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Abstract

To determine the effect of a set of inaccurate parameters in Gaussian Bayesian networks, it
is necessary to study the sensitivity of the model. With this aim we propose a sensitivity
analysis based on comparing two different models: the original model with the initial
parameters assigned to the Gaussian Bayesian network and the perturbed model obtained
after perturbing a set of inaccurate parameters with specific characteristics.

The network’s outputs obtained for both models, after the evidence propagation, are
going to be compared with the Kullback-Leibler divergence. This measure is useful to
discriminate between two probability distributions, comparing the whole behavior of the
considered probability distributions.

Depending on the set of parameters that are going to be perturbed, different ex-
pressions for the Kullback-Leibler are obtained. It is possible to determine the set of
parameters that mostly disturb the network’s output, detecting the variables that must
be accurately described in the model.

The methodology developed in this work is for a Gaussian Bayesian network with a
set of variables of interest and a set of evidential variables.

One example is introduced to show the sensitivity analysis proposed.

Introduction

In Bayesian networks some sensitivity anal-
ysis had been proposed to study the effect
of inaccurate parameters over the network’s
output. Most of them, like the analyses and
methodologies proposed by Laskey (1995),
Coupé, van der Gaag and Habbema (2000),
Kjeerulff and van der Gaag (2000),

Bednarski, Cholewa and Frid (2004) or
Chan and Darwiche (2005), to name a few, are
developed to study the sensitivity in discrete
Bayesian networks.

networks
performed

In Gaussian Bayesian
Castillo and Kjeerulff (2003)

a methodology based on
changes in the parameters, with one
variable of interest in the model, and
Goémez-Villegas, Main and Susi (2007) de-
veloped a sensitivity analysis to study any kind
of perturbations, small or large changes in the
parameters, when there exists one variable of
interest in the Gaussian Bayesian network.

In the present work, we study a generaliza-
tion of the sensitivity analysis proposed by
Gémez-Villegas, Main and Susi (2007), be-
cause now we consider a Gaussian Bayesian
network with a set of variables of interest and
a set of evidential variables.

studying small

This paper is organized as follows. In Section



2 a brief introduction is presented, defining first
a Bayesian network and a Gaussian Bayesian
network and reviewing the evidence propaga-
tion for these models. Moreover, we introduce
the working example. In Section 3, we present
the methodology developed to study the sensi-
tivity of a Gaussian Bayesian network with a
set of variables of interest and in Section 4, we
perform the sensitivity analysis proposed with
the working example. Finally, the paper ends
with some conclusions.

2 Gaussian Bayesian networks

A Bayesian network is a probabilistic graphical
model useful to study a set of random variables
with a specified dependence structure.
Bayesian networks have been studied by au-
thors like Pearl (1988), Lauritzen (1996) or
Jensen (2001), among others.

Definition 1 (Bayesian network). A Bayesian
network is a couple (G,P) where G is a
directed acyclic graph (DAG) whose nodes
are random variables X = {Xi,..,X,}
and edges represent probabilistic dependencies,
P={p(z1|pa(z1)), ..., p(zn|palzn))} being a set
of conditional probability distributions (one for
each variable), pa(z;) the set of parents of node
X; in G and pa(z;) C {Xq,..., Xi—1}.

The set P defines the joint probability distribu-

tion as
n

p(x) = [] p(zilpa(z:)). (1)

i=1

Because of this modular structure, Bayesian
networks are useful to study real life problems
in complex domains.

Depending on the kind of variables of the
problem, it is possible to describe discrete,
Gaussian and mixed Bayesian networks. The
results presented in this paper are developed
for Gaussian Bayesian networks defined next

Definition 2 (Gaussian Bayesian network).
A Gaussian Bayesian network is a Bayesian
network where the joint probability distribution
of X = {Xi,...,X,,} is a multivariate normal

distribution N(u,Y), then the joint density
fx) =

(2 R exp {5 x = 0B x )}
@)

where p is the n-dimensional mean vector and
3. the nxn positive definite covariance matrix.

Moreover, the conditional probability distri-
bution of X;, that verifies the expression (1), is
a univariate normal distribution with density

i—1
f(ailpa(a) ~ N(@ilps + Y Bij(xj — py), vi)
j=1
where p; is the mean of the variables X;, 3;;
are the regression coefficients of X; on its
parents, and v; = X — Eipa(xi)Z};i(m)Z;Pa(m
is the conditional variance of X; given its
parents at the DAG. It can be pointed that

pa(x;) € {X1, ..., Xi—1}.

It is possible to work with a Bayesian net-
work introducing evidence at a variable of the
network and computing the probability distri-
bution of the rest of the variables given the
evidence. This process in known as evidence
propagation. Therefore, when there exists evi-
dence about one variable of the problem, know-
ing its value, the evidence propagation updates
the probability distributions of the rest of the
variables of the network given the evidence.
Different algorithms had been developed to
propagate the evidence in Bayesian networks.
In Gaussian Bayesian networks most of the
algorithms proposed are based on computing
the conditional probability distribution for a
multivariate normal distribution given a set of
evidential variables.

Thereby, to perform the evidence propaga-
tion in a Gaussian Bayesian network we con-
sider a partition of the set of variables, where
X = (E,Y), being E = e the set of
evidential variables, e the evidence about the
variables in E, and Y the rest of variables
of the problem that will be considered as the
set of variables of interest. After perform-
ing the evidence propagation, the conditional



probability distribution of the variables of in-
terest Y given the evidence E = e is a multi-
variate normal distribution, being Y|E =e ~
N(y|pYE=e nY[E=e) where

Y|E=e

Iz = py + SyeSggle —ue)  (3)

and

EYlE:e =Yvyy — EYEEE]{]EEY (4)

Next, the working example of a Gaussian
Bayesian network is introduced.

Example 1. The interest of the problem is
about the duration of time that a machine
works for. The machine is made up of 7
elements, connected as shown the DAG in
Figure 1.

@?@

Figure 1: DAG of the Gaussian Bayesian net-
work in Example 1

It is known that the time that each element is
working is a normal distribution, being the joint
probability distribution of X = {X1, Xo, ..., X7}
a multivariate normal distribution, where X ~

N(u, ) with parameters

1 100 1 0 2 2

3 010 2 2 8 8

2 002 0 2 4 4
pu=111[];2=(1 2 0 6 4 20 20

4 0 2 2 4 10 28 28

5 2 8 4 20 28 97 97

8 2 8 4 20 28 97 99

The Gaussian Bayesian network that

represents the problem is given by the joint
probability distribution of X ~ N(x|u,>)
and by the DAG in Figure 1, showing the
dependence structure between the variables of
the example.

Experts know that the evidence is given by
E={X=2,X,=2X3=1}

Then, performing the evidence propagation over
the initial model that describes the Gaussian
Bayesian network, the probability distribution
of the rest of the variables given the evidence,
Y |E = e, is a multivariate normal distribution
Y|E ~ N(y|p¥®, £Y®) with parameters

0 10 2 2
1 04 8 8

Y[E _ .sY|E _
H 3 |® 2 8 21 21
0 2 8 21 23

The effect of introducing the evidence updates
the parameters of the marginal distribution of
the variables Y given by

1 6 4 20 20
4 4 10 28 28

Y __ .Y _
= [ 20 28 97 97
8 20 28 97 99

and the independence relations because X4 and
X5 become dependent.

3 Sensitivity Analysis

The aim of this work is to generalize the
one way sensitivity analysis developed by




Gomez-Villegas, Main and Susi (2007), useful
to study the effect of inaccuracy over the
parameters of a Gaussian Bayesian network
for one variable of interest after the evidence
propagation.

In this paper we want to study the effect
of inaccuracy over a set of parameters of a
Gaussian Bayesian network considering a set of
variables of interest.

The proposed methodology consists in com-
paring two different network’s outputs: the first
one, given by the network’s output after the
evidence propagation at the original model, and
the other one, given by the network’s output
after the evidence propagation with a perturbed
model. The perturbed model is obtained after
adding a set of perturbations to the inaccurate
parameters, as will be shown in Subsection 3.2.
In this case, both network’s outputs are the
conditional probability distributions of the set
of variables of interest, given the evidence.

3.1 Kullback-Leibler divergence

To compare the network’s outputs we work with
the n-dimensional Kullback-Leibler divergence
(Kullback-Leibler, 1951). This measure takes
into account the whole behavior of the distribu-
tions to be considered, therefore, this measure is
a good way to compare the network’s outputs
being multivariate normal distributions of the
variables of interest, given the evidence. Fur-
thermore, the Kullback-Leibler (KL) divergence
has been used in statistical inference in the past
by authors like Jeffreys, Fisher and Lindley.

Definition 3 (Kullback-Leibler divergence).
Let f(w) and f'(w) be two probability densities
defined over the same domain. The Kullback-
Leibler divergence is given by

f(w)
f'(w)
When the probability densities to be com-

pared with the KL divergence are multivariate
normal distributions expression (5) can be

KL(f(w). f'(w) = [ fw)n5 5w ()

written as
KL(f,f') =
_ % {m E/' +tr (Z2) - dim(X)} +
% (' =) = (= )] (6)

where f is the joint probability density of
X ~ N(x|u,X) and f’ is the joint probability
density of X ~ N (x|u/, X").

For small KL divergences, next to zero, it can
be concluded that the distributions to be com-
pared are similar.

3.2 Sensitivity Analysis: methodology

The sensitivity analysis consists in compar-
ing, with the KL divergence, two different
network’s output, obtained for two different
models. These models are the original and the
perturbed model.

The original model is the initial description
of the parameters of the network, given by
X ~ N(x|u,¥). The perturbed model quan-
tifies the uncertainty about the inaccurate
parameters of the original model, as a set
of additive perturbations. These perturba-
tions are given by the perturbed mean vector
6 and the perturbed covariance matriz A, where

OB Agg Agy
0= A=
( oy ) ( AvE Avyy >

Depending on the inaccurate parameters it
is possible to consider five different perturbed
models obtained when the uncertainty is about
the evidential means, the means of interest,
the wvariances-covariances between evidential
variables, the variances-covariances between
variables of interest and about the covariances
between evidential variables and variables of
interest.  Therefore, each perturbed model
considers a set of perturbations, having next
perturbed models:



X ~ N(x|u’®, %) where

M5E2<ME+5E>
Ky

e X ~ N(x|u’¥,X) being

1Y = HE
uwy + oy

X ~ N(x|p, Z2E8) with

SAEE _ YEE + Agg XEY
XYE Yyy

X ~ N(x|p, Z2YY) where

$Avy _ YEE YEY
YyE Yyy +Ayy

X ~ N(x|p, Z2YE) where

YEE

»AvE _ Yey + Apy
YyE + AyE

Yyy

In this way, at the proposed sensitivity

analysis the network’s outputs of all the per-
turbed models are going to be compared with
the network’s output of the original model given
by the conditional probability distribution ob-
tained after the evidence propagation for the
model X ~ N(x|u,X). Thereby, five different
KL divergences are obtained, one for each per-
turbed model.
When the KL divergence is large for a specific
perturbed model we can conclude that the set
of parameters perturbed must be reviewed to
describe the network more accurately. However,
when the KL divergence is small, close to zero,
it can be concluded that the network is not sen-
sitive to the proposed perturbations.

3.3 Main results

After computing the KL divergence for each
perturbed model, the results are in Propositions
1 and 2.

Proposition 1 (Uncertainty about the mean
vector). Let (G,P) be a Gaussian Bayesian
network with X = {E, Y} and X ~

N (x|p, X) where the mean vector y is uncertain.

Giving values to the perturbed mean vector 6 =
(85, 6y)T, the following results are obtained

1. When the perturbation g is added to the
mean vector of the evidential variables, the
perturbed model after the evidence propaga-
tion is Y|E, 6g ~ N(y|pY B0 SYIE) 4ith,
/LY‘E’(SE = ,uY‘E — ZYEZE]{]&E The KL
divergence is

1 -1
KL'® = {(%MIT (=¥=) MléE}

with M, = SyeZgn

2. When the perturbation dy is added to the
mean vector of the variables of interest, af-
ter the evidence propagation the perturbed
model is Y|E, oy ~ N(y|pYIEdy nYIE)
where pYBoY = [ YE 15 and the KL
divergence is

KLY — % {55 (2Y|E)—1 5Y]

Proof. When there is uncertainty about the
mean vector, we work with two perturbed
models, depending on the set of inaccurate
parameters. Parameters of the perturbed
models are obtained after performing the evi-
dence propagation.

In both perturbed models the covariance
matrix LY/E is the same for the original
model and for the perturbed model, then

—1
tr <2Y|E (EY‘E) > = dim(Y). Then, work-

ing with expression (6) and dealing with the
perturbed models, the KL divergences follow di-
rectly.

O

The KL divergence obtained when there
exists uncertainty about the mean vector of
the evidential variables coincides with the KL
divergence computed for a perturbation in
the evidence vector e. This gives us a tool to
evaluate evidence influence on the network’s
outputs, as can be seen in Susi (2007).



Proposition 2 (Uncertainty about the co-
variance matrix). Let (G,P) be a Gaussian
Bayesian network with X = {E, Y} and X ~
N(x|p, ) where the covariance matrix 3 is

uncertainty.  Giving values to the perturbed
covariance matric A = App  Apy , the
Ayg Ayy

following results are obtained

1. When the perturbation Agg is added to
the variances-covariances of the evidential
variables, after the evidence propagation,
the perturbed model is

Y|E, Agg ~ N(y’MY|EvAEE, gYIEAEE)

with pY B AEE = wy +
XYE (EEE + AEE)_l (e — ug) and
YY|E,Agg — vy _
Yve (Zee + Are) ' gy
The KL divergence is
KL¥EE —

1 | ‘2Y|E,AEE‘ dim(Y)| +

=— |In*——s—=— —dim
2 |ZYIE|

+% [tr (EYE (2Y|E’AEE)1>} +

1
2

Mg (2Y|E,AEE)_1 M2:|
wh@r@ M2 = MY|E7AEE _ ,U/Y‘E

2. When the perturbation Avyvy is added to the
variances-covariances between the variables
of interest, after the evidence propagation
the perturbed model is

Y[E, Ayy ~ N(y|p¥/®, BYIEAvy)

with TYEAYY — SYIE | Ay

The obtained KL divergence is

KLZvy =

’E“E + AYY’
|ZYIE|

:% In —dim(Y) | +

% {tr <2Y|E (=Y + AYY>_1)]

3. If the perturbation Avyg is added to the co-
variances between Y and E, the perturbed
model after the evidence propagation is

Y|E7 AvE ~ N(y“LYlEvAYE’ 2Y|E7AYE)

(2vE + Ayg) Xgg(e — ug) and
SY|EAvg — vy _

(Zye + Ave) Sgg (ZeY + ApY)

Then, the KL divergence is
KLEYE —

‘EY\E ~ M(Ayg)|

In ’2Y|E|

1

+1 :tr <2Y|E (=¥E - M(AYE))_IH +

2

1T T e
+5 (e~ um)” (Sz) MaZghle i)
where
My = Ay (VP - AvpSppSip

1
~SvEEgpARY — AYEEEIEAEY> Avg

Proof. We with  three perturbed
models defined for different sets of inaccurate
parameters. The parameters of the perturbed
models are obtained after performing the
evidence propagation. Then, computing
the KL divergence with (6) to compare the
network’s output of the original model with
the network’s outputs obtained for the per-
turbed models, the obtained expressions follow
directly. O

work

4 Experimental results

Next, we will run the sensitivity analysis pro-
posed in Section 3 for the Example 1.

Example 2. There are different opinions be-
tween experts about the parameters of the



Gaussian Bayesian network shown in Example
1. Quantifying this uncertainty we obtain the
perturbed mean vector § and the perturbed co-
variance matrix A as next partitions

: )
og=1| —1 |;0v=
1 0
-1
00 O
=10 1 0
0 0 -1
00 0 1
01 0 O
Y=g 0 1 -9
10 -2 0
00 0 O
Yy =0 0 0 O
0 00 —1
Taking into  account the evidence
E = {X1 = 2,X2 = 2,X3 = 1} and the

variables of interest Y = {X4, X5, X, X7}, it
is possible to perform the sensitivity analysis

proposed.
Then, for the KL divergence with the
expressions presented in Propositions 1

and 2, next values are obtained:

KLMe =2.125

KLWY =2.375

KL¥®E = 0.596
KLPYY(f, f2¥Y) = 1.629
KL¥YE(f, f2YE) = (.265

With the obtained results it is possible to con-

clude that some parameters must be reviewed to
describe the network more accurately.
The parameter that must be reviewed is the
mean vector, because the possible perturba-
tions make the KL divergence larger than 1 and,
moreover, it is necessary to review the parame-
ters that describe the variances-covariances be-
tween the variables of interest because the net-
work is sensitive to uncertainty about these pa-
rameters.

Uncertainty about the variances-covariances
between evidential variables and about the
covariances between variables of interest and
evidential variables do not change the network’s
output so much, therefore the network is not
sensitive to these inaccurate parameters.

In fact, experts must review the information
about the variables of interest and about the
mean of the evidential variables, to describe
more accurately uy, Yyy and ug respectively.

5 Conclusions

In this paper we propose a sensitivity analysis
for Gaussian Bayesian networks useful to deter-
mine the set or sets of inaccurate parameters
that must be reviewed to be introduced in the
network more accurately, or if the network is
not sensitive to the perturbations proposed.
The analysis performed is a generalization of
the one way sensitivity analysis developed by
Goémez-Villegas, Main and Susi (2007).  Now
we work with a set of variables of interest and
a set of evidential variables.

In a Gaussian Bayesian network, some inaccu-
racies about the parameters that describes the
network, involve a sensitivity analysis of the
model.

The sensitivity analysis we propose in which five
different sets of parameters are considered de-
pending on the type of variables and if they
describe the mean or the covariance of the
model. After computing the expressions of the
KL divergence obtained in Propositions 1 and
2, it is possible to conclude the set or sets of
parameters that must be reviewed to describe
the network more accurately. In this way when
a KL divergence is small, close to zero, we
can conclude that the network is not sensitive
to the proposed perturbations, otherwise it is
necessary to review the uncertainty parameters.
The sensitivity analysis proposed is easy to
perform with any Gaussian Bayesian network,
being able to evaluate any kind of inaccurate
parameters, that is, large and small perturba-
tions associated to uncertainty parameters.
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