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A hyperbolic model for convection-diffusion transport
problems in CFD: Numerical analysis and applications

H. Gomez, |I. Colominas, F. Navarrina and M. Casteleiro

Abstract In this paper we present a numerical study of the hyperbobdehfor convection-diffusion
transport problems that has been recently proposed by theralL6]. This model avoids the infinite
speed paradox, inherent to the standard parabolic modehanduces a new parametercalled relaxa-
tion time. This parameter plays the role of an “inertia” foe tmovement of the pollutant.

The analysis presented herein is twofold: first, we perfornaecurate study of the 1D steady-state
equations and its numerical solution. We compare the swiuf the hyperbolic model with that of the
parabolic model and we analyze the influence of the relaxdiioe on the solution. On the other hand,
we explore the possibilities of the proposed model for reatld applications. With this aim we solve
an example concerning the evolution of a pollutant beintiegpin the harbor of A Corufia (northwest of
Spain, EU).

Un modelo hiperb 6lico para problemas de convecci  6n-difusi 6n en mec anica
de fuidos computacional: An  alisis num érico y aplicaciones

Resumen. En este articulo se presenta un estudio numérico del mdueérbolico para problemas
de conveccion-difusion que ha sido recientemente psipueor los autoreslp]. Este modelo elim-
ina la paradoja del transporte a velocidad infinita inheretmodelo parabolico e introduce un nuevo
parametror denominado tiempo de relajacion. Este parametro inttedua “inercia” en el movimiento
del contaminante.

El articulo tiene dos objetivos: en primer lugar se realinadetallado analisis de las ecuaciones
estacionarias 1D y su solucidbn numérica. Se compara lisol del modelo hiperbblico con la del
modelo parabolico y se analiza la influencia del tiempo tiaeion en la solucion. El segundo objetivo
es estudiar las posibilidades del modelo propuesto paieaajnes practicas. Para ello, se simula la
evolucion de un vertido contaminante en el puerto de A Garu”

1 Introduction

There is much experimental evidence which proves that gliffuprocesses take place with finite veloci-
ty inside matter §, 23]. However, standard linear parabolic models based on $iek¥ [9] or Fourier’s
law [11] (in the case of mass transport or heat conduction resgdygligredict an infinite speed of propa-
gation. In some applications, this issue can be ignored lamdise of linear parabolic models is accurate
enough for practical purposes in spite of predicting an itgfispeed of propagatiod]. However, in many
other applications it is necessary to take into account tagewature of diffusive processes to perform
accurate prediction$] 26].
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A great deal of effort has been devoted to the developmeriffastbn mathematical models that avoid
the infinite speed paradox. There are two main groups whicst mibthe models belong to: the non-
linear parabolic diffusion equations and the hyperbolitudion equations. A detailed presentation on
non-linear parabolic equations leading to finite speed oppagation can be found in the excellent book [
On the other hand, the hyperbolic diffusion equation was fireposed by Cattaned][who introduced a
generalized constitutive lavthat includes Fick's (or Fourier's) law as a subcase. Inhaiser we will only
study the hyperbolic theory for diffusion.

In the past, the study of hyperbolic diffusion has been ahib pure-diffusive problem&(, 21, 28, 24].
Recently the authors have proposed a generalization ofyiherbolic diffusion equation that can also be
used in convective casesZ, 13, 14]. From a numerical point of view, the simulation of the hyipelic
diffusion equation has been mostly limited to 1D proble®)s3]. The numerical discretization of 2D pure-
diffusion problems was probably pioneered by Yafd][ Later, Manzariet al.[22] proposed a different
algorithm and solved some practical pure-diffusive exaspl

The first objective of this paper is to perform an accuratdyaismof the 1D steady-state convection-
diffusion equation and its numerical solution. We compée parabolic and the hyperbolic models by
means of their numerical and exact solutions. The objeiiteanalyze whether the infinite speed paradox
(inherent to the linear parabolic model) contributes or toothe non-physical oscillations that appear in
convection dominated flows discretized with centered netho

The second objective of this paper is to explore the po#sgsilof the hyperbolic model for practical
computations in the context of mass diffusion within a fluid. this framework, there are a number of
important applications in civil and environmental engirieg, for instance, the prediction of the fate of a
pollutant spilled in a fluid. This paper presents an exampteerning the evolution of a pollutant being
spilled in the harbor of A Corufia (northwest of Spain, EU).

The outline of this paper is as follows: In Section 2 we revidg parabolic formulation of the
convective-diffusive equation. In section 3 we presenthiiperbolic model for the transport problem.
A numerical analysis of the 1D steady-state equations ifpaed in section 4. In section 5 we solve a
practical case in environmental engineering. Finallytieads is devoted to the presentation of the main
conclusions of this study.

2 Standard formulation of the convection-diffusion proble m

2.1 Governing equations
Under the assumption of incompressibility, the governiggagions are given by

O 4 Va(u)+ Va- () =0 (1.1)

ot
q=—-KVyz(u) 1.2)

In the context of mass diffusion within a fluidl.Q) is the mass conservation equation ahd)is a con-
stitutive law proposed by Fick. The notation is standards the pollutant concentration, is the velocity
field, q is the diffusive flux per unit fluid density anK is the diffusivity tensor which is assumed to be
positive definite.

Remark 1 Systen{l) can be decoupled since we can pldg?) into (1.1) and solve the scalar equation

O 4 Va ()~ Ve (KVa (1) =0 @

1By constitutive law we mean a relation between two physicalnjities that does not follow directly from physical law.
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2.2 Problem statement

Let us consider the transport by convection and diffusiomrinopen sef2 ¢ R? (d = 2 or 3) with
piecewise smooth boundaly such thal’ = I', U I' ;. The unit outward normal vector dis denotedh.

The convection-diffusion initial-boundary value problean be stated as follows: given a divergence-free
velocity fielda, the diffusion tensoK and adequate initial and boundary conditions, find2x [0, 7] +— R
such that

E—i—a-vw(u)—vw- (KVg(u)=0 in Qx(0,7) (3.2)
u(x,0) = up(x) on 0 (3.2)
U = UuUp on I'p x (O,T) (3.3)
KV, (u)-n=h on T'y x(0,7) (3.4)

3 A hyperbolic model for convection-diffusion problems

3.1 Governing equations

Under the assumption of incompressibility, the governiqgations are given by

%Jra-vm(u)Jer-(q):O (4.2)
q+T (% + Vax(q) a) =—-KV, (u) (4.2)

wherer is the relaxation tensor. Equatiof{) is the mass conservation equation and, therefore, is the sa
as in the parabolic model. On the contrary, equatég) (has been recently proposed by the auth®fs |
13, 14] as a generalization of Cattaneo’s law. The reason to m@zhfyaneo’s law comes from the fact that
Cattaneo’s equation was proposed for pure-diffusive gmolsland it does not satisfy the Galilean invariance
principle. Using equation4(2) the description of the diffusion process is granted to leesame in every
inertial frame p]. Additionally, when the domain is fixedy(= 0) the original Cattaneo’s law is recovered.

Remark 2 System(4) constitutes a generalization of the classic parabolic @mtion-diffusion model
since the standard formulation is recovered by setting 0.

Remark 3 System(4) can be written as a single second order partial differenégliation when the ve-
locity field is constanf1Z7].

Remark 4 The proposed model may also be combined with non-lineassiliifies (dependent on the
solution or its derivatives). The authors believe this ddahd to an interesting convection-diffusion model
and they are currently studying that model.

3.2 Conservative form of the proposed equations

Under the hypotheses of isotropy and homogenkity= kI, T = 71 for certaink, 7 € R, beingI the
identity tensor. This allows for a conservative form of gyst@d), namely

0
a—?+vw- (ua+q)=0 (5.1)
?Jrvm-(Tq@aJrkuI)Jrq:O (5.2)
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Also, defining the vectors

(v, p_( watqgt N o (0
U_(Tq)’ F_(Tq®a+kuI)’ S_(q) 6)
system §) can be rewritten in the standard conservative form
ou
= - (F)= 7
5 T Ve (F) =5 ()

An standard Riemann analysis of equati@hpyields the following conclusions (se&q] for the details)
1. SystemT) is totally hyperbolic for any admisible value of the paraens of the modet andr

2. It is possible to define the so-called Riemann quasi-iaués for a given direction. We will call
R,, the Riemann quasi-invariants at the boundary in the daatf n, the outward normal to the
boundary. Also, we will denotéR)! (where the superscript in stands for inflow) th&, quasi-
invariants that corresponds to negative eigenvalues.

3. The dimensionless number

g - lal (8)
C

allows for the flow to be classified as

e H < 1 < Subcritical flow.
e H > 1« Supercritical flow.
e H =1 & Critical flow.

4. Appropriate boundary conditions to define a well-poséiiifboundary problem from systenT)(
are obtained precribing at each point of the boundary theeval R,

Remark 5 The dimensionless numbArdefined in(8) plays a similar role to Mach number in compressi-
ble flow problemg$7]. We remark that in supercritical flow the pollutant cannetvtel upstream, since its
velocity is smaller than the fluid velocity.

4 Numerical analysis of the 1D steady-state equations: the
connection between the parabolic and the hyperbolic model

4.1 The antidiffusion introduced by Cattaneo’s law

In this section we show that, under adequate assumptiottn@a’s law introduces a negative diffusion
with respect to Fick’s law. We make use of the governing eéquatfor the steady-state, namely

The above equation can be rewritten as
dg du
du dg
k& + Ta& = —q (102)

If we use (0.1) and the derivative of1(0.2), the following second order equation is found:

a— —(k—T1a*)=— =0 (11)
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Equation (1) shows clearly that Cattaneo’s law introduces a negatiffesion with respect to Fick’s law.

It may be argued that this fact represents an important drelvbf the hyperbolic model because it compli-
cates the numerical resolution of the equation. This isnuet. tA discussion on this point will be presented
in section4.4.

Remark 6 Equation(11) can be only thought of as the standard parabolic model witegative diffusion
in subcritical flow. In this case the tertn— 7a? remains positive. In supercritical flow equati¢h) still
makes sense, but the tekm- 7a? cannot be thought of as a diffusivity.

Remark 7 Equation(11) is not equivalent to syste@). The hyperbolic model for convection-diffusion
is given by syster{®) and not by equatiorfll). However, in the case of subcritical flow and Dirichlet
boundary conditions both formulations are equivalent & solutions are sufficiently smooth.

4.2 The effect of the standard Galerkin discretization on th e classic para-
bolic convection-diffusion equation

We analyze the classic parabolic convection-diffusiorbfgm subject to Dirichlet boundary conditions.
We use the following model problem: fing [0, L] — R such that

du d*u
U(O) = Uup (122)
w(L) = ur, (12.3)

Let P be a uniform partition of0, L] defined by the point§z; };—o,~ such thatz; = (i — 1)h, being
h=L/(N —1). Letus call
ah
P = —
¢ 2k
themesh Rclet numbemwhich expresses the ratio of convective to diffusive tramsgf we solve (2) by
using the standard Galerkin method and linear finite elesghis is equivalent to second-order centered
finite differences for this case) we obtain the followingatléte equation at an interior nogle

(13)

(1 - Pe)’u]'+1 - 2Uj + (]. + Pe)’u,j,1 =0 (14)

In equation 4) u; is the finite element approximationofz,; ) andug, ux are the values given by boundary
conditions (2.2—(12.3. Difference equations@) can be solved exactly (see, for instance, referen@g.|
The exact solution ofl4), subject to boundary condition$Z.2—(12.3, is
1+ P J
()]} e

1+ P2\  (1+P\"
1— P 1— P,

From equation15) it is observed that the numerical solution will present anikatory behaviot when
|Pe| > 1, even though equation&4) were solved exactly. On the other hand, the exact soluti¢h2) is

+ur

1
Uj = ————x | %o
1 N (1+Pe)
1-P.

u(xj) = _ [uo (e%j — eaThN) +ur (1 - e%j)} (16)

ah
1—e%N

2These non-physical oscillations are normally referredstwigglesor node-to-node oscillationis the Computational Mechanics
community. A numerical solution that presents this behaigmormally said to beinstable Although we are aware that this is not
an stability issue since we are considering the exact soluf the discrete equation$4), we will use this nomenclature in the rest
of the paper.
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Figure 1. Dimensionless diffusivity (k*/k) as a function of P (left) and dimensionless number H
as a function of P, (right).

A comparison betweerllp) and (L6) shows that the approximate solution equals the exactisaliftthe
following relation holds ,
: 1+ P’

¢2Ped — (—+ e) Vj=0,N (17)

Relation (L7) is only satisfied forP, = 0 (pure-diffusive problem). However, usingq) we find that when
the mesh is fine enought| < 1) the approximate solutiorLf) is, actually, the exact solution of the
problem

du , d*u
U(O) = Uup (182)
u(L) =ur, (18.3)
where
2Pe

B =k (29)

i (124)
On the left hand side of figurewe represent* /k as a function of?. € (—1,1). We observe that* — k
as|Pe| — 0 andk* — 0 as|Pe| — 1.

Remark 8 If the mesh is fine enoughft| < 1), thenk* € (0, k], what means that the standard Galerkin
method solves exactly an underdiffusive equation. If tréhrisanot fine enough®e| > 1), thenk* becomes
complex and it is not correct anymore to say that the stand@aterkin method solves an underdiffusive
equation.

Remark 9 Equation(12.1 can be thought of as Newton’s equation for a particle undscoiis damping
whena < 0. In this case, the element Peclet numBeis proportional to the variation of the kinetic energy
of the particle in the discrete sense, which suggests tleaPéitlet number is related to stability.

4.3 The connection between the hyperbolic model and the disc retized pa-
rabolic model

We prove that (under the necessary assumptions) when aasté@dlerkin discretization is applied to the
classic parabolic convection-diffusion equation, theoe#l of propagation is not infinite anymore at the
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discrete level. On the contrary, a finite velocity of prop#macan be identified in the discrete equations.
We conclude that the standard Galerkin formulation intoeduan “artificial” relaxation time. The proof
requirest* to be rearranged as

2P,
F=k—k|l1-——2— | <k (20)

1+P,
In (—I*Pe )

If we compare the diffusive coefficiert* with the coefficient which results from using Cattaneo’s law
(this can be found in equatiori])) the following conclusion is achieved: when we sol&)(by using
the standard Galerkin method we obtain the solution of aa@ati-type transport problem defined by the
relaxation time

h 1 1
c=—|—=-——< (21)
2P, Pe
“\%e I (}f—p)
As a result, a finite velocity of propagation can be definedhéendiscrete equatiorid), namely
co = - (22)

1/2
1 _ 2Pe
n(r=7)

By using the relationZ?) it is easy to compute the value of “artificiall (see equationg) for a definition
of H) introduced by the Galerkin method for a certéin In figurel (right) we plot the “artificial’ H as a
function of P.

We conclude that when we solve proble®) for |P:| < 1 by using the standard Galerkin method
we are actually solving a Cattaneo-type transport problesubcritical flow conditions. To summarize,
we present the relationships between the hyperbolic angarebolic model at the continuous and discrete
level in figure2.

Continuous Hyperbolic— =" parabolic

h small h—0

Discrete——— Hyperbolicm Parabolic

Figure 2. Relationship between the parabolic and the hyperbolic model at the continuous and
discrete level.

Remark 10 The Cattaneo-type problem that is being actually solvedvisrgby

du d?
o~ (k — TG(]J2)F =0; x€(0,L) (23.1)
u(0) = ug (23.2)
u(L) =ur (23.3)

wherer is defined in equatio(21). Problem(23) is a well-posed boundary-value problem for every value
of the parameterg and . However, it only represents a Cattaneo-type convectiffasion problem in
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subcritical flow. As we said before, equati(#8.1) can be (under the assumption of sufficient regularity)
used to describe the steady-state hyperbolic model, buidany conditions have to be set in such a way
that (7) is well-posed. Sincg’) is not well-posed subject to boundary conditig28.2—23.3 in super-
critical flow, problem(23) does not represent anymore a Cattaneo-type convectifusitifh problem in
supercritical flow.

4.4 Stability analysis of the hyperbolic model
Let us consider again the partitidhthat defines the mesh size We introduce the dimensionless number

ah

He = ——
¢ 2k —Ta?)

(24)

which plays a similar role t@%, in the standard description of the transport probl&& {4]. If we solve 23
by using the standard Galerkin method and linear finite efgs{¢his is equivalent to second-order centered
finite differences for this case), the following differerespuations are found p):

(1 —He)Uj+1 —Quj—i—(l—l—He)uj_l :O, V_j = 1,...,N— 1 (25)
In the same way ad4), difference equation26) can be solved exactly and the stability condition
|Hel <1 (26)

can be found. Relatior26) suggests that in the hyperbolic model numerical instiddmlido not arise for
large values of the fluid velocity, but they appear for values pf| close to the pollutant velocity. Indeed,
the size (in the velocity domain) of the interval that leamsimstable solutions is

I=h/T (27)

we prove the above assertion by finding thealues that make

|He| =1 (28)
which are given by
h h\?
_ _ 2
a - <4T) +e (29.1)
h h\?
_ _ 2
as yr <4T) +e (29.2)
as = —as (29.3)
a4 = —al (294)

It is straightforward that, < 0, a; < —c¢, as > 0, as < c¢. Taking into account all of this, the interval of
velocities that makes the numerical solution unstable rs@eaof

I'=a4—as+a3—a =—2(a; +az) =h/T (30)
as we said above.

Remark 11 The size of the intervdl decreases as increases which suggests that the transport problem
becomes more stable asncreases.

Remark 12 All the theoretical results presented in sectibimave been confirmed by numerical experi-
ments in15].
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Figure 3. Simulation of an accidental spillage in the port of A Corufia. Digital photograph showing
the port.

5 An application example: simulation of an accidental spill a-
ge in the port of A Coru Aa

The objective of this section is to investigate the positieed of the proposed hyperbolic system as a model
for real-world applications. We are interested in pradtigaplications in civil and environmental engineer-
ing. For this reason, we present an example concerning thieten of an accidental spillage in the harbor
of A Corufa (northwest of Spain, EU).

5.1 Numerical algorithm
5.1.1 Continuous problem in the weak form

We begin by considering a weak form of the hyperbolic coneeetliffusion model. Led’ denote the trial
solution and weighting functions spaces, which are assumd the same. Therefore, the variational
formulation is stated as follows: find € V (we assume that this implies strong satisfaction of boundar
conditions) such thatW €V,

Bo(W,U) =0 (31)

where
oUu

Bc(W,U) = (W, o

) —(Va(W),F)q+ (W, Fn). — (W,S)q (32)
Q

being(-, -)q the L2-inner product with respect to the dom&in The integration by parts of equation 82,
under the assumption of sufficient regularity, leads to thkelELagrange form of32)
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ot
which implies the weak satisfaction of equatiai (

(W 5‘U) + (W, Vg (F))g—(W,8)q=0 (33)
Q

5.1.2 Time integration

For the time integration we replace the time derivative3i§) py its second order Taylor expansion, namely

ou, .. Ut -U(t") Atd°U, 5
E('at )f At - 7 12 ('7t )+9(At ) (34)

where At = t"t1 — " and§(At?) is an error of the order ofA\t?. Using the notatiomM\tAU(:) =
U(-,t"*1) —U(-,t") and rewritting the second-order time derivative3d)(in terms of spatial derivatives
using the original equatior), the following variational equation is found (see the detia [15]): find
U €V suchthattW eV

Bsp(W,U) =0 (35)

being

Bsp(W,U) = (W,AU)q — (W, AtB(I + %B)U)

Q
ow At? oUu
— [ ==, At(I + AtB)A, U — —— A, A, —
(axi’ I+ AtB)AU — —-A; Jazj)ﬂ (36)
At?
2 5‘:cj r

where theA;’s are the Jacobian matrices of the flEXthen;’s are the components af, B is the Jacobian
matrix of the source tern and the Einstein summation convection has been used.

5.1.3 Space discretization

For the space discretization @) we make use of the Galerkin method. We approxima&<{(36) by the
following variational problem over the finite element spadindU € V" such thavW ¢ V"

Bsp(W" UM =0 (37)

For equation 37) to be well defined our discrete spaces have tgHdeconforming. We will useC®-
continuous linear finite elements which satisfy this regpient.

Remark 13 The presented algorithm is based on the second-order F&3dderkin method that was first
proposed i 8].

5.2 Problem setup

The domain of the problem comprises the whole area of the Aif@oport. In figure8 we show a digital
photograph of the port. We represent the layout of the pdigure4. To bound the domain of the problem
we define an open-sea boundary from the end of Barrie’s dikeet@xtreme of Oza’s dock. The resulting
computational domain has been depicted in figufleft). As it can be seen in this figure some elements of
the real domain have been removed in order to simplify theggion of the mesh. However, the omission
of these elements is not important for the solution of thebfenm [LO]. For instance, the oil tanker pier
allows both water and pollutant to flow through it, so it doesmodify the solution.
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Marina dock

Barrie's dike

Transatlanticos wharf

A Coruiia Port

Centenario wharf

Oil tanker pier

S

A Coruita city \Q

Oza's dock

0 g 200 00w

Figure 5. Simulation of an accidental spillage in the port of A Corufia. Velocity field and kinds of
boundaries (left) and computational mesh of the problem (right). On the left hand side the solid
wall boundary has been plotted in green; the boundary where the spillage happens has been
plotted in red; the open sea boundary has been plotted in blue. The finite element mesh consists
of 2023 bilinear elements and it was generated by using the code GEN4U [25].

Three kinds of boundaries are differentiated in fighieft): the solid wall boundary has been plotted
in green; the boundary where the spillage happens has betediin red; the open-sea boundary has been
plotted in blue.
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Figure 6. Simulation of an accidental spillage in the port of A Corufia. We show (left to right and
top to bottom) the concentration initial condition and concentration solutions at non-dimensional
times ¢t* = 30, t* = 60 and t* = 90.

The objective of this example is to show that the proposedhattiogy can be used to simulate real-
world problems. For this reason we have not considered sape perform an accurate estimation of the
parameters which would entail a lot of experimental workypital value for engineering calculations has
been selected for the diffusivity[ 18]. The estimation of the relaxation timds not so trivial since only the
order of magnitude of the parameter can be estimated withalitng experiments. However, what really
determines the solution is the velocity of the fldidvith respect to the velocity of the pollutant= /k/7.
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Figure 7. Simulation of an accidental spillage in the port of A Corufia. We show (left to right and
top to bottom) concentration solutions at non-dimensional times ¢* = 120, t* = 150, t* = 300 and
t* = 1000.

This quotient defines a Mach-type number as it can be seeruatieqg g).

In order to reduce the computations, the velocity field haseen calculated, but it was generated with
two constraints: a) it verifies the continuity equation focampressible flow and b) it satisfies standard
boundary conditions for a viscous flow. The velocity field bagn plotted in figur& (left). On the right
hand side of figur& we have depicted the computational mesh.

On the solid wall boundary we impoge n = 0. On the boundary where the spillage takes place the
conditiong -n = —10~2 is imposed. On the open-sea boundary we imgp3se = cu wherec = \/k /7 is
the pollutant wave velocity. The flow is given By numbers I = ||a||/c) verifying H < Hpax ~ 0.3237
what makes the problem to be subcritical at each point of threadn. The computation was performed
taking a maximum CFL numbér,, . ~ 0.5531.

At this point we define the non-dimensional tinfe= ¢/7. In figure 6 we show the initial concen-
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tration and concentration solutions at non-dimensiomaétit* = 30, t* = 60 and¢* = 90. In figure?7
concentration solutions at non-dimensional tinfes- 120, t* = 150, t* = 300 andt* = 1000 are plotted.

Remark 14 This computation was repeated on finer meshes in space aadAiso, the calculations were
repeated using a Runge-Kutta discontinuous Galerkin neefihd. No significant differences were found
in any case.

6 Conclusions and future developments

In this paper, a hyperbolic model for convection-diffusfmoblems in CFD is analyzed. The hyperbolic
formulation avoids the infinite speed paradox inherent sostandard linear parabolic formulation. The
proposed formulation constitutes a generalized approacbdnvective-diffusive phenomena because the
standard formulation can be considered as a subcase ofdhegad one.

From a numerical point of view, we have shown that the disceguations of the Fick-type 1D steady
model represent, actually, a Cattaneo-type transportl@molwvhen the standard Galerkin formulation is
employed. In addition, we show that the Galerkin solutioiti{iinear finite elements) of the proposed
equations is stable for any value of the fluid velocity exdepta small interval which length decreases as
the relaxation time increases.

Finally, we present an application in environmental engiimey in order to explore the possibilities of
the hyperbolic model for real computations. We concludé e proposed model is a feasible alternative
to the standard parabolic models. However, there are ssuedghat should be addressed: for example
those concerning the computational cost of the numeriqaicgeh and the estimation of the parameters of
the model (especially the relaxation timg
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