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A hyperbolic model for convection-diffusion transport
problems in CFD: Numerical analysis and applications

H. Gómez, I. Colominas, F. Navarrina and M. Casteleiro

Abstract In this paper we present a numerical study of the hyperbolic model for convection-diffusion
transport problems that has been recently proposed by the authors [16]. This model avoids the infinite
speed paradox, inherent to the standard parabolic model andintroduces a new parameterτ called relaxa-
tion time. This parameter plays the role of an “inertia” for the movement of the pollutant.

The analysis presented herein is twofold: first, we perform an accurate study of the 1D steady-state
equations and its numerical solution. We compare the solution of the hyperbolic model with that of the
parabolic model and we analyze the influence of the relaxation time on the solution. On the other hand,
we explore the possibilities of the proposed model for real-world applications. With this aim we solve
an example concerning the evolution of a pollutant being spilled in the harbor of A Coruña (northwest of
Spain, EU).

Un modelo hiperb ólico para problemas de convecci ón-difusi ón en mec ánica
de fuidos computacional: An álisis num érico y aplicaciones

Resumen. En este artı́culo se presenta un estudio numérico del modelo hiperbólico para problemas
de convección-difusión que ha sido recientemente propuesto por los autores [16]. Este modelo elim-
ina la paradoja del transporte a velocidad infinita inherente al modelo parabólico e introduce un nuevo
parámetroτ denominado tiempo de relajación. Este parámetro introduce una “inercia” en el movimiento
del contaminante.

El artı́culo tiene dos objetivos: en primer lugar se realizaun detallado análisis de las ecuaciones
estacionarias 1D y su solución numérica. Se compara la solución del modelo hiperbólico con la del
modelo parabólico y se analiza la influencia del tiempo de relajación en la solución. El segundo objetivo
es estudiar las posibilidades del modelo propuesto para aplicaciones prácticas. Para ello, se simula la
evolución de un vertido contaminante en el puerto de A Coru˜na.

1 Introduction

There is much experimental evidence which proves that diffusive processes take place with finite veloci-
ty inside matter [6, 23]. However, standard linear parabolic models based on Fick’s law [9] or Fourier’s
law [11] (in the case of mass transport or heat conduction respectively) predict an infinite speed of propa-
gation. In some applications, this issue can be ignored and the use of linear parabolic models is accurate
enough for practical purposes in spite of predicting an infinite speed of propagation [4]. However, in many
other applications it is necessary to take into account the wave nature of diffusive processes to perform
accurate predictions [6, 26].
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A great deal of effort has been devoted to the development of diffusion mathematical models that avoid
the infinite speed paradox. There are two main groups which most of the models belong to: the non-
linear parabolic diffusion equations and the hyperbolic diffusion equations. A detailed presentation on
non-linear parabolic equations leading to finite speed of propagation can be found in the excellent book [1].
On the other hand, the hyperbolic diffusion equation was first proposed by Cattaneo [4] who introduced a
generalized constitutive law1 that includes Fick’s (or Fourier’s) law as a subcase. In thispaper we will only
study the hyperbolic theory for diffusion.

In the past, the study of hyperbolic diffusion has been limited to pure-diffusive problems [20, 21, 28, 24].
Recently the authors have proposed a generalization of the hyperbolic diffusion equation that can also be
used in convective cases [12, 13, 14]. From a numerical point of view, the simulation of the hyperbolic
diffusion equation has been mostly limited to 1D problems [2, 3]. The numerical discretization of 2D pure-
diffusion problems was probably pioneered by Yang [27]. Later, Manzariet al. [22] proposed a different
algorithm and solved some practical pure-diffusive examples.

The first objective of this paper is to perform an accurate analysis of the 1D steady-state convection-
diffusion equation and its numerical solution. We compare the parabolic and the hyperbolic models by
means of their numerical and exact solutions. The objectiveis to analyze whether the infinite speed paradox
(inherent to the linear parabolic model) contributes or notto the non-physical oscillations that appear in
convection dominated flows discretized with centered methods.

The second objective of this paper is to explore the possibilities of the hyperbolic model for practical
computations in the context of mass diffusion within a fluid.In this framework, there are a number of
important applications in civil and environmental engineering, for instance, the prediction of the fate of a
pollutant spilled in a fluid. This paper presents an example concerning the evolution of a pollutant being
spilled in the harbor of A Coruña (northwest of Spain, EU).

The outline of this paper is as follows: In Section 2 we reviewthe parabolic formulation of the
convective-diffusive equation. In section 3 we present thehyperbolic model for the transport problem.
A numerical analysis of the 1D steady-state equations is performed in section 4. In section 5 we solve a
practical case in environmental engineering. Finally, section 6 is devoted to the presentation of the main
conclusions of this study.

2 Standard formulation of the convection-diffusion proble m

2.1 Governing equations

Under the assumption of incompressibility, the governing equations are given by

∂u

∂t
+ a · ∇x (u) + ∇x · (q) = 0 (1.1)

q = −K∇x (u) (1.2)

In the context of mass diffusion within a fluid, (1.1) is the mass conservation equation and (1.2) is a con-
stitutive law proposed by Fick. The notation is standard:u is the pollutant concentration,a is the velocity
field, q is the diffusive flux per unit fluid density andK is the diffusivity tensor which is assumed to be
positive definite.

Remark 1 System(1) can be decoupled since we can plug(1.2) into (1.1) and solve the scalar equation

∂u

∂t
+ a · ∇x (u) −∇x · (K∇x (u)) = 0 (2)

1By constitutive law we mean a relation between two physical quantities that does not follow directly from physical law.
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2.2 Problem statement

Let us consider the transport by convection and diffusion inan open setΩ ⊂ R
d (d = 2 or 3) with

piecewise smooth boundaryΓ, such thatΓ = ΓD ∪ ΓN . The unit outward normal vector toΓ is denotedn.
The convection-diffusion initial-boundary value problemcan be stated as follows: given a divergence-free
velocity fielda, the diffusion tensorK and adequate initial and boundary conditions, findu : Ω×[0, T ] 7→ R

such that

∂u

∂t
+ a · ∇x (u) −∇x · (K∇x (u)) = 0 in Ω × (0, T ) (3.1)

u(x, 0) = u0(x) on Ω (3.2)

u = uD on ΓD × (0, T ) (3.3)

K∇x (u) · n = h on ΓN × (0, T ) (3.4)

3 A hyperbolic model for convection-diffusion problems

3.1 Governing equations

Under the assumption of incompressibility, the governing equations are given by

∂u

∂t
+ a · ∇x (u) + ∇x · (q) = 0 (4.1)

q + τ

(

∂q

∂t
+ ∇x (q) a

)

= −K∇x (u) (4.2)

whereτ is the relaxation tensor. Equation (4.1) is the mass conservation equation and, therefore, is the same
as in the parabolic model. On the contrary, equation (4.2) has been recently proposed by the authors [12,
13, 14] as a generalization of Cattaneo’s law. The reason to modifyCattaneo’s law comes from the fact that
Cattaneo’s equation was proposed for pure-diffusive problems and it does not satisfy the Galilean invariance
principle. Using equation (4.2) the description of the diffusion process is granted to be the same in every
inertial frame [5]. Additionally, when the domain is fixed (a = 0) the original Cattaneo’s law is recovered.

Remark 2 System(4) constitutes a generalization of the classic parabolic convection-diffusion model
since the standard formulation is recovered by settingτ = 0.

Remark 3 System(4) can be written as a single second order partial differentialequation when the ve-
locity field is constant[12].

Remark 4 The proposed model may also be combined with non-linear diffusivities (dependent on the
solution or its derivatives). The authors believe this could lead to an interesting convection-diffusion model
and they are currently studying that model.

3.2 Conservative form of the proposed equations

Under the hypotheses of isotropy and homogeneityK = kI, τ = τI for certaink, τ ∈ R
+, beingI the

identity tensor. This allows for a conservative form of system (4), namely

∂u

∂t
+ ∇x · (ua + q) = 0 (5.1)

∂(τq)

∂t
+ ∇x · (τq ⊗ a + kuI) + q = 0 (5.2)
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Also, defining the vectors

U =

(

u
τq

)

; F =

(

(ua + q)T

τq ⊗ a + kuI

)

; S =

(

0
−q

)

(6)

system (5) can be rewritten in the standard conservative form

∂U

∂t
+ ∇x · (F ) = S (7)

An standard Riemann analysis of equation (7) yields the following conclusions (see [15] for the details)

1. System (7) is totally hyperbolic for any admisible value of the parameters of the modelk andτ

2. It is possible to define the so-called Riemann quasi-invariants for a given direction. We will call
Rn the Riemann quasi-invariants at the boundary in the direction of n, the outward normal to the
boundary. Also, we will denoteRin

n
(where the superscript in stands for inflow) theRn quasi-

invariants that corresponds to negative eigenvalues.

3. The dimensionless number

H =
‖a‖

c
(8)

allows for the flow to be classified as

• H < 1 ⇔ Subcritical flow.

• H > 1 ⇔ Supercritical flow.

• H = 1 ⇔ Critical flow.

4. Appropriate boundary conditions to define a well-posed initial-boundary problem from system (7)
are obtained precribing at each point of the boundary the value ofRin

n

Remark 5 The dimensionless numberH defined in(8) plays a similar role to Mach number in compressi-
ble flow problems[7]. We remark that in supercritical flow the pollutant cannot travel upstream, since its
velocity is smaller than the fluid velocity.

4 Numerical analysis of the 1D steady-state equations: the
connection between the parabolic and the hyperbolic model

4.1 The antidiffusion introduced by Cattaneo’s law

In this section we show that, under adequate assumptions, Cattaneo’s law introduces a negative diffusion
with respect to Fick’s law. We make use of the governing equations for the steady-state, namely

∇x · (F ) = S (9)

The above equation can be rewritten as

dq

dx
= −a

du

dx
(10.1)

k
du

dx
+ τa

dq

dx
= −q (10.2)

If we use (10.1) and the derivative of (10.2), the following second order equation is found:

a
du

dx
− (k − τa2)

d2u

dx2
= 0 (11)
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Equation (11) shows clearly that Cattaneo’s law introduces a negative diffusion with respect to Fick’s law.
It may be argued that this fact represents an important drawback of the hyperbolic model because it compli-
cates the numerical resolution of the equation. This is not true. A discussion on this point will be presented
in section4.4.

Remark 6 Equation(11) can be only thought of as the standard parabolic model with a negative diffusion
in subcritical flow. In this case the termk − τa2 remains positive. In supercritical flow equation(11) still
makes sense, but the termk − τa2 cannot be thought of as a diffusivity.

Remark 7 Equation(11) is not equivalent to system(9). The hyperbolic model for convection-diffusion
is given by system(9) and not by equation(11). However, in the case of subcritical flow and Dirichlet
boundary conditions both formulations are equivalent if the solutions are sufficiently smooth.

4.2 The effect of the standard Galerkin discretization on th e classic para-
bolic convection-diffusion equation

We analyze the classic parabolic convection-diffusion problem subject to Dirichlet boundary conditions.
We use the following model problem: findu : [0, L] 7→ R such that

a
du

dx
− k

d2u

dx2
= 0; x ∈ (0, L) (12.1)

u(0) = u0 (12.2)

u(L) = uL (12.3)

Let P be a uniform partition of[0, L] defined by the points{xi}i=0,N such thatxi = (i − 1)h, being
h = L/(N − 1). Let us call

Pe =
ah

2k
(13)

themesh Ṕeclet numberwhich expresses the ratio of convective to diffusive transport. If we solve (12) by
using the standard Galerkin method and linear finite elements (this is equivalent to second-order centered
finite differences for this case) we obtain the following discrete equation at an interior nodej:

(1 − Pe)uj+1 − 2uj + (1 + Pe)uj−1 = 0 (14)

In equation (14) uj is the finite element approximation ofu(xj) andu0, uN are the values given by boundary
conditions (12.2)–(12.3). Difference equations (14) can be solved exactly (see, for instance, reference [19]).
The exact solution of (14), subject to boundary conditions (12.2)–(12.3), is

uj =
1

1 −
(

1+Pe
1−Pe

)N

{

u0

[

(

1 + Pe

1 − Pe

)j

−

(

1 + Pe

1 − Pe

)N
]

+ uL

[

1 −

(

1 + Pe

1 − Pe

)j
]}

(15)

From equation (15) it is observed that the numerical solution will present an oscillatory behavior2 when
|Pe| > 1, even though equations (14) were solved exactly. On the other hand, the exact solution of (12) is

u(xj) =
1

1 − e
ah

k
N

[

u0

(

e
ah

k
j − e

ah

k
N

)

+ uL

(

1 − e
ah

k
j
)]

(16)

2These non-physical oscillations are normally referred to as wigglesor node-to-node oscillationsin the Computational Mechanics
community. A numerical solution that presents this behavior is normally said to beunstable. Although we are aware that this is not
an stability issue since we are considering the exact solution of the discrete equations (14), we will use this nomenclature in the rest
of the paper.
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Figure 1. Dimensionless diffusivity (k⋆/k) as a function of Pe (left) and dimensionless number H
as a function of Pe (right).

A comparison between (15) and (16) shows that the approximate solution equals the exact solution if the
following relation holds

e2Pej =

(

1 + Pe

1 − Pe

)j

∀j = 0, N (17)

Relation (17) is only satisfied forPe = 0 (pure-diffusive problem). However, using (17) we find that when
the mesh is fine enough (|Pe| ≤ 1) the approximate solution (15) is, actually, the exact solution of the
problem

a
du

dx
− k⋆ d2u

dx2
= 0; x ∈ (0, L) (18.1)

u(0) = u0 (18.2)

u(L) = uL (18.3)

where

k⋆ = k
2Pe

ln
(

1+Pe
1−Pe

) (19)

On the left hand side of figure1 we representk⋆/k as a function ofPe ∈ (−1, 1). We observe thatk⋆ → k
as|Pe| → 0 andk⋆ → 0 as|Pe| → 1.

Remark 8 If the mesh is fine enough (|Pe| < 1), thenk⋆ ∈ (0, k], what means that the standard Galerkin
method solves exactly an underdiffusive equation. If the mesh is not fine enough (|Pe| > 1), thenk⋆ becomes
complex and it is not correct anymore to say that the standardGalerkin method solves an underdiffusive
equation.

Remark 9 Equation(12.1) can be thought of as Newton’s equation for a particle under viscous damping
whena < 0. In this case, the element Peclet numberPe is proportional to the variation of the kinetic energy
of the particle in the discrete sense, which suggests that the Peclet number is related to stability.

4.3 The connection between the hyperbolic model and the disc retized pa-
rabolic model

We prove that (under the necessary assumptions) when a standard Galerkin discretization is applied to the
classic parabolic convection-diffusion equation, the velocity of propagation is not infinite anymore at the
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discrete level. On the contrary, a finite velocity of propagation can be identified in the discrete equations.
We conclude that the standard Galerkin formulation introduces an “artificial” relaxation time. The proof
requiresk⋆ to be rearranged as

k⋆ = k − k



1 −
2Pe

ln
(

1+Pe
1−Pe

)



 < k (20)

If we compare the diffusive coefficientk⋆ with the coefficient which results from using Cattaneo’s law
(this can be found in equation (11)) the following conclusion is achieved: when we solve (12) by using
the standard Galerkin method we obtain the solution of a Cattaneo-type transport problem defined by the
relaxation time

τG =
h

a





1

2Pe
−

1

ln
(

1+Pe
1−Pe

)



 (21)

As a result, a finite velocity of propagation can be defined in the discrete equation (14), namely

cG =
a

(

1 − 2Pe

ln( 1+Pe
1−Pe )

)1/2
(22)

By using the relation (22) it is easy to compute the value of “artificial”H (see equation (8) for a definition
of H) introduced by the Galerkin method for a certainPe. In figure1 (right) we plot the “artificial”H as a
function ofPe.

We conclude that when we solve problem (12) for |Pe| < 1 by using the standard Galerkin method
we are actually solving a Cattaneo-type transport problem in subcritical flow conditions. To summarize,
we present the relationships between the hyperbolic and theparabolic model at the continuous and discrete
level in figure2.

Continuous Hyperbolic τ=0
//

h small

��

Parabolic

h→0

��

Discrete Hyperbolic
τ=0,h→0

// Parabolic

Figure 2. Relationship between the parabolic and the hyperbolic model at the continuous and
discrete level.

Remark 10 The Cattaneo-type problem that is being actually solved is given by

a
du

dx
− (k − τGa2)

d2u

dx2
= 0; x ∈ (0, L) (23.1)

u(0) = u0 (23.2)

u(L) = uL (23.3)

whereτG is defined in equation(21). Problem(23) is a well-posed boundary-value problem for every value
of the parametersk andτG. However, it only represents a Cattaneo-type convection-diffusion problem in
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subcritical flow. As we said before, equation(23.1) can be (under the assumption of sufficient regularity)
used to describe the steady-state hyperbolic model, but boundary conditions have to be set in such a way
that (7) is well-posed. Since(7) is not well-posed subject to boundary conditions(23.2)–(23.3) in super-
critical flow, problem(23) does not represent anymore a Cattaneo-type convection-diffusion problem in
supercritical flow.

4.4 Stability analysis of the hyperbolic model

Let us consider again the partitionP that defines the mesh sizeh. We introduce the dimensionless number

He =
ah

2(k − τa2)
(24)

which plays a similar role toPe in the standard description of the transport problem [13, 14]. If we solve (23)
by using the standard Galerkin method and linear finite elements (this is equivalent to second-order centered
finite differences for this case), the following differenceequations are found [12]:

(1 − He)uj+1 − 2uj + (1 + He)uj−1 = 0; ∀j = 1, . . . , N − 1 (25)

In the same way as (14), difference equations (25) can be solved exactly and the stability condition

|He| ≤ 1 (26)

can be found. Relation (26) suggests that in the hyperbolic model numerical instabilities do not arise for
large values of the fluid velocitya, but they appear for values of|a| close to the pollutant velocityc. Indeed,
the size (in the velocity domain) of the interval that leads to unstable solutions is

I = h/τ (27)

we prove the above assertion by finding thea values that make

|He| = 1 (28)

which are given by

a1 = −
h

4τ
−

√

(

h

4τ

)2

+ c2 (29.1)

a2 = −
h

4τ
+

√

(

h

4τ

)2

+ c2 (29.2)

a3 = −a2 (29.3)

a4 = −a1 (29.4)

It is straightforward thata1 < 0, a1 < −c, a2 > 0, a2 < c. Taking into account all of this, the interval of
velocities that makes the numerical solution unstable has asize of

I = a4 − a2 + a3 − a1 = −2(a1 + a2) = h/τ (30)

as we said above.

Remark 11 The size of the intervalI decreases asτ increases which suggests that the transport problem
becomes more stable asτ increases.

Remark 12 All the theoretical results presented in section4 have been confirmed by numerical experi-
ments in[15].
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Figure 3. Simulation of an accidental spillage in the port of A Coruña. Digital photograph showing
the port.

5 An application example: simulation of an accidental spill a-
ge in the port of A Coru ña

The objective of this section is to investigate the possibilities of the proposed hyperbolic system as a model
for real-world applications. We are interested in practical applications in civil and environmental engineer-
ing. For this reason, we present an example concerning the evolution of an accidental spillage in the harbor
of A Coruña (northwest of Spain, EU).

5.1 Numerical algorithm

5.1.1 Continuous problem in the weak form

We begin by considering a weak form of the hyperbolic convection-diffusion model. LetV denote the trial
solution and weighting functions spaces, which are assumedto be the same. Therefore, the variational
formulation is stated as follows: findU ∈ V (we assume that this implies strong satisfaction of boundary
conditions) such that∀W ∈ V ,

BC(W , U) = 0 (31)

where

BC(W , U) =

(

W ,
∂U

∂t

)

Ω

− (∇x (W ), F )
Ω

+ (W , Fn)
Γ
− (W , S)Ω (32)

being(· , ·)Ω theL2-inner product with respect to the domainΩ. The integration by parts of equation of (32),
under the assumption of sufficient regularity, leads to the Euler-Lagrange form of (32)
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(

W ,
∂U

∂t

)

Ω

+ (W ,∇x · (F ))
Ω
− (W , S)Ω = 0 (33)

which implies the weak satisfaction of equation (7)

5.1.2 Time integration

For the time integration we replace the time derivative in (32) by its second order Taylor expansion, namely

∂U

∂t
(·, tn) =

U(·, tn+1) − U(·, tn)

∆t
−

∆t

2

∂2U

∂t2
(·, tn) + θ(∆t2) (34)

where∆t = tn+1 − tn and θ(∆t2) is an error of the order of∆t2. Using the notation∆t∆U (·) =
U(·, tn+1)−U(·, tn) and rewritting the second-order time derivative in (34) in terms of spatial derivatives
using the original equation (7), the following variational equation is found (see the details in [15]): find
U ∈ V such that∀W ∈ V

BSD(W , U) = 0 (35)

being

BSD(W , U) = (W , ∆U)Ω −

(

W , ∆tB(I +
∆t

2
B)U

)

Ω

−

(

∂W

∂xi
, ∆t(I + ∆tB)AiU −

∆t2

2
AiAj

∂U

∂xj

)

Ω

+

(

W , ∆t(I + ∆tB)AiniU −
∆t2

2
niAiAj

∂U

∂xj

)

Γ

(36)

where theAi’s are the Jacobian matrices of the fluxF , theni’s are the components ofn, B is the Jacobian
matrix of the source termS and the Einstein summation convection has been used.

5.1.3 Space discretization

For the space discretization of (36) we make use of the Galerkin method. We approximate (35)–(36) by the
following variational problem over the finite element spaces: findU ∈ Vh such that∀W ∈ Vh

BSD(W h, Uh) = 0 (37)

For equation (37) to be well defined our discrete spaces have to beH1-conforming. We will useC0-
continuous linear finite elements which satisfy this requirement.

Remark 13 The presented algorithm is based on the second-order Taylor-Galerkin method that was first
proposed in[8].

5.2 Problem setup

The domain of the problem comprises the whole area of the A Coruña port. In figure3 we show a digital
photograph of the port. We represent the layout of the port infigure4. To bound the domain of the problem
we define an open-sea boundary from the end of Barrie’s dike tothe extreme of Oza’s dock. The resulting
computational domain has been depicted in figure5 (left). As it can be seen in this figure some elements of
the real domain have been removed in order to simplify the generation of the mesh. However, the omission
of these elements is not important for the solution of the problem [10]. For instance, the oil tanker pier
allows both water and pollutant to flow through it, so it does not modify the solution.
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A Coruña Port

Oza's dock

A Coruña city

Transatlanticos wharf

Marina dock

Barrie's dike

Centenario wharf

Oil tanker pier

N

Figure 4. Simulation of an accidental spillage in the port of A Coruña. Layout of the port.

Figure 5. Simulation of an accidental spillage in the port of A Coruña. Velocity field and kinds of
boundaries (left) and computational mesh of the problem (right). On the left hand side the solid
wall boundary has been plotted in green; the boundary where the spillage happens has been
plotted in red; the open sea boundary has been plotted in blue. The finite element mesh consists
of 2023 bilinear elements and it was generated by using the code GEN4U [25].

Three kinds of boundaries are differentiated in figure5 (left): the solid wall boundary has been plotted
in green; the boundary where the spillage happens has been plotted in red; the open-sea boundary has been
plotted in blue.
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Figure 6. Simulation of an accidental spillage in the port of A Coruña. We show (left to right and
top to bottom) the concentration initial condition and concentration solutions at non-dimensional
times t∗ = 30, t∗ = 60 and t∗ = 90.

The objective of this example is to show that the proposed methodology can be used to simulate real-
world problems. For this reason we have not considered necessary to perform an accurate estimation of the
parameters which would entail a lot of experimental work. A typical value for engineering calculations has
been selected for the diffusivityk [18]. The estimation of the relaxation timeτ is not so trivial since only the
order of magnitude of the parameter can be estimated withoutmaking experiments. However, what really
determines the solution is the velocity of the fluida with respect to the velocity of the pollutantc =

√

k/τ .
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Figure 7. Simulation of an accidental spillage in the port of A Coruña. We show (left to right and
top to bottom) concentration solutions at non-dimensional times t∗ = 120, t∗ = 150, t∗ = 300 and
t∗ = 1000.

This quotient defines a Mach-type number as it can be seen in equation (8).
In order to reduce the computations, the velocity field has not been calculated, but it was generated with

two constraints: a) it verifies the continuity equation for incompressible flow and b) it satisfies standard
boundary conditions for a viscous flow. The velocity field hasbeen plotted in figure5 (left). On the right
hand side of figure5 we have depicted the computational mesh.

On the solid wall boundary we imposeq · n = 0. On the boundary where the spillage takes place the
conditionq ·n = −10−2 is imposed. On the open-sea boundary we imposeq ·n = cu wherec =

√

k/τ is
the pollutant wave velocity. The flow is given byH numbers (H = ‖a‖/c) verifyingH ≤ Hmax ≈ 0.3237
what makes the problem to be subcritical at each point of the domain. The computation was performed
taking a maximum CFL numberCmax ≈ 0.5531.

At this point we define the non-dimensional timet∗ = t/τ . In figure6 we show the initial concen-
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tration and concentration solutions at non-dimensional timest∗ = 30, t∗ = 60 andt∗ = 90. In figure7
concentration solutions at non-dimensional timest∗ = 120, t∗ = 150, t∗ = 300 andt∗ = 1000 are plotted.

Remark 14 This computation was repeated on finer meshes in space and time. Also, the calculations were
repeated using a Runge-Kutta discontinuous Galerkin method [17]. No significant differences were found
in any case.

6 Conclusions and future developments

In this paper, a hyperbolic model for convection-diffusionproblems in CFD is analyzed. The hyperbolic
formulation avoids the infinite speed paradox inherent to the standard linear parabolic formulation. The
proposed formulation constitutes a generalized approach for convective-diffusive phenomena because the
standard formulation can be considered as a subcase of the proposed one.

From a numerical point of view, we have shown that the discrete equations of the Fick-type 1D steady
model represent, actually, a Cattaneo-type transport problem when the standard Galerkin formulation is
employed. In addition, we show that the Galerkin solution (with linear finite elements) of the proposed
equations is stable for any value of the fluid velocity exceptfor a small interval which length decreases as
the relaxation time increases.

Finally, we present an application in environmental engineering in order to explore the possibilities of
the hyperbolic model for real computations. We conclude that the proposed model is a feasible alternative
to the standard parabolic models. However, there are some issues that should be addressed: for example
those concerning the computational cost of the numerical approach and the estimation of the parameters of
the model (especially the relaxation timeτ ).
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