IL
i=1

eT1

�p
N(bpN � pN (b�)):

where JT2 = (1; 1) and e
T
1 = (1; 0).

By knowing the asymptotic distribution of
p
N(bpN � pN (b�)), it is straightforwardly obtained

r(b�) L�!
N!1

N (0I�1; II �H(�0)) ;

where II is I � I identity matrix and

H(�0) �W (�0)
1
2X

�
XTW (�0)X

��1
XTW (�0)

1
2

is a projection matrix called �Hat matrix�. Since b� is obtained as solution of (3), it holds
XT

�
IL
i=1

eT1

�p
N(bpN � pN (b�)) = 0I�1

and hence
H(b�)r(b�) = 0I�1 and (II �H(b�))r(b�) = r(b�).

This means that the projection matrix II �H(b�) spans the Pearson residuals space, as it happens in
Linear Regression. By analogy with linear regression, the j-th diagonal element of the Hat matrixH(b�),
hjj(b�) (de�ned in Theorem 1) is called �leverage�. Even the work of Pregibon [21] is an extension of
linear regression diagnostics to logistic regression, it is necessary to take care of the similarities among
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both models. Actually, while in linear regression �tted values are obtained multiplying the vector of
observed values on the left side by the Hat matrix, i.e. hii is the amount of leverage per unit of yi
exerted on determining byi, in logistic regression this is not so. This means that while in linear regression
it holds hii = @byi=@yi, in logistics regression hii(�0) 6= @(ni�(xTi b�))=@yi. As it is mentioned in Hosmer
and Lemeshow [14, page 171] some authors have questioned the appropriateness of hii(�0) as leverage
measure, for this reason we shall later propose a leverage measure based on a new concept of variability.
The next measure, de�ned by Pregibon [21], is an approximation of D(j)(b�) and is also a usual

in�uence measure in statistical packages.

De�nition 5 The Con�dence Interval Displacement (CID) is given by

eD(j)(b�) � �j(b�)r�j (b�)2; (20)

where r�j (b�) = rj(b�)�q1� hjj(b�) is the standardized Pearson residual and
�j(�0) �

hjj(�0)

1� hjj(�0)
: (21)

Observe that the asymptotic distribution of (20) is the same as (18). Let us interpret the term (21).
By multiplying on the left side of (12) and (13) by xTj , because f(p)

�1 = logit(p) � log(p=(1� p)) is the
inverse of f(p) = ep=(1� ep), it is straightforwardly obtained

p
N(logit(�(xTj

b�))� logit(�(xTj b�(j)))) L�!
N!1

N
�
0;

hjj(�0)
1�hjj(�0)

hjj(�0)
wjj(�0)

�
;

p
N(logit(�(xTj

b�))� logit(�(xTj �0))) L�!
N!1

N
�
0;

hjj(�0)
wjj(�0)

�
;

which means that the �rst term in the asymptotic distribution of (17), as well as in (20), represents
the relative increment on the asymptotic variance of logit(�(xTj b�)) when the j-th observation is omitted
from the sample. By changing the interpretation of variability through a in�nitesimal increment (hii =
@byi=@yi), we shall now focus on the statistical interpretation of variability through the relative increment
of the variance and therefore in the following we shall consider that (21) is a leverage measure. It should
be noted that in this new framework a leverage observation remains having the potential to be in�uential
but may not actually be so.
As traditionally, if r�j (b�) > z�, where z� is a quantile of order � for a standard normal random

variable, then the j-th observation is considered to be an outlier, i.e. anomalous observation for the �t of
the model. Now we are going to give a new criterion for detecting leverage and in�uential observations.

De�nition 6 Once � signi�cance level is pre�xed for outliers, we propose the next criterion based on
case-deletion diagnostics:

� 2��(b�) is a cuto¤ of �j(b�), for considering the j-th observation to be a leverage, where
��(b�) = 1

I

IX
i=1

�i(b�); �i(b�) = hii;N (b�)
1� hii;N (b�) ;

hii;N (b�) = wi;N (b�)1=2xTi �XTWN (b�)X��1 xiwi;N (b�)1=2;
wi;N (b�) = ni

N
�(xTi

b�)�1� �(xTi b�)� ;
WN (b�) = diag �(wi;N (b�))i=1;:::;I� ;
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� ��(b�)�2�;1 is a cuto¤ of D(j)(b�) (as well as eD(j)(b�)), for considering the j-th observation to be in�uential,
where �2�;1 is a quantile of order � for a �

2
1 random variable.

It must be stressed that

�j(�0) > ��(�0) =) Pr(D(j)(�0) > �j(�0)�
2
�;1) = � < Pr(D

(j)(�0) > ��(�0)�
2
�;1) = Pr(Yj in�uential);

�j(�0) < ��(�0) =) Pr(D(j)(�0) > �j(�0)�
2
�;1) = � > Pr(D

(j)(�0) > ��(�0)�
2
�;1) = Pr(Yj in�uential);

which means that a larger probability to be in�uential than � is assigned to those observations with larger
leverage measure than the average. Thus, the �rst property of the criterion above is the higher sensitivity
for those observations which have larger leverage measure (they are potentially more in�uential). On the
other hand, if we increase the sensitivity for detecting outliers by reducing � value, we also increase the
sensitivity for detecting in�uential observations.
It should be also pointed out the reason why the constant of proportionality of ��(b�) is chosen to be

2 for the cuto¤s associated with leverage observations and 1 for the cuto¤s associated with in�uential
observations. Such a calibration for a leverage and also for an in�uential observation, permits us to
establish the following properties

yj leverage and yj outlier) yj in�uential, (22)

yj in�uential 6) yj leverage or yj outlier, (23)

actually when the j-th observation is non leverage being ��(b�) � �j(b�) � 2��(b�), such an observation
could be in�uential and not outlier. Even though (23) is accepted in a theoretical framework, it has never
been considered any calibration based on such a property for none in�uence measure as we know, and
this is mainly due to the lack of distribution based cuto¤ values associated with in�uence measures.
Since according to the criterion given in De�nition 6 we have

p(j; �) � Pr(Yj in�uential) = Pr(�21 >
��(�0)
�j(�0)

�2�;1); (24)

and taking into account that p(j; �) is unknown, because �0 is unknown, we can de�ne the approximated
probability of (24) bp(j; �) � Pr(Yj in�uential) = Pr(�21 > ��(b�)

�j(b�)�2�;1):
Finally, it should be stressed that although a leverage observation is not probabilistically measurable
because xi0; :::; xik are not random coe¢ cients (i 2 f1; :::; Ig), according to the criterion given in De�nition
6 and taking into account De�nition 5 we have

Pr(Yj in�uentialjYj outlier) ' Pr
�
D(j)(b�)
�j(b�) > ��(b�)

�j(b�)�2�;1
���D(j)(b�)
�j(b�) > �2�;1

�
'
( bp(j;�)

� ; �j(b�) < ��(b�)
1; �j(b�) � ��(b�) ;

Pr(Yj outlierjYj in�uential) ' Pr
�
D(j)(b�)
�j(b�) > �2�;1

���D(j)(b�)
�j(b�) > ��(b�)

�j(b�)�2�;1
�
'
(
1; �j(b�) < ��(b�)
�bp(j;�) ; �j(b�) � ��(b�) ;

and

Pr(Yj in�uential and Yj outlier)'
( bp(j; �) < �; �j(b�) < ��(b�)
�; �j(b�) � ��(b�) :
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5 Numerical Examples

Case-deletion diagnostics for logistic regression models are illustrated by examining four data sets. The
method used for determining in�uence on the model assumes that the chosen model is suitable and
any observation that have large in�uence will a¤ect the analysis of the model. A usual tool for detecting
in�uential observations is the index plot (sometimes called dot plot), which consists in plotting a diagnostic
measure against the case order, to visually inspect the in�uence of a case-deletion on the individuals. We
shall graphic such plots simultaneously for Cook�s distance, the leverage measure (21) and standardized
residuals and at the same time we shall analyze whether the conclusions obtained visually through index
plots would di¤er in comparison with the cuto¤s proposed in the criterion given in De�nition 6. We
also shall focus in comparing the numerical accuracy of the approximation of Cook�s distance D(j)(b�),
through eD(j)(b�) given in De�nition 5.
Example 1: Finney (1947). Pregibon [21] and Finney [12] studied the data shown in Table 1 where
the interest is focussed on the occurrence (yi = 1) or nonoccurrence (yi = 0) of vasoconstriction in the
skin of the �nger as a function of the logarithm of volume (x0i1) and rate (x

0
i2) of inspired air measured in

litres. The model, the estimated values of the parameter as well as the goodness-of-�t test statistic are
given as follows

logit(�(xTi
b�)) = b�0 + xi1b�1 + xi2b�2; xij = log x

0
ij ; i = 1; :::; I = 39; j = 1; 2;b�= (b�0; b�1; b�2)T = (�2:8754; 5:1793; 4:5617)T ; k = 2;

X2(b�) =PI
i=1r

�
i (
b�)2 = 34:2338; p-value(X2(b�)) = P (�2I�k�1 > X2(b�)) = 0:5528:

And the estimated probabilities and diagnostics associated with the I = 39 individuals are given in Table
2. The corresponding index plot is in part above of Figure 1 where taking into account the criterion given
in De�nition 6 and the thresholds shown in Table 9, remarkable observations are highlighted through
diamond symbols.

i x0i1 x0i2 yi ni i x0i1 x0i2 yi ni i x0i1 x0i2 yi ni
1 3.70 0.825 1 1 14 1.40 2.330 1 1 27 1.80 1.500 1 1
2 3.50 1.090 1 1 15 0.75 3.750 1 1 28 0.95 1.900 0 1
3 1.25 2.500 1 1 16 2.30 1.640 1 1 29 1.90 0.950 1 1
4 0.75 1.500 1 1 17 3.20 1.600 1 1 30 1.60 0.400 0 1
5 0.80 3.200 1 1 18 0.85 1.415 1 1 31 2.70 0.750 1 1
6 0.70 3.500 1 1 19 1.70 1.060 0 1 32 2.35 0.030 0 1
7 0.60 0.750 0 1 20 1.80 1.800 1 1 33 1.10 1.830 0 1
8 1.10 1.700 0 1 21 0.40 2.000 0 1 34 1.10 2.200 1 1
9 0.90 0.750 0 1 22 0.95 1.360 0 1 35 1.20 2.000 1 1
10 0.90 0.450 0 1 23 1.35 1.350 0 1 36 0.80 3.330 1 1
11 0.80 0.570 0 1 24 1.50 1.360 0 1 37 0.95 1.900 0 1
12 0.55 2.750 0 1 25 1.60 1.780 1 1 38 0.75 1.900 0 1
13 0.60 3.000 0 1 26 0.60 1.500 0 1 39 1.30 1.625 1 1

Table 1: Data from Finney (1947).
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i �(xTi
b�) r�i (

b�) hii(b�) �i(b�) bp(i; 0:05) eD(i)(b�) D(i)(b�)
1 0.9536 0.2315 0.0927 0.1021 0.0706 0.0055 0.0053
2 0.9821 0.1379 0.0429 0.0448 0.0063 0.0009 0.0008
3 0.9213 0.3016 0.0612 0.0652 0.0237 0.0059 0.0057
4 0.0748 3.6814 0.0867 0.0950 0.0609 1.2873 3.5603
5 0.7816 0.5622 0.1158 0.1310 0.1104 0.0414 0.0386
6 0.7295 0.6615 0.1524 0.1798 0.1730 0.0787 0.0734
7 0.0011 �0.0329 0.0076 0.0077 0.0000 0.0000 0.0000
8 0.5097 �1.0493 0.0559 0.0592 0.0176 0.0652 0.0640
9 0.0087 �0.0954 0.0342 0.0354 0.0021 0.0003 0.0003
10 0.0009 �0.0294 0.0072 0.0073 0.0000 0.0000 0.0000
11 0.0014 �0.0371 0.0097 0.0098 0.0000 0.0000 0.0000
12 0.2047 �0.5496 0.1481 0.1738 0.1658 0.0525 0.0486
13 0.3753 �0.8470 0.1628 0.1944 0.1901 0.1395 0.1346
14 0.9385 0.2633 0.0551 0.0583 0.0167 0.0040 0.0039
15 0.8408 0.4675 0.1336 0.1542 0.1412 0.0337 0.0316
16 0.9758 0.1609 0.0402 0.0419 0.0048 0.0011 0.0011
17 0.9950 0.0715 0.0172 0.0175 0.0000 0.0001 0.0001
18 0.1059 3.0555 0.0954 0.1054 0.0751 0.9845 2.2026
19 0.5346 �1.1501 0.1315 0.1514 0.1376 0.2003 0.2143
20 0.9453 0.2471 0.0525 0.0554 0.0141 0.0034 0.0033
21 0.0114 �0.1096 0.0373 0.0387 0.0033 0.0005 0.0005
22 0.1495 �0.4423 0.1015 0.1129 0.0855 0.0221 0.0202
23 0.5120 �1.0656 0.0761 0.0824 0.0442 0.0935 0.0943
24 0.6519 �1.4203 0.0717 0.0773 0.0377 0.1558 0.1745
25 0.8993 0.3449 0.0587 0.0623 0.0206 0.0074 0.0071
26 0.0248 �0.1640 0.0548 0.0579 0.0164 0.0016 0.0015
27 0.8827 0.3772 0.0661 0.0708 0.0299 0.0101 0.0096
28 0.4469 �0.9295 0.0647 0.0692 0.0281 0.0597 0.0570
29 0.5535 0.9847 0.1682 0.2022 0.1989 0.1961 0.1874
30 0.0097 �0.1018 0.0507 0.0534 0.0124 0.0006 0.0005
31 0.7224 0.7138 0.2459 0.3261 0.3117 0.1661 0.1549
32 5�10�7 �0.0007 0.0000 0.0000 0.0000 0.0000 0.0000
33 0.5926 �1.2382 0.0510 0.0538 0.0127 0.0824 0.0848
34 0.7712 0.5619 0.0601 0.0640 0.0224 0.0202 0.0191
35 0.7740 0.5560 0.0552 0.0584 0.0168 0.0180 0.0171
36 0.8110 0.5140 0.1177 0.1333 0.1136 0.0352 0.0329
37 0.4469 �0.9295 0.0647 0.0692 0.0281 0.0597 0.0570
38 0.1919 �0.5137 0.1000 0.1112 0.0832 0.0293 0.0267
39 0.6678 0.7248 0.0531 0.0561 0.0147 0.0295 0.0284

Table 2: Diagnostics in data from Finney (1947).



On the Asymptotic Distribution of Cook�s distance in Logistic Regression Models 14

Example 2: Brown (1980). Zelterman [24, Section 3.3] and Brown [6] studied the data shown in Table
3 where the interest is focussed on the evidence of lymphatic cancer (yi = 1) or non evidence of lymphatic
cancer (yi = 0) in prostate cancer patients for predicting lymph nodal involvement of cancer as a function
of �ve covariates (three dichotomous and two continuous): the X-ray �nding (xi1 = 1 (presence), xi1 = 0
(absence)), size of the tumor by palpation (xi2 = 1 (serious), xi2 = 0 (non serious)), pathology grade by
biopsy (xi3 = 1 (serious), xi3 = 0 (non serious)), the age of the patient at the time of diagnosis (xi4)
and serum acid phosphatase level (xi5). The model, the estimated values of the parameter as well as the
goodness-of-�t test statistic are given as follows

logit(�(xTi
b�)) = b�0 + xi1b�1 + xi2b�2 + xi3b�3 + xi4b�4 + xi5b�5; i = 1; :::; I = 53;b�= (b�0; b�1; b�2; b�3; b�4; b�5)T = (0:0618; 2:0453; 1:5641; 0:7614; 0:0692; 0:0243)T ; k = 5;

X2(b�) =PI
i=1r

�
i (
b�)2 = 46:7905; p-value(X2(b�)) = P (�2I�k�1 > X2(b�)) = 0:4812;

and the estimated probabilities and diagnostics associated with the I = 53 individuals are given in Table
4. The corresponding index plot is in part below of Figure 1 where taking into account the criterion given
in De�nition 6 and the thresholds shown in Table 9, remarkable observations are highlighted through
diamond symbols.

i xi1 xi2 xi3 xi4 xi5 yi ni i xi1 xi2 xi3 xi4 xi5 yi ni
1 0 0 0 66 48 0 1 28 0 1 0 61 50 0 1
2 0 0 0 68 56 0 1 29 0 1 1 64 50 0 1
3 0 0 0 66 50 0 1 30 0 1 0 63 40 0 1
4 0 0 0 56 52 0 1 31 0 1 1 52 55 0 1
5 0 0 0 58 50 0 1 32 0 1 1 66 59 0 1
6 0 0 0 60 49 0 1 33 1 1 0 58 48 1 1
7 1 0 0 65 46 0 1 34 1 1 1 57 51 1 1
8 1 0 0 60 62 0 1 35 0 1 0 65 49 1 1
9 0 0 1 50 56 1 1 36 0 1 1 65 48 0 1
10 1 0 0 49 55 0 1 37 1 1 1 59 63 0 1
11 0 0 0 61 62 0 1 38 0 1 0 61 102 0 1
12 0 0 0 58 71 0 1 39 0 1 0 53 76 0 1
13 0 0 0 51 65 0 1 40 0 1 0 67 95 0 1
14 1 0 1 67 67 1 1 41 0 1 1 53 66 0 1
15 0 0 1 67 47 0 1 42 1 1 1 65 84 1 1
16 0 0 0 51 49 0 1 43 1 1 1 50 81 1 1
17 0 0 1 56 50 0 1 44 1 1 1 60 76 1 1
18 0 0 0 60 78 0 1 45 0 1 1 45 70 1 1
19 0 0 0 52 83 0 1 46 1 1 1 56 78 1 1
20 0 0 0 56 98 0 1 47 0 1 0 46 70 1 1
21 0 0 0 67 52 0 1 48 0 1 0 67 67 1 1
22 0 0 0 63 75 0 1 49 0 1 0 63 82 1 1
23 0 0 1 59 99 1 1 50 0 1 1 57 67 1 1
24 0 0 0 64 187 0 1 51 1 1 0 51 72 1 1
25 1 0 0 61 136 1 1 52 1 1 0 64 89 1 1
26 0 0 0 56 82 1 1 53 1 1 1 68 126 1 1
27 0 1 1 64 40 0 1

Table 3: Data from Brown (1980).
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i �(xTi
b�) r�i (

b�) hii(b�) �i(b�) bp(i; 0:05) eD(i)(b�) D(i)(b�)
1 0.0342 �0.1911 0.0302 0.0311 0.0000 0.0011 0.0011
2 0.0361 �0.1968 0.0327 0.0338 0.0001 0.0013 0.0013
3 0.0358 �0.1958 0.0306 0.0316 0.0000 0.0012 0.0012
4 0.0724 �0.2852 0.0409 0.0426 0.0003 0.0035 0.0034
5 0.0608 �0.2590 0.0359 0.0372 0.0001 0.0025 0.0024
6 0.0521 �0.2384 0.0328 0.0339 0.0001 0.0019 0.0019
7 0.2184 �0.5805 0.1707 0.2058 0.1011 0.0694 0.0676
8 0.3684 �0.8352 0.1638 0.1959 0.0928 0.1366 0.1340
9 0.2182 2.0680 0.1620 0.1933 0.0907 0.8265 0.9728
10 0.5131 �1.1961 0.2634 0.3576 0.2135 0.5116 0.5183
11 0.0658 �0.2699 0.0339 0.0351 0.0001 0.0026 0.0025
12 0.0974 �0.3353 0.0405 0.0422 0.0003 0.0047 0.0046
13 0.1315 �0.4042 0.0733 0.0791 0.0082 0.0129 0.0125
14 0.4649 1.2616 0.2767 0.3826 0.2291 0.6089 0.6344
15 0.0646 �0.2722 0.0685 0.0735 0.0061 0.0054 0.0054
16 0.0930 �0.3311 0.0645 0.0690 0.0046 0.0076 0.0074
17 0.1373 �0.4193 0.0949 0.1048 0.0216 0.0184 0.0179
18 0.1002 �0.3407 0.0406 0.0424 0.0003 0.0049 0.0048
19 0.1796 �0.4886 0.0831 0.0907 0.0135 0.0217 0.0209
20 0.1929 �0.5089 0.0767 0.0831 0.0099 0.0215 0.0210
21 0.0351 �0.1939 0.0313 0.0323 0.0000 0.0012 0.0012
22 0.0776 �0.2957 0.0379 0.0394 0.0002 0.0034 0.0034
23 0.2988 1.6876 0.1760 0.2136 0.1075 0.6082 0.6841
24 0.5453 �1.6520 0.5606 1.2758 0.5102 3.4817 4.3771
25 0.7673 0.6177 0.2053 0.2583 0.1433 0.0986 0.0958
26 0.1394 2.5549 0.0540 0.0571 0.0019 0.3725 0.4664
27 0.2551 �0.6215 0.1135 0.1280 0.0376 0.0494 0.0475
28 0.2007 �0.5239 0.0849 0.0928 0.0146 0.0255 0.0247
29 0.3041 �0.7012 0.1114 0.1254 0.0357 0.0617 0.0592
30 0.1463 �0.4332 0.0865 0.0947 0.0156 0.0178 0.0173
31 0.5311 �1.1427 0.1324 0.1526 0.0569 0.1993 0.2085
32 0.3214 �0.7363 0.1265 0.1449 0.0507 0.0785 0.0754
33 0.6948 0.7313 0.1788 0.2177 0.1109 0.1164 0.1120
34 0.8490 0.4436 0.0960 0.1062 0.0225 0.0209 0.0201
35 0.1567 2.4307 0.0891 0.0978 0.0174 0.5776 0.7175
36 0.2797 �0.6631 0.1170 0.1325 0.0410 0.0583 0.0559
37 0.8676 �2.6734 0.0830 0.0906 0.0135 0.6473 0.9003
38 0.4711 �1.0146 0.1349 0.1559 0.0596 0.1605 0.1591
39 0.4515 �0.9714 0.1277 0.1464 0.0519 0.1381 0.1402
40 0.3314 �0.7629 0.1482 0.1740 0.0745 0.1013 0.0988
41 0.5801 �1.2544 0.1219 0.1388 0.0459 0.2183 0.2311
42 0.8782 0.3915 0.0955 0.1056 0.0221 0.0162 0.0155
43 0.9499 0.2363 0.0551 0.0583 0.0021 0.0033 0.0032
44 0.8935 0.3585 0.0729 0.0786 0.0080 0.0101 0.0097
45 0.7261 0.6897 0.2069 0.2608 0.1452 0.1241 0.1215
46 0.9208 0.3027 0.0611 0.0651 0.0036 0.0060 0.0058
47 0.5360 1.0626 0.2332 0.3042 0.1774 0.3435 0.3360
48 0.2005 2.1101 0.1042 0.1164 0.0292 0.5182 0.6248
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49 0.3227 1.5285 0.1019 0.1134 0.0272 0.2650 0.2912
50 0.5176 1.0179 0.1007 0.1119 0.0262 0.1160 0.1160
51 0.8690 0.4128 0.1149 0.1298 0.0390 0.0221 0.0215
52 0.8030 0.5321 0.1337 0.1543 0.0583 0.0437 0.0420
53 0.9422 0.2594 0.0874 0.0958 0.0162 0.0064 0.0063

Table 4: Diagnostics in data from Brown (1980).

Example 3: Feigl and Zelen (1965). Muñoz-García et al. [18], Jonhson [16], Cook and Weisberg
[8, page 185] and Feigl and Zelen [13] studied the data, shown in Table 5, on survival (yi = 1) or non
survival (yi = 0) of N = 33 leukemia patients along 52 weeks as a function of a certain morphological
characteristic in the white cells �nding (xi1 = 1 (presence), xi1 = 0 (absence)) and their white blood cell
count (xi2). The model, the estimated values of the parameter as well as the goodness-of-�t test statistic
are given as follows

logit(�(xTi
b�)) = b�0 + xi1b�1 + xi2b�2; i = 1; :::; I = 30;b�= (b�0; b�1; b�2)T = (�1:3073; 2:2610;�0:0317)T ; k = 2;

X2(b�) =PI
i=1r

�
i (
b�)2 = 23:9798; p-value(X2(b�)) = P (�2I�k�1 > X2(b�)) = 0:6314:

The estimated probabilities and diagnostics associated with the I = 30 observations are given in Table 6.
The corresponding index plot is in part above of Figure 2 where taking into account the criterion given
in De�nition 6 and the thresholds shown in Table 9, remarkable observations are highlighted through
diamond symbols.

i xi1 xi2 yi ni i xi1 xi2 yi ni i xi1 xi2 yi ni
1 1 2.30 1 1 11 1 9.40 1 1 21 0 5.30 0 1
2 1 0.75 1 1 12 1 32.00 0 1 22 0 10.00 0 1
3 1 4.30 1 1 13 1 35.00 0 1 23 0 19.00 0 1
4 1 2.60 1 1 14 1 52.00 0 1 24 0 27.00 0 1
5 1 6.00 0 1 15 1 100.00 1 3 25 0 28.00 0 1
6 1 10.50 1 1 16 0 4.40 1 1 26 0 31.00 0 1
7 1 10.00 1 1 17 0 3.00 1 1 27 0 26.00 0 1
8 1 17.00 0 1 18 0 4.00 0 1 28 0 21.00 0 1
9 1 5.40 0 1 19 0 1.50 0 1 29 0 79.00 0 1
10 1 7.00 1 1 20 0 9.00 0 1 30 0 100.00 0 2

Table 5: Data from Feigl and Zelen (1965).
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i �(xTi
b�) r�i (

b�) hii(b�) �i(b�) bp(i; 0:05) eD(i)(b�) D(i)(b�)
1 0.7070 0.6737 0.0868 0.0950 0.0147 0.0431 0.0414
2 0.7171 0.6582 0.0892 0.0980 0.0163 0.0425 0.0407
3 0.6936 0.6943 0.0837 0.0914 0.0129 0.0440 0.0423
4 0.7050 0.6768 0.0863 0.0944 0.0144 0.0432 0.0415
5 0.6820 �1.5280 0.0813 0.0885 0.0115 0.2067 0.2299
6 0.6502 0.7630 0.0761 0.0824 0.0088 0.0480 0.0462
7 0.6538 0.7572 0.0766 0.0830 0.0090 0.0476 0.0458
8 0.6020 �1.2767 0.0722 0.0778 0.0070 0.1269 0.1347
9 0.6861 �1.5433 0.0822 0.0895 0.0119 0.2132 0.2378
10 0.6751 0.7233 0.0800 0.0870 0.0108 0.0455 0.0437
11 0.6582 0.7503 0.0772 0.0837 0.0093 0.0471 0.0453
12 0.4843 �1.0125 0.0840 0.0917 0.0130 0.0940 0.0891
13 0.4605 �0.9685 0.0899 0.0988 0.0167 0.0927 0.0855
14 0.3322 �0.7600 0.1388 0.1612 0.0610 0.0931 0.0756
15 0.0977 2.3200 0.6487 1.8467 0.5800 9.9398 143.6078
16 0.1904 2.1693 0.0967 0.1070 0.0215 0.5035 0.7902
17 0.1974 2.1266 0.1009 0.1123 0.0248 0.5077 0.7889
18 0.1924 �0.5139 0.0979 0.1085 0.0224 0.0286 0.0266
19 0.2051 �0.5371 0.1059 0.1184 0.0288 0.0342 0.0316
20 0.1689 �0.4712 0.0847 0.0925 0.0134 0.0205 0.0192
21 0.1861 �0.5023 0.0941 0.1038 0.0196 0.0262 0.0243
22 0.1645 �0.4632 0.0825 0.0899 0.0121 0.0193 0.0180
23 0.1289 �0.3983 0.0676 0.0725 0.0052 0.0115 0.0109
24 0.1029 �0.3494 0.0602 0.0640 0.0030 0.0078 0.0075
25 0.1000 �0.3438 0.0595 0.0633 0.0028 0.0075 0.0072
26 0.0918 �0.3275 0.0578 0.0613 0.0024 0.0066 0.0063
27 0.1059 �0.3551 0.0609 0.0648 0.0031 0.0082 0.0078
28 0.1219 �0.3854 0.0654 0.0699 0.0044 0.0104 0.0099
29 0.0215 �0.1516 0.0433 0.0452 0.0004 0.0010 0.0010
30 0.0112 �0.1557 0.0696 0.0748 0.0060 0.0018 0.0018

Table 6: Diagnostics in data from Feigl and Zelen (1965).
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Example 4: Bickel et al. (1975). Table 7, taken from Bickel et al. [5], came from a study of the
e¤ect of applicant�s gender on whether admitted into graduate school at Berkeley University in 1973.
This example is the traditional one for studying diagnostics in loglinear models (see for instance Agresti
[1, Section 7.3 in the �rst Edition (1990)]). Loglinear model is related to logistic model, as is explained
in Agresti [2, Section 6.5] in such a way that the admission is a response variable, and covariates, the sex
(S) and the department (D), for the logistic model should be understand through the proposed loglinear
model. We shall focus on the loglinear model log(�(exTijkb�)) = b�0 + b�Si + b�Dj + b�Ak + b�SDij + b�SAik + b�DAjk
whose corresponding logistic model is given by

logit(�(xTij
b�)) = b�0 + b�Si + b�Dj ; i = 1; 2; j = 1; :::; 6; I = 2� 6 = 12;P2

i=1
b�Si =P6

j=1
b�Dj = 0 (restrictions to avoid overparametrization),b�= (b�0; b�S1 ; b�D1 ; b�D2 ; b�D3 ; b�D4 ; b�D5 )T

= (�0:6424;�0:0499; 1:2744; 1:2310; 0:0118;�0:0202;�0:4649)T ; k = 6;

X2(b�) =P2
i=1

P6
j=1r

�
ij(
b�)2 = 18:8243; p-value(X2(b�)) = P (�2I�k�1 > X2(b�)) = 0:0020:

Admitted
Male Female

Department Yes No Yes No
A 512 313 89 19
B 353 207 17 8
C 120 205 202 391
D 138 279 131 244
E 53 138 94 299
F 22 351 24 317

Table 7: Data from Bickel et al. (1975).

Therefore, the design matrix of the model is given by

X =

0BBBBBBBBBBBBBBBBBB@

1 1 1 0 0 0 0
1 1 0 1 0 0 0
1 1 0 0 1 0 0
1 1 0 0 0 1 0
1 1 0 0 0 0 1
1 1 �1 �1 �1 �1 �1
1 �1 1 0 0 0 0
1 �1 0 1 0 0 0
1 �1 0 0 1 0 0
1 �1 0 0 0 1 0
1 �1 0 0 0 0 1
1 �1 �1 �1 �1 �1 �1

1CCCCCCCCCCCCCCCCCCA

;

which is in correspondence with the lexicographical order chosen for the indices of the vector of observed
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frequencies as well as the vector of trials

y = (y11; y21; y31; y41; y51; y61; y12; y22; y32; y42; y52; y62)
T

= (512; 353; 120; 138; 53; 22; 89; 17; 202; 131; 94; 24)T ;

(n11; n21; n31; n41; n51; n61; n12; n22; n32; n42; n52; n62)
T

= (825; 560; 325; 417; 191; 373; 108; 25; 593; 375; 393; 341)T :

Observe that each row xTij of X is also in lexicographical order. In Table 8 the estimated probabilities
and diagnostics associated with the I = 12 observations are given. The corresponding index plot is in
part below of Figure 2 where taking into account the criterion given in De�nition 6 and the thresholds
shown in Table 9, remarkable observations are highlighted through diamond symbols.

i j �(xTij
b�) r�ij(

b�) hij;ij(b�) �ij(b�) bp(ij; 0:05) eD(ij)(b�) D(ij)(b�)
1 1 0.6415 �4.0273 0.9031 9.3172 0.2017 151.117 207.170
2 1 0.6315 �0.2797 0.9599 23.9321 0.4256 1.873 1.941
3 1 0.3361 1.8808 0.5492 1.2181 0.0004 4.309 4.383
4 1 0.3290 0.1413 0.6580 1.9242 0.0050 0.038 0.039
5 1 0.2392 1.6335 0.4223 0.7311 0.0000 1.951 2.017
6 1 0.0615 �0.3026 0.5358 1.1542 0.0003 0.106 0.102
1 2 0.6642 4.0273 0.2366 0.3100 0.0000 5.028 4.950
2 2 0.6544 0.2797 0.0755 0.0817 0.0000 0.006 0.006
3 2 0.3588 �1.8808 0.7603 3.1724 0.0287 11.223 10.987
4 2 0.3514 �0.1413 0.6317 1.7150 0.0029 0.034 0.034
5 2 0.2578 �1.6335 0.7330 2.7455 0.0187 7.326 6.781
6 2 0.0676 0.3026 0.5345 1.1483 0.0003 0.105 0.109

Table 8: Diagnostics in data from Vickel et al. (1975).

�(b�) 2�(b�) �(b�)�0:05;1 (�20:5;k+1)
Data for bp(i; �) for �i(b�) for eD(i)(b�) and D(i)(b�) k

Finney (1947) 0.0869 0.1738 0.3338 (2.3660) 2
Brown (1980) 0.1440 0.2880 0.5533 (5.3481) 5

Feigl and Zelen (1965) 0.1472 0.2945 0.5657 (2.3660) 2
Vickel at al. (1975) 3.9541 7.9083 15.1898 (6.3458) 6

Table 9: Thresholds for leverage and in�uence measures.
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Conclusions

Inspecting Tables 2, 4, 6 and 8 we can conclude that overall accuracy of the approximation of D(i)(b�)
through eD(i)(b�) is very good, only in the most extreme values of D(i)(b�) could be quite bad, in any case
it seems that in such extreme cases it holds eD(i)(b�) < D(i)(b�). For instance, the worst approximation
of all the examples is in Feigl and Zelen (1965), where eD(15)(b�) = 9:9398 << D(15)(b�) = 143:6078.
We recommend not using the approximate value eD(i)(b�) in order to be exhaustive using the criterion
given in De�nition 6, because for example referred to the case 48 in data from Brown (1980), it holdseD(48)(b�) = 0:5182 < �(b�)�20:05;1 = 0:5657 < D(48)(b�) = 0:6248 and the conclusion for classifying such a
case as in�uential would be di¤erent for both measures.
Although index plots of D(j)(b�) are useful graphical devices, when there are a great amount of

observations such plots lose visual e¤ectiveness. Unless there is no any observation that stand out clearly
from the rest, it is easy that all D(j)(b�) values seem to be about the same, even some of them are
in�uential. Index plots tend to be conservative. This is actually that happens in Examples 2 and 3.
In Zelterman [24, Section 3.3] several in�uence measures are provided for Example 2 and therein apart
from observation 24 another cases are �agged as in�uential, as it occurs through the criterion given in
De�nition 6 (see the diamond points referred to the in�uential analysis through the criterion given in
De�nition 6 in part below of Figure 1). In Muñoz-García et al. [18] by analyzing Example 3 through two
in�uence power divergence measures it is also concluded that cases 16 and 17 are in�uential, obviously
more moderately than case 15 (see the diamond points referred to the in�uential analysis through the
criterion given in De�nition 6 in part above of Figure 2).
To apply the practical operational rule consisting in classify cases with D(j)(b�) values greater than

50-th percentile of the chi-square distribution mentioned in Section 1, in Table 9 the cuto¤ values are
provided (see the column referred to as �20:5;k+1). As it happens for the index plots it seems that such a
rule tends to highlight the most in�uential observations (see Tables 2, 4 and 6 referred to Examples 1, 2
and 3 respectively), actually does not detect any in�uential case in Example 2. However in Example 4,
applying the mentioned rule apart from case (1,1) we should also consider (3,2) and (5,2) as in�uential
(see Table 8), and having so many in�uential cases in only 12 observations (it a¤ects a quarter part of
the data and the middle of departments) does not seem logical. As it was suggested in Muller and Chen
Mok [17] focused on linear regression, we do not recommend such a rule.
It is well known that when more than one outlier appears the problem of looking for these observations

becomes more di¢ cult due essentially to the masking (false negative outlier detection because the presence
of another outlier) and swamping e¤ects (false positive outlier detection because the presence of another
outlier). In�uential observations may pull the �tted model towards itself which means that its own residual
is reduced and the residuals for the rest of observations are increased. However the computational e¤ort
for identifying in�uence cases through the group-deletion instead of the case-deletion is usually quite
high, and most of statistical packages include only the simplest one. Moreover sometimes the in�uence
analysis is solved only by the case-deletion. For instance, in Example 4 if we take out the department
A, the leverage cases and also outliers vanish, and because X2(b�) = P2

i=1

P6
j=1r

�
ij(
b�)2 = 2:5582, p-

value(X2(b�)) = P (�2(I�k�1)�2 > X2(b�)) = 0:2783 with b�S1 = 0:0153, or X2(b�) = P2
i=1

P6
j=1r

�
ij(
b�)2 =

2:6903, p-value(X2(b�)) = P (�2(I�k�1)�2+1 > X2(b�)) = 0:4419 with �S1 = 0, we can conclude that the
admission model is conditionally independent to sex.
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Figure 1: Index Plots for Examples 1 and 2.
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