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Abstract

The aim of this paper is to present and study one important class of
divergence measure between fuzzy subsets, and one important class of diver-
gence measure between fuzzy partitions, each of them having some specific
properties. In the first case, the divergence measure attempts to quantify the
degree of difference between two fuzzy subsets A and B by comparing the
fuzziness of both A and B with the fuzziness of the intermediate fuzzy subset.
In the second case, we use this divergence between subsets to measure the
divergence between partitions.

Keywords: divergence measure, local divergence, fuzziness measure, fuzzy
partition.

1 Introduction

Our work regards the study of uncertainty associated with systems in a fuzzy en-
vironment. The starting point of our research has been the axiomatic information
theory of B.Forte and J.Kampé de Feriet ([4]), where uncertainty is directly associ-
ated with a collection of (crisp) subsets of a space Q. In the frame of this theory it is
possible to guess that there exists a fairly strong relationship between uncertainty
(and information) and fuzziness, and between uncertainty and classical divergence.
In this respect, a fundamental work has been developed by De Luca-Termini [3],
who introduced a kind of measure of fuzziness (the nonprobabilistic entropy of a
fuzzy set) based on a probabilistic uncertainty measure.

In our opinion, the bridge between the (crisp) information (with or without
probability) and measures of uncertainty and imprecision in fuzzy environments,
may lie in what we refer to as divergence, because of the analogy with the classical
meaning of the term used by various authors ([9], ...) in comparing two probability
distributions. Once we have characterized and studied the measure of the difference
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between two (fuzzy or crisp) subsets, that is, the divergence measure between fuzzy
subsets (see [8]), our ultimate objective consists in using this measure to evaluate
the fuzziness and/or the uncertainty.

The study of the way to measure the difference between two subsets, to which
we will refer to as divergence between subsets, is given in Section 2, and we study
mainly the case when the divergence is obtained from fuzziness measures. Depart-
ing from this wide class of divergence measure, we study a lot of properties. The
way to measure the fuzziness of a fuzzy partitions and the definition of divergence
between fuzzy partitions will be given in Section 3. In this section we study also a
particular class of divergence between partitions, which is the class of divergences
independent of the measure.

2 Divergence measure from fuzziness measure

The measure of the difference of two fuzzy subsets is defined axiomatically on the
basis of the following natural properties:

e It is a nonnegative and symmetric function of the two fuzzy subsets to be
compared.

e It becomes zero when the two sets coincide.
o It decreases as the two subsets become “more similar” in some sense.

Whereas it is easy to analytically formulate the first an the second condition, the
third one depends on the formalization of the concept of “more similar”. We base
our approach on the fact that if we add (in the sense of union) a subset C to both
fuzzy subsets A and E, we obtain two subsets which are closer to each other; the
same happens with the intersection. So we propose the following

Definition 2.1 (/8]) Let Q be the universe, and let P(S)) be the family of the fuzzy
subset of Q. A map D : P(Q) x P(Q) — IR is a divergence measure if and only
if VA, B € P(R), satisfy the following conditions:

1. D(A,B) = D(B, A);

2. D(A,A) = 0;

3. max{D(AUC,BUC),D(ANC,BNC)} < D(A, B),YC € P(Q), VC € P(Q).
At the beginning of this section we have indicated that it is natural to assume

that the divergence is nonnegative; this condition has not been included in the
axioms, since it can be deduced from them.

From now on, we will consider only the case where Q = {z1,29,...,2,} is
finite. In this case, if we consider the couples (A, B), (A U {z;}, B U {=;}) which
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only differ in the i*" element (it has been changed from (A(z;), B(z;)) to (1,1)),
it seems natural to suppose that the variation of divergence only depends on what
has been changed. Thus, we introduce the following

Definition 2.2 (/8/) A divergence measure has the local property (or, briefly “is
local”) if, YA, B € P(Q),Vz; € Q, we have that

D(A,B) — D(AU {z;}, BU {z;}) = h(A(x;), B(x;)).

This property is natural in general, but not all divergence has the local property.
A way to characterize the local divergences is in the following statement.

Proposition 2.3 (/8/) A mapping D : P(Q) x P(Q) —» IR, where  is a finite
frame, Q = {z1,za,...,2,} is a local divergence if and only if there exists a function
h:]0,1] x [0,1] — IR such that

and

i) h@,y) = h(y,z),Va,y € 0,1];
i) h(z,z) =0,Vz € [0,1];
iti) h(zx,z) > max{h(z,y), h(y, 2)},YVo,y,z € [0,1] with x < y < z.

The preceeding proposition allows us to construct local divergence from a two-
side function h. Sometimes some difficulties may arise in verifying condition iii).
So we stated the following

Corollary 2.4 ([8]) Condition iii) in Proposition 2.3 can be replaced by iii ) h(-,y)
is a function decreasing in [0,y] and increasing in [y, 1].

The first way we choose to compare the membership values is that of comparing
the fuzziness of both A and B with the fuzziness of the intermediate fuzzy subset.
This leads to a wide class of measures. In fact, this was the starting point of our
research.

Let us consider the class of fuzziness measures [5] (of local type) given by

FA) =" u(A(z:))

xT; e
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where v : [0,1] — IRT is a concave function, increasing in [0, 1/2], symmetric with
respect to the point 1/2, with «(0) = u(1) = 0.

The generator of the fuzziness (function «) can also generate a local divergence.
In fact, by posing

hMz,y)=u (a: ;r y) - wz) ;ru(y) ,Va,y € [0,1]

we obtain a function h which has all the properties required in Proposition 2.3 if
u is twice differentiable, so that

is a local divergence measure.
To prove this, it is sufficient to prove that h satisfies the conditions i)—iii) in
Corollary 2.4. If z,y are in [0, 1], we have that:

D) h(z,y) = w(2Hy) — dele@) — g utey @@ — iy g v,y e [0,1].

i) hiz, ) = (kL) — LEFu@) — ) — y(z) = 0.

iii) We denote by h, the function h(-,y) for a fixed y. Since h, is a sum of
differentiable functions, it is also differentiable, and hence

Tty
2

)7u(x)+u(y) :>£hy(a:)* 10

z+ y) B a%u(:v)
2 Oz

hy () = u( = 35U 5

Since w is concave, we have that 3%271@(2:) < 0,Vz € [0,1], and therefore the

function gu(a:) is increasing, whence
x

) <

{:v<y=>2~:1:<:v+y=>
) >

zt+y

2
T>Yy=>2-3>z+y— iy
Thus, E%hy(:v) is negative if x < y and positive if £ > y; this implies that
hy(z), that is h(-,y), is decreasing in [0,y] and increasing in [y, 1]. |

A particular important case of this type is given by the measure obtained
from the De Luca-Termini entropy ([3]). Function h obtained from its « function
—zlogz — (1 — z)log(l — z) is depicted in Figure 1.

It seems to be evident from the figure that h increases as |x — y| increases,
attains its maximum at the points (0,1) and (1,0) (h(0,1) = A(1,0) = w(3) and
its minimum at the points z = y (h(z, z) = 0)).
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Figure 1: Graphic of h(x,y).
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As an example, let us consider the subsets A, B,C (see Table below) of an
universe {2 with four elements, defined by (these sets are depicted in Figure 2).

Q |z T2 | T3 | Ta
Al03 (090602
Bl025]08|06|0.1
C|0.05|04/09](05
D|099|0.1]0.1]09

x3

x4

Figure 2: Graphic of A, E, C and D.
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For these sets we obtain that
D(A, B) = 0.03,D(A,C) = 0.46, D(A, D) = 1.60.

The divergence measures show that Alis very similar to B and quite different from
D. Notice that the absolute maximum D can assume in this case is given by
Dmaa: =4.

The divergence based on De Luca-Termini’s entropy can be generalized. In fact,
in [2] it was proven that a fuzziness measure can be obtained from any uncertainty
measure H, provided it satisfies the Principle of Transfer. In this case, we can
define u(t) = H(t,1 — t) and the divergence measure takes the form

oo (3]0 (4]
zeQ

H(A(x), A(2)) + H(B(z), B*(x))
2

It is easy to recognize that, if D is constructed as above from a fuzziness mea-
sure, then it can be expressed in terms of function f as follows:

i i 5 [+ 1(B)

5 )

where m(ﬁ,é) is the “average” of the subsets g,é, that is the fuzzy set defined
by N B
A(z) + B(x)

m(A, B)(z) = vz eq.

In the following propositions we establish some important properties of this class
of divergence measures, which express natural characteristics of the meaning of our
measure. From now on, in this section, we consider that D(A4, B) = f(m(A, B)) —

M, where f is any local fuzziness measure.

Proposition 2.5 Let A and B be in P(Q). If A is sharper than B (\A( )—1/2| >
|B(z) —1/2|,Vx € Q), then D(A, A°) is greater than or equal to D(B, B°), that is,

if A< B then D(A, A°) > D(B, B°).

Proof. Since f(A) = f(A°) < f(B) = f(B°) and &4 (z) = BB (3) = L vz €
Q, then D(A, A°) > D(B, B°). [

This means, as would be natural, that as the fuzziness decreases, the divergence
between a set and its complement increases. It takes the maximum when A is crisp.
Moreover
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Proposition 2.6 Let Z,V be two crisp subsets of {2, then

D(Z,2°) = D(V, V°).

Proof. It is trivial, since f(Z) = f(Z°) = f(V) = f(V) =0. [ |

Proposition 2.7 If we consider the function f* : ﬁ(Q) — IR defined by
f*(Av) = D(Z7 ZC) - D(AV7AVC)7VAV S ﬁ(Q)y
then f* is a fuzziness measure.

Proof. It is trivial since f* coincides with f. ]

Proposition 2.8 Let Z be a crisp subset of Q2. Then Vﬁ, B € Q we have

D(A,B) < D(Z, Z°)

Proof. It is a consequence that w >0, f(Z)=f(Z°) =0 and f(#) <
F(E) = f( &SZ—C), where F is the equilibrium, that is, the fuzzy subset defined by

E(z) =1/2,Vz € Q. |

Proposition 2.9 The divergence between a fuzzy subsets and the equilibrium is
equal to the divergence between its complementary and the equilibrium, that is,

D(A,E) = D(A°,E),VA, P().

Moreover if A < B then

D(A,E) > D(B,E).

Proof. First assertion is a consequence that w(z) = u(l — x) and therefore
u(%l/z) = u(%) The second one is a consequence that the proper-
ties of monotony and symmetry with respect to 1/2 of the function h(z,y) =

u(%52) - w (details can be found in [7]). "

Although trivial, the following proposition allows us to change the scale factor
of a divergence according to our particular requirements
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Proposition 2.10 Let ¢ : IR — IR be a non decreasing function with ¢(0) = 0.
The maps Dy, D? defined below are also divergence measures

(u <Z(x) + B’(x)> u(A@) + u(B’(x))>
2

D(ﬁ(‘g’g) - Z o}
xeQ)
D?(A, B) = ¢(D(4, B))

2

Proof. For Dy it is only necessary to prove that ¢ (u (mzﬂ) — M) satisfies

the conditions in Proposition 2.3.

The proof to D? is trivial, since for all A,B and C in ZE(Q) ~we have that
¢(D(A,B)) = ¢(D(B,A)), ¢(D(A,A)) = ¢(0) = 0, (D(AUC,BUC)) <

#(D(A, B)) and ¢(D(ANC, BNC)) < ¢(D(A, B)) because of D being a divergence
measure, $(0) = 0 and ¢ being not decreasing. [ ]

Here, we have proven this properties for this particular class of divergence mea-
sure obtained from a fuzziness measure, but we can see ([7]) that most of them are
true in general for all divergence measure which has the local property.

3 Divergence between partitions independent of
the measure

In this section, firstly we study the concept of divergence measure between parti-
tions, after we extend the fuzziness measure to calculate the fuzziness of a fuzzy
partition, and finally we present the class of divergence between partitions inde-
pendent of the measure.

3.1 Divergence measure between fuzzy partitions

It seems logical to think that the divergence between two partitions depends on
the divergence between the sets in them, as well as on the measure of these sets.
Thus, we have considered that a suitable way adapted of measuring the divergence
between two partitions was through a function that depends on the divergence
defined in the previous section and on a properly chosen measure of the sets in the
partitions.

Similarly to the classical probabilistic divergences, we are going to consider an
arbitrary set and to compare two possible ways (say the two partitions established
by two expert on the topic) of partitioning it into r fuzzy subsets, by seeing if these
two ways are very similar or very different.

We will refer always to divergences between partitions, since this is the most
interesting case for us, but in fact we are going to give the definition of divergence
between families. Thus, instead of working with the set formed by all partition in
(2, we are going to work with the set formed for the systems of r subsets of 2, that
we will denote by Fi..
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Firstly, we have to do some previous comments related to the way to accomplish
the matching between the sets of both families, to measure the divergence between
them.

If we consider, for instance, the definition of the sets “Young” and “Not Young”
of a 25 years-old person and of a 55 years-old person, it is clear that these partitions
are not very similar. Suppose that the result of this question is observed in Figure
3.

~ ~

A;: "Young" A;: "Not young"

40 60
Opinion of a 55 years-old person.

~ ~

Bi: "Young" B:: ""Not young"

40 60
Opinion of a 25 years-old person.

Figure 3: Definition of the sets “Young” and its complementary by two different
persons.

It is clear that we have to compare the set ﬁl with the set El, and ﬁz with
By. When this order to comparing is not fixed, we have to apply the Principle of
Minimum Divergence.

Definition 3.1 Principle of Minimum Divergence ([7]) Let I1; and Il be
two families in F,, formed by the sets {A;}Y7_, and {B;}7_,, respectively. Let D
be a divergence measure between sets. We say that these families are ordered in
accordance with the Principle of Minimum Divergence (D), if and only if for all
permutation o of {1,2,...,r} we have that

ZD(}IHE@) < ZD(AVM Ea(l))7VZ S {17 2,... 7T}'
i=1 i=1
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Thus, in throughout this paper we are going to consider, unless we indicate
explicitly another condition, that the two families are ordered with the Principle
of Minimum Divergence.

With this criterion, we axiomatize the concept of divergence measure between
partitions (in general families).

Definition 3.2 ([7]) Let D be a divergence measure between subsets and let m be
a measure on P( ). A family of functions R, : F, x F, —> IR is said to be a
divergence measure between partitions, if it satzsﬁes that

1. R(ﬁl,ﬁl) > O,Vﬁhﬁz S ﬁr;
2. R(ﬁl,ﬁl) = O,Vﬁl c ﬁr;

3. Let ﬁl = {gi}::p ﬁz = {Ei}’gzly ﬁ3 = {51}::1 and ﬁ4 = {51}::1 be n ﬁr,
we have that

3.a) If for alli € {1,2,...,r} we have that m(A;) = m(Cy), m(B;) = m(D;)
and D(A;, B;) > D(CZ,D ), then

{R(gs,l}o < R(II;, I0y)

R(T4,TI3) < R(My,T0;)

3.b) If for alli € {1,2,...,r} we have that D(Al,B )= D(Cl D;) and ei-
ther m(A;) < m(C;) < m(D;) = m(B;) or m(A;) > m(C;) > m(D;) =
m(B;), then

{R(gs, IIy) < R(H1,H2)
R(IL,, ;) < R(y, 1)

From now on, we will use the symbol R instead of R,, whenever there is not
ambiguity.

As in Section 2, there exists a very important class of divergence measure be-
tween partitions, and this is the class of the local divergences.

Definition 3.3 (/7)) Let R : F. x F, — IR be a divergence measure between

partitions associated with (D, m). R is said to be a local divergence measure between

partitions, if and only if the function g from IR® in IR satisfies that
R({Ay,...,As,..., A} {B1,...,B;,..., B, })—

—R({Ay,... As,... A {B1,..., As,...,B.}Y) = g(D(A;, By), m(As), m(By)),
Vie{1,2,... 7, V{4, {B}_, € F..
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Though g is defined in IR3, we are only interested in the definition of g in the
subset of IR? defined by G = {(z,y,2) € IR*/3A, B € P(Q) with z = D(A, B),y =

m(A), 2 = m(B)}.
The following statement characterizes the local divergences between partitions.

Proposition 3.4 Let R be o divergence measure between partitions associated with
(D,m); R is a local divergence measure between partitions, if and only if for all
3,115 € F,. we have that

Rz T5) = Y 9(D(A;, Bi),m(4;), m(By))
i=1

where g satisfies that
1. g(z,y,2) 2 0,¥(z,y,2) € G;
2. 9(0,y,9) = 0,Vy € Im(m);
3. 3.a) g(,y
3.b) g(x,-, z) is decreasing in {y € R/(z,y,z) € G ey < z} and increas-
ing in {y € R/(x,y,2) € G andy > z} and g(x,y,-) is decreasing in

{z € R/(z,y,2) € G and z < y} and increasing in {z € IR/(z,y,z) €
G and y < z}.

,2) is increasing, Yy, z € Im(m);
z
?

3.2 Fuzziness measure of a partition
In this subsection we try to generate fuzziness measures of a fuzzy partition.

Definition 3.5 A fuzziness measure of a partition is a real function b defined on
F,., such that

1. b(ﬁl) =0 ﬁz is a crisp set Vgi S ﬁl.
2. Ifﬁl,ﬁg S ﬁr y Iy < 1y, then b(ﬁl) < b(ﬁg)
3. b(ﬁl) is the mazimum value between the families with the same number of

elements <= A; is mazimally fuzzy VA; € 11;.

In the second axiom we talk about a partition “sharper than” another one. We
have to formalize this concept.

Definition 3.6 Let II; and ljz be two fuzzy partitions in Q. The partition Il is
said to be sharper than o, (II; < M) if and only if

VA, € ﬁl, Héﬁ IS ﬁz/gZ s sharper than Eji,

and _ _
Bj, # Bj.,Vi # k.
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The following proposition will establish a method to generate fuzziness measures
of a partition by means of the well know fuzziness measures of fuzzy subsets.

Proposition 3.7 Let f: ﬁ(Q) — IR be a fuzziness measure of fuzzy sets. Then
the function b : F,, — IR such that

b(Iy) = > f(A) VI = {A;}]_, € F,
i=1

18 a fuzziness measure of fuzzy partitions.

Proof. It is a consequence of definition of fuzziness measure of fuzzy subsets. W

3.3 Divergence between partitions independent of the mea-
sure

Sometimes, it should be convenient that the divergence between partitions depends
only on the divergence between sets in these partitions; an example for this is the
following:

R(Iy,Thy) = Y D(A;, Bi), VIl = {A;}i_,, T, = {Bi}j_, € F,,
i=1

where D is a divergence between sets.

To prove that R is a divergence between partitions, it is sufficient to note that
R has the local property, and it is defined by g(z,y, z) = z; then, by applying
Proposition 3.4, it is trivial that R is a local divergence between partitions, since
9(x,y,2) = 0,9(0,y,y) = 0,9(x1,¥,2) < g(x2,¥,2) if &1 < 2 and g(z,91,2) =
glx,y2,2) if y1 < yo or if y1 > w2, and similar to third component; this is true
V(z,y,2) € IR3, in particular for all (z,y,z) in G.

Thus, if we consider the divergence between sets defined by means of a fuzziness
measure, we obtain that

R(11y,T1y) = Zf (Ai;Bi> _ fA) + f(Bi)

2

but, we can also write this expression as

S My + 11 b(IT;) + b(II
R(Hl,Hz)b< 1+ 2> (I11) + b(Ily)
2 2
where b is the fuzziness measure of fuzzy partitions defined in Proposition 3.7 by
means of f.

With this definition, we have proven ([7]) that the crisp partition closest to an
e-partition ([6]) is also the crisp partition for which the divergence is lower, by
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using the divergence based in the fuzziness measure. We have also proven that the
closest e-partition to a partition in Ruspini’s sense ([10]) is the e-partition with the
lowest divergence, when this divergence is measured by the divergence obtained
from a fuzziness measure.

Because of the preceding conclusions we can think that if we partitions are those
having the lowest distance by using Hamming’s distance, then they are have also
the lowest divergence. However, this is not true; we can consider Q = {z1}, and
H1 = {Al,AQ,A3,A4} with Al(il?l) = 04 Az(l’l) = 0.3 A3(£U1) = 0.2 A4( )

0. 1 H2 = {Bl,BQ,B3,B4} with Bl(il?l) =1 Bg(il?l) =0.2 B3(£U1) =0.2 B4( ) =
0.1 and H3 = {01,02,03,04} with O1(£U1) = 0.9 02(2131) = 0. 09 03(331) 0. 2
Culzy) = 0.1.
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