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Abstract. This paper presents an Optimised Search Heuristic that com-
bines a tabu search method with the verification of violated valid inequal-
ities. The solution delivered by the tabu search is partially destroyed by
a randomised greedy procedure, and then the valid inequalities are used
to guide the reconstruction of a complete solution. An application of the
new method to the Job-Shop Scheduling problem is presented.
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1 Introduction

Recently a new class of hybrid procedures, that combine local search based
(meta) heuristics and exact algorithms of the operations research field, have
been designed to find solutions for combinatorial optimisation problems. Fer-
nandes and Lourengo [I] designated these methods by Optimised Search Heuris-
tics (OSH). Different combinations of different procedures are present in the
literature, and there are several applications of the OSH methods to different
problems (see the web page of Fernandes and Lourengo (2007)ﬂ.

We present an OSH procedure that uses valid inequalities to reconstruct a local
optimal solution that has been partially destroyed. We first build a feasible solu-
tion with a GRASP procedure and perform a tabu search to get a “good” local
optimum. To continue searching the solution space we perturb the current solu-
tion partially destroying it and then rebuilding it. A greedy randomised method
is used to delete some elements from the local optimal solution. We then test the
existence of violated valid inequalities by the partial solution. These allow us to
establish a new search path for rebuilding a complete feasible solution, and hope-
fully lead us to an attractive unexplored region of the solution space. We named
this procedure Tabu VVI from Tabu with Violated Valid Inequalities.
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The idea of this new method is to mimic the cuts in integer programming,
letting the violated valid inequalities cut off regions of the solution space where
the objective function would have a value not better than the one of the current
solution. This way the search is guided from a local optimal solution to a higher-
quality region of the search space.

The procedure is illustrated with an application to the job-shop scheduling
problem.

This paper is organized as follows: we start by presenting a literature review
and motivation, proceed introducing the job-shop scheduling problem and con-
tinue describing the application of the Tabu VVI to it. Computational results
are presented along with comparisons to other OSH methods applied to the job
shop problem and also to the state of the art tabu search algorithm of Nowicki
and Smutnicki [2].

2 Literature Review and Motivation

In the literature we can find a few works combining metaheuristics with exact
algorithms applied to the job-shop scheduling problem, designated as Optimised
Search Heuristics (OSH) by Fernandes and Lourenco [I].

Chen, Talukdar and Sadeh [3] and Denzinger and Offermann [4] design parallel
algorithms that use asynchronous agents information to build solutions; some of
these agents are genetic algorithms, others are branch-and-bound algorithms.

Tamura, Hirahara, Hatono and Umano [5] design a genetic algorithm where the
fitness of each individual, whose chromosomes represent each variable of the integer
programming formulation, is the bound obtained solving lagrangean relaxations.

The works of Adams, Balas and Zawack [6], Applegate and Cook [7], Caseau
and Laburthe [§], Balas and Vazacopoulos [9] and Pezzella and Merelli [10] all
use an exact algorithm to solve a sub problem within a local search heuristic for
the job-shop scheduling. Caseau and Laburthe [§] build a local search where the
neighbourhood structure is defined by a subproblem that is exactly solved using
constraint programming. Applegate and Cook [7] develop the shuffle heuristic. At
each step of the local search the processing orders of the jobs on a small number
of machines is fixed, and a branch-and-bound algorithm completes the schedule.
The shifting bottleneck heuristic, due to Adams, Balas and Zawack [G], is an
iterated local search with a construction heuristic that uses a branch-and-bound
to solve the subproblems of one machine with release and due dates. Balas and
Vazacopoulos [9] work with the shifting bottleneck heuristic and design a guided
local search, over a tree search structure, that reconstructs partially destroyed
solutions. The procedure of Pezzella and Merelli [I0] is a tabu search that uses a
branch-and-bound to solve one-machine subproblems; both at the construction
of the initial solution and at a re-optimisation phase of the algorithm.

Lourenco [II] and Lourenco and Zwijnenburg [I2] use branch-and-bound
algorithms to strategically guide an iterated local search and a tabu search al-
gorithm. The diversification of the search is achieved by applying a branch-and-
bound method to solve a one-machine scheduling subproblem obtained from the
incumbent solution.
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In the work of Schaal, Fadil, Silti and Tolla [I3] an interior point method
generates initial solutions of the linear relaxation. A genetic algorithm finds
integer solutions. A cut is generated based on the integer solutions found and
the interior point method is applied again to diversify the search. This procedure
is defined for the generalized job-shop problem.

The interesting work of Danna, Rothberg and Le Pape [14] “applies the spirit
of metaheuristics” in an exact algorithm. Within each node of a branch-and-cut
tree, the solution of the linear relaxation is used to define the neighbourhood
of the current best feasible solution. The local search consists in solving the
restricted MIP problem defined by the neighbourhood.

We are especially interested in combinations of exact and heuristic methods
where the exact procedures can be used to strategically guide the heuristic ones.
In this paper we mimic the cutting plane algorithms using the verification of the
existence of violated valid inequalities to guide the search in the solution space.
We are not aware of any other works using this methodology.

We chose to apply this new method to the job-shop scheduling problem be-
cause it is considered a particularly hard combinatorial optimisation problem
of the NP-hard class, and so a few methods that combine exact and heuristic
procedures have already been design to handle it.

3 The Job Shop Scheduling Problem

The job-shop scheduling problem (JSSP) has been known to the operations re-
search community since the early 50’s [15]. It is considered a particularly hard
combinatorial optimisation problem of the NP-hard class [I6] and it has nu-
merous practical applications; which makes it an excellent test problem for the
quality of new scheduling algorithms. These are main reasons for the vast litera-
ture on both exact and heuristic procedures applied to this scheduling problem.

The job-shop scheduling problem considers a set of jobs to be processed on
a set of machines. Each job is defined by an ordered set of operations and each
operation is assigned to a machine with a predefined constant processing time
(pre-emption is not allowed). The order of the operations within the jobs and its
correspondent machines are fixed a priori and independent from job to job. To
solve the problem we need to find a sequence of operations on each machine re-
specting some constraints and optimising some objective function. It is assumed
that two consecutive operations of the same job are assigned to different machines,
that each machine can only process one operation at a time and that different ma-
chines cannot process the same job simultaneously. We will adopt the maximum
of the completion time of all jobs — the makespan — as the objective function.

A common representation for the job-shop problem is the disjunctive graph
G = (0, A, E) [I1]; where O is the node set, corresponding to the set of opera-
tions with two dummy operations; 0 representing the source node and o + 1 the
sink node; A is the set of arcs between consecutive operations of the same job,
and E is the set of edges between operations processed by the same machine.
For every node j of O\ {0,0+ 1} there are unique nodes i and [ such that arcs
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(i,7) and (j,1) are elements of A. Node ¢ is called the job predecessor of node
J - jp(j) and [ is the job successor of j - js(j). Finding a solution to the job
shop scheduling problem means replacing every edge of F with a directed arc,
constructing an acyclic directed graph Dg = (O, A|JS) where S = |, Sk cor-
responds to an acyclic union of sequences of operations for each machine k. The
optimal solution is the one represented by the graph Dg having the critical path
from 0 to o+ 1 with the smallest length or makespan.

4 Tabu VVI Applied to the JSSP

The algorithm Tabu VVI has two main stages. The first stage consists of building
a feasible solution, and executing the tabu search procedure starting from it.
The second stage consists of a large step followed by the tabu search, and it is
repeated for a predefined number of iterations. The large step partially destroys
the solution delivered by the tabu search, looks for violated valid inequalities
that enforce some order between unscheduled operations, and then rebuilds a
complete solution respecting those established orders. The information about
the algebraic structure of the problem within the valid inequalities is used to
guide the search. The idea is to perturb the current complete solution achieving
diversification and leading the search method to new unexplored regions of the
solution space.

The main loop of the algorithm is stopped either when the lower bound of
the instance is achieved (LB), or a predefined maximum number of iterations
are executed without improving the upper bound (UB). Figure [ shows a not
detailed and simplified pseudo-code of algorithm Tabu VVIL.

4.1 Building a Feasible Solution

We first build a feasible solution using a GRASP B&B algorithm [I8]. It is
a simple heuristic that includes a branch-and-bound method at the building
phase of a GRASP procedure. A GRASP [I9] is an iterative process where each
iteration consists of two steps: a randomised building step of a greedy nature
and a local search step. The branch-and-bound is used in the building step to
solve subproblems of single machine scheduling problems. The neighbourhood of
the local search uses the notions of blocks of critical operations, defining critical
pairs of operations belonging to the same block, and performing forward and
backward moves on them. A block of critical operations is a maximal ordered
set of consecutive operations of a critical path (in the disjunctive graph that
represents the solution), sharing the same machine. Let L(4, j) denote the length
of the critical path from node i to node j.
Two operations u and v form a forward critical pair (u,v) if:

a) they both belong to the same block;

b) v is the last operation of the block;

c¢) operation js(v) also belongs to the same critical path or v is the last
operation of the job;
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d) the length of the critical path from v to o + 1 is not less than the length
of the critical path from js(u) to o+ 1 (L(v,0+ 1) > L(js(u),0+ 1)).

Two operations u and v form a backward critical pair (u,v) if:

a) they both belong to the same block;

b) w is the first operation of the block;

¢) operation jp(u) also belongs to the same critical path or w is the first
operation of the job;

d) the length of the critical path from 0 to u, including the processing time
of u, is not less than the length of the critical path from 0 to jp(v), including
the processing time of jp(v) (L(0,u) + py > L(0, jp(v)) + Pjp(v))-

Conditions d) are included to guarantee that all moves lead to feasible solu-
tions [9]. A forward move is executed by moving operation u to be processed
immediately after operation v. A backward move is executed by moving opera-
tion v to be processed immediately before operation u.

For a detailed description of the GRASP B&B algorithm please refer to [I§].

4.2 Tabu Search

A tabu search procedure [20021] is a local search procedure that inspects the
whole neighbourhood of a current solution x and executes the move that pro-
duces the best neighbour ybest. The value of ybest may be worse than the one of
x, so the move that goes back from ybest to x becomes forbbiden, named tabu
moves. The set of tabu moves is updated in every iteration of the method, so

Tabu VVI

xi = GRASP B&B(runs)
x = TabuSearch(xi)
UB =makespan(x)
xb = x
while((UB > LB) and (#iterations without improvement < max #iterations))
xd = Destroy(x)
xd = FindValidInequalities(xd)
x = Rebuild(xd)
x = TabuSearch(x)
if (makespan(x) < UB)

update UB
xb = x
endif
endwhile
return(xb)

Fig. 1. Outline of Tabu VVI: (xi) - initial feasible solution, (x) - current complete
solution, (xd) - partially destroyed solution, (xb) - best solution, (LB) - lower bound
derived from the makespan of the first bottleneck machine
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the neighbourhood definition is dynamically updated. The procedure stops after
a predefined number of iterations have been performed without improving the
best solution found.

In order to implement a simple tabu search procedure we need to define the
neighbourhood structure, the tabu length that defines how long will a move
remain tabu, and an aspiration criterion, to be able to execute moves abusively
considered tabu. (this abuse happens because we do not keep track of the pair
of solutions before and after a move, but only of some features of the move).

The neighbourhood structure of the tabu search implemented is the same
used in the local search of the GRASP B&B [18]. But this time we keep track
of those moves rejected by conditions d) because they could produce a cycle in
the disjunctive graph, thus leading to an infeasible solution. When the neigh-
bourhood is empty, we look in these rejected moves for feasibility and execute
the one that generates the best feasible solution. If none of the rejected moves
produces a feasible solution we then execute the tabu move that would remain
tabu for the shortest number of iterations.

The number of iterations a move (performed on solution x) stays tabu — the
tabu length — is defined so it depends on the size of the neighbourhood of solution
x. If a solution = has many neighbours, the reverse move of the one executed to
leave from it stays tabu for a longer number of iterations than the reverse move of
the one executed to leave from a solution y with a smaller neighbourhood. This
way we state that the possibility of returning to a previously visited solution is
not equal for every solution but depends on the number of neighbours it has.

The aspiration criterion allows a tabu move to be executed if the value of the
resulting solution is better than the best one found so far.

Every time the tabu search improves the best known solution we apply an
intensification scheme that consists in repeating the tabu search, this time du-
plicating the number of allowed iterations without improvement.

4.3 Large Step

Partially destroying a solution. The tabu search module of the algorithm
provides a local optimal solution and its makespan is an upper bound for the
optimal value. This solution is then perturbed using a greedy randomised method
to eliminate the sequences of processing operations of some machines.
Considering the acyclic directed graph that represents the solution, arcs con-
necting operations processed by the same machine are deleted. This method is
biased toward machines that, when their sequence of processing operations is
deleted, lead to a bigger reduction on the makespan of the solution. We keep
“deleting” machines (destroying the sequence for processing the operations) until
the makespan of the resulting partial solution is less than the upper bound.
After a predefined maximum number of global iterations are executed without
improving the best solution found, the algorithm continues, for the same amount
of iterations, this time choosing to “delete” machines that lead to the smallest
reduction on the makespan. While the best solution found keeps being updated,
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we keep running the algorithm, alternating the criteria for “deleting” machines
from the solution.

Finding violated valid inequalities. Having a partial solution and an upper
bound (UB) for the optimal value, we then test the existence of violated valid
inequalities. These allow us to establish some orders between operations of each
unscheduled machine.

The procedure looks for violated valid inequalities for every machine whose
sequence of operations is not present on the current partial solution. The process
cycles through all the “deleted” machines and is repeated until no more orders
between operations are set.

We use the same inequalities that were used in the branch-and-bound algo-
rithms of Carlier and Pinson [22] and Applegate and Cook [7].

Let a be a machine of the instance whose sequence of processing the opera-
tions was deleted from the solution, and S, any given sub-set of the operations
processed by «a. Every operation ¢ has an earliest possible starting time - e;, a
processing time - p; and a minimum completion time after it is processed - f;.

If for any given set S, and any given operation i € S, gnl{l{ }{ej} +
JjE€Sa\{i
Z]ES pj + misn {f;} > UB then, to be possible to reduce the upper bound,

operation ¢ must be processed on a before any other operation in S,. The inverse

inequality min {e;} +> . g pj + min {f;} > UB states that operation 4
JESa JERa J€Sa\{i}
must be processed on « after any other operation in S,,.

Let C, be the set of operations not yet ordered for machine o, E, C C,, the
sub-set of operations that could be scheduled first, and F,, C C\, the subset of
operations that could be scheduled last. If there is an operation i € F, such
that e; + > cc. pj + jrg}?n {f;} > UB then i can be removed from E,. If E,

contains only one operation, then it must be processed on a before any other
operation in C,. The reverse inequality jrélllali {ej}+ 2 ec, pi+ fi = UB states

that i cannot be scheduled after all the other operations in Cy, and should be
removed from F,.

Not all the sub-sets S, are inspected when looking for violated valid in-
equalities that allow us to fix orders between operations of one machine, as
it would be too computationally expensive. A reduced number of sub-sets are
formed including operations by its decreasing values of starting and completion
times.

If when looking for violated valid inequalities we find none, then we rein-
troduce a deleted machine in the solution and we look again for violated valid
inequalities. The machine to add to the solution is chosen randomly. If the vio-
lated valid inequalities lead to incompatible sequences of operations, this means
we cannot improve the upper bound (UB) with the set of sequenced machines,
and another machine is deleted from the solution. If this happens repeatedly and
the solution becomes empty, then the current complete solution is optimal.
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Rebuilding a complete solution. The solution is reconstructed including
the sequence of operations of one machine at a time. The order of adding the
sequences in the machines to the solution is the same as for the elimination.
The first machine to be re-included in the solution is the one that was first re-
moved, and so on. The schedule of operations for each machine is determined
using a modified version of the Schrage algorithm [23] that considers pre-defined
orders between operations. Each time the sequence of operations of a machine is
re-included in the solution, a restricted local search is executed, where it is for-
bidden to change orders fixed by the valid inequalities. When a new sequence of
operations is included, we look for new violated valid inequalities in all remaining
unscheduled machines, trying to fix more orders between operations.
After the solution is complete, local search is executed.

5 Computational Results

We have tested the algorithm Tabu VVI on 132 benchmark instances: abz5-9
[6], ££6, f£10, ft20 [24], 1a01-40 [25], orb01-10 [7], swv01-20 [26], ta01-50 [27] and
ynl-4 [28] B. The size of the instances is measure by the number of operations
(equal to the number of jobs times the number of machines). The instances have
different sizes: ft6 is the smaller one with 6x6 operations; 1:a01-05 have 10x5;
1a06-10 have 15x5; ft20 and 1lal1-15 have 20x5; abz5-6, ft10, 1a16-20 and orb01-
10 have 10x10; 1a21-25 have 15x10; 1a26-30 and swv01-05 have 20x10; 1a36-40
and ta01-10 have 15x15; abz7-9, swv06-10 and tall-20 have 20x15; ta31-40 and
ynl-4 have 20x20; the bigger ones are ta41-50 with 30x20 operations.

An optimal solution has already been found for 83 of these instances; namely
abzb-7, ft6, ft10, ft20, 1a01-40, orb01-10, swv01-02, swv05, swv13-14, swv16-20,
ta01-10, tald, tal7, ta3l, ta35-36 and ta38-39.

We have tested a few slightly different versions of the method Tabu VVI. Within
the tabu search module, different values of the tabu length parameter were tested:
equal to the number of neighbours; half of it and the double of it. Also inside the
tabu search module, we have tested not to look for those moves rejected by condi-
tions d), so when a neighbourhood is empty the eligible tabu move is always the
one executed. The number of tabu iterations allowed without improving the best
solution was set to the number of operations of each instance. Within the rebuild
module, we have also tested to build the sequence of processing operations in one
machine using a branch-and-bound method instead of just the priority rule of the
Schrage algorithm. The orders between operations that were fixed by the find vi-
olated valid inequalities module are always respected.

At the first stage of the method Tabu VVI, the GRASP B&B algorithm was
run for 10 iterations to generate the initial feasible solution and tabu search was
run for 100 iterations without improvement.

The algorithm has been run on a Pentium 4 CPU 2.80 GHz and coded in C.

2 These instances can be found in http://people.brunel.ac.uk/ mastjjb/jeb /orlib/files/
files jobshopl.txt and jobshop2.txt
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In order to measure the performance of the algorithm we use the percentage
of relative error to the lower bound - RE 5 (or to the optimum if the problem
is closed). f(x) stands for the makespan of the best solution found.

f(z)—LB

RELB (33) = 100% x LB

The next table [I] presents the performance of two variants of the algorithm
that we found most successful, considering the sum of the REpp for all the
instances tested, and also a column with the best results over all the 15 variants
tested. The two chosen variants are tabu mv inf, the variant described earlier,
and tabu mv bb, where moves rejected by conditions d) are not considered and
branch-and-bound is used in the rebuilding module. The tabu tenure is set to
be equal to the number of neighbours in both variants.

The table shows the average values (over a group of instances) of the REp
and the time in seconds to the best solution found.

Table 1. Results by Tabu VVI: variants tabu mv inf and tabu mv bb, and the best
of all variants, for all groups of instances, in average percentage of the relative error to
the lower bound, and the average time to the best, in seconds

instances tabu mv inf tabu mv bb best all variants
avg(RELRB) avg(time) avg(RELRB) avg(time) avg(RELB) avg(time)

abz 2.11 63.77 1.93 61.02 1.71 81.46
ft 0 11.72 0 0.58 0 0.15
1a01-05 0 0.12 0 0.12 0 0.03
1a06-10 0 0.02 0 0.03 0 0.02
lal1-15 0 0.04 0 0.05 0 0.04
1a16-20 0 1.79 0 1.67 0 0.44
la21-25 0.11 23.13 0.06 14.80 0 7.94
1a26-30 0.29 54.12 0.26 40.88 0.17 83.39
la31-35 0 0.38 0 0.39 0 0.27
1a36-40 0.47 22.68 0.22 33.50 0.05 57.08
orb 0.23 7 0.09 14.13 0 4.30
swv01-05 2.89 88.05 2.93 120.43 2.33 127.91
swv06-10 8.89 336.94 9.51 204.27 8.06 281.64
swv1l-15 1.78 1734.51 2.03 825.21 1.41 1854.58
swv16-20 0 1.58 0 1.64 0 1.58
yn 7.49 339.33 7.91 73.61 7 163.95
ta01-10 0.63 7772 0.81 67 0.24 49.52
tall-20 3.47 54.20 3.70 86.60 3.12 177.24
ta21-30 6.51 319.27 6.60 269.97 5.96 319.02
ta31-40 1.79 230.90 1.60 258.49 1.26 220.62

ta41-50 6.04 650.87 5.88 559.71 5.47 1016.21
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Table 2. Results by variants tabu mv inf and tabu mv bb of Tabu VVI, and the algo-
rithm of Caseau and Laburthe, in average percentage of the relative error to the lower
bound, and the average time to the best, in seconds

instances Tabu VVI CL
tabu mv inf tabu mv bb
avg(RELR) avg(time) avg(RELR) avg(time) avg(RELB) avg(time)

abz 2.11 63.77 1.93 61.02 2.57 112.67
ft 0 11.72 0 0.58 0 112
1a01-05 0 0.12 0 0.12 0 3.80
1a06-10 0 0.02 0 0.03 0 0.75
la11-15 0 0.04 0 0.05 0 27
la16-20 0 1.79 0 1.67 0 25.08
1a21-25 0.11 23.13 0.06 14.80 0.11 551.40
1a26-30 0.29 54.12 0.26 40.88 0.47 4322.25
la31-35 0 0.38 0 0.39 0 2108.40
la36-40 0.47 22.68 0.22 33.50 0.37 2476.40
orb 0.23 7 0.09 14.13 1.66 111.11

We have found a new upper bound, 1765, for instance swv10 in 101 seconds.
The values of best known lower and upper bounds were gathered from the paper
of Jain and Meeran [I5] and the papers of Nowicki and Smutnicki [2], [29], [30].

5.1 Comparison to Other OSH Methods

The optimised search methods applied to the job-shop scheduling problem, that
we know of and have mentioned in the literature review, are only applied to
the older and easier instances of the problem, except for the works of Balas and
Vazacopoulos [9] and Pezzella and Merelli [10], that will be treated separately.

The method of Danna, Rothberg and Le Pape [I4] is applied to instances of
the weighted-tardiness version of the problem, and the work of Schaal, Fadil,
Silti and Tolla [13] is applied to the generalised scheduling problem.

Our method, Tabu VVI is better for all the comparable instances (except for
one or two exceptions), in quality of the solutions and in computational time,
then the works of Chen [3], Denzinger and Offermann [4], Tamura, Hirahara,
Hatono and Umano [5], Adams, Balas and Zawack [6], Applegate and Cook
[7], Lourenco [IT] and Lourengo and Zwijnenburg [I2]. In table [ we show the
comparison results to the work of Caseau and Laburthe (named CL), because it
is the best of these methods and also because it is the one that presents results
for more instances. Their algorithm was run on a SunSparc 10 machine. The
running times for their method are not scaled for our PC. Nonetheless we state
our algorithm is faster and achieves better quality solutions.
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Comparison to Guided Local Search. The guided local search procedure of
Balas and Vazacopoulos [9] designs a search procedure based on local improve-
ments and accepting non improving moves, using structures of neighbourhood
trees. Each neighbourhood tree corresponds to a cycle of the guided local search
procedure. Each node of the tree stores a solution and each edge connects neigh-
bour solutions. Feasible solutions are built solving to optimality by branch-and-
bound all one-machine subproblems (like the shifting bottleneck heuristic [6]).
After a few cycles of neighbourhood trees, the procedure randomly destroys the
best solution found; deleting the sequence of operations for some machines, and
then reconstructs the partially destroyed solution repeating the all process.

Here we compare our best results to their best reported version SB-RGSL10,
which stands for shifting bottleneck with randomised guided local search. The
10 means the number of times the all process is repeated. We call it BZ. Their
algorithm was run on a SunSparc 30 machine. The comparison results between
algorithms Tabu VVI and BZ are shown in table [Bl Although we used different
computers and their running times are not scaled for our PC, we can still say that
our method is always faster then BZ. Quality values that win the comparison
are shown in bold.

Comparison to the Tabu Search with Shifting Bottleneck. The proce-
dure of Pezzella and Merelli [I0] combines tabu search with the shifting bot-
tleneck heuristic. The later is used to build the initial solution, and also at the

Table 3. Results by the best of all variants of Tabu VVI and the best variant of the
algorithm of Balas and Vazacopoulos; in average percentage of the relative error to the
lower bound, and the average time per run to the best, in seconds

instances Tabu VVI BZ
avg(RELR) avg(time) avg(RELR) avg(time)
1a01-05 0 0.03 0 5.9
la16-20 0 0.44 0 47
la21-25 0 7.94 0 139.6
1a26-30 0.17 83.4 0.19 121.6
la36-40 0.05 57.1 0.03 278
orb 0 4.30 0.10 80.18
swv01-05 2.33 128 2.02 1290
swv06-10 8.06 282 9.64 2917
swvll-15 1.41 1855 2.12 9173
yn 7 164 5.96 5938
ta01-10 0.24 49.5 0.25 1182
tall-20 3.12 177 3.34 3383
ta21-30 5.96 319 6.57 4377
ta31-40 1.26 221 1.13 5069

ta41-50 5.47 1016 5.71 10726



98 S. Fernandes and H.R. Lourengo

re-optimisation phase of the algorithm. Whenever the tabu search cycle improves
the best known solution, the procedure deletes the sequence of operations of all
critical machines (machines with operations in the critical path). After shifting
bottleneck rebuilds the solution, the tabu search is repeated. The tabu search
module uses a dynamic management of three different neighbourhood structures
and a tabu list of variable size, dependent of how many tabu iterations have
been executed. The algorithm, that we name PM, was run on a Pentium 133
MHz. Table Hshows the comparison results between algorithms Tabu VVI and
PM. Quality values that win the comparison are shown in bold.

Table 4. Results by the best of all variants of Tabu VVI and the algorithm of Pezzella
and Merelli; in average percentage of the relative error to the lower bound, and the
average time to the best, in seconds

instances Tabu VVI PM
avg(RELR) avg(time) avg(RELR) avg(time)
abz 1.71 81.5 2.23 151
ft 0 0.15 0 65
1a01-05 0 0.03 0 9.8
1a06-10 0 0.02 0 -
lal1-15 0 0.04 0 -
1a16-20 0 0.44 0 61.5
la21-25 0 7.94 0.1 115
1a26-30 0.17 83.4 0.46 105
la31-35 0 0.27 0 -
1a36-40 0.05 57.1 0.58 141
ta01-10 0.24 49.5 0.45 2175
tall-20 3.12 177 3.47 2526
ta21-30 5.96 319 6.52 34910
ta31-40 1.26 221 1.92 141333
ta41-50 5.47 1016 6.04 11512

5.2 Comparison to State of the Art Procedure - Tabu Search with
Path-Relinking

Along with the guided local search procedure of Balas and Vazacopoulos [9], and
the tabu search with shifting bottleneck of Pezzella and Mirelli [I0], one other
procedure, due to Nowicki and Smutnicki [2], forms the group of three procedures
that are the best up to date methods applied to the job-shop scheduling problem.

The procedure of Nowicki and Smutnicki performs path-relinking between
elite solutions found by a tabu search module. The solutions achieved by the
path-relinking are then used as starting points for new cycles of the tabu search;
the set of elite solutions is updated and the all process is repeated. We can say
that the path-relinking works as the diversification strategy of the tabu search.
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The algorithm uses a data structure specially designed for the application of
this method to the job-shop scheduling problem. The instances of Taillard [27]
were used to study the distribution of the local optima solutions in the solution
space; and this study supported the design of this method. The algorithm, that
we name NS, was run on a Pentium 900 MHz. Unlike all other procedures, the
computational times reported by the authors do not include the time needed
to build the initial solutions. Table 5 shows the comparison results between
algorithms Tabu VVI and NS. After running for approximately the same amount
of time, Tabu VVI achieves solutions with quality very close to the results of NS.

Table 5. Results by the best of all variants of Tabu VVI and the algorithm of Nowicki
and Smutnicki; in average percentage of the relative error to the lower bound, and the
average time to the best, in seconds

instances Tabu VVI NS
avg(RELR) avg(time) avg(RELRB) avg(time)
swv01-05 2.33 128 1.01 462
swv06-10 8.06 282 7.49 514
swv1l-15 1.41 1855 0.51 360
yn 7 164 5.18 510
ta01-10 0.24 50 0.11 26
tall-20 3.12 177 2.81 108
ta21-30 5.96 319 5.68 328
ta31-40 1.26 221 0.78 341
tad41-50 5.47 1016 4.7 975

6 Conclusions

We have developed a powerful, fast and innovative optimised search heuristic
to solve combinatorial optimisation problems. It uses an exact technique from
the operations research field to guide the search process of a metaheuristic. The
procedure, named Tabu VVI, uses the verification of violated valid inequalities
as a diversification strategy of a tabu search procedure. The idea of this new
method is to mimic the cuts in integer programming, letting the violated valid
inequalities discard the current solution and guide the search from a local optimal
solution to a more quality region of the search space.

The procedure was illustrated with an application to the job-shop scheduling
problem. We presented some computational results for a large set of benchmark
instances, along with comparisons to other similar and successful works. Our new
method, Tabu VVI, always performs better than other methods that combine
exact and heuristic procedures. It compares most favourably to two other leading
methods for solving the job-shop scheduling problem; the guided local search
of Balas and Vazacopoulos [0] and the tabu search with shifting bottleneck of
Pezzella and Mirelli [I0]. When compared to the state of the art tabu search of
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Nowicki and Smutnicki [2], after running for approximately the same amount of
time, Tabu VVI achieves solutions with quality very close to theirs.
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