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ABSTRACT 
 
 In this paper we propose an alternate calibration algorithm, by using a consistent 
family of yield curves, that fits a Gaussian Heath–Jarrow– Morton model jointly to the 
implied volatilities of caps and zero-coupon bond prices. The algorithm is capable for 
finding several Pareto optimal points as is expected for a general nonlinear multicriteria 
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1 Introduction

Any acceptable model which prices interest rate derivatives must fit the
observed term structure. This idea pioneered by Ho and Lee [18], has been
explored in the past by many other researchers like Black and Karasinski
[11] and Hull and White [19].

The contemporary models are more complex because they consider the
evolution of the whole forward curve as an infinite system of stochastic
differential equations (Heath, Jarrow and Morton [17]). In particular, they
use as initial input, a continuous forward rate curve. In reality, we just
observe a discrete set composed either by bond prices or swap rates. So, in
practice, the usual approach is to interpolate the forward curve by using
splines or other parametrized families of functions.

A very plausible question arises at this point: Choose a specific para-
metric family, G, of functions that represent the forward curve, and also an
arbitrage free interest rate model M. Assume that we use an initial curve
that lay within as input for model M. Will this interest rate model evolve
through forward curves that lay within the family? Motivated by this ques-
tion, Björk and Christensen [8] define the so–called consistent pairs (M,
G) as ones whose answer to the above question is positive. In particular,
they studied the problem of consistency the family of curves proposed by
Nelson and Siegel [24] and any HJM interest rate model with deterministic
volatility, obtaining that there is no such interest model consistent with it.

We remark that the Nelson and Siegel interpolating scheme is an im-
portant example of a parametric family of forward curves, because it is
widely adopted by central banks (see for instance BIS [3]). Its forward
curve shape, GNS(z, ·) is given by the expression

GNS(z, x) = z1 + z2e
−z4x + z3xe−z4x,

where x denotes time to maturity and z the parameter vector

z = (z1, z2, . . . ).

Despite all the positive empirical features and general acceptance by the
financial community, Filipović [16] has shown that there is no Itô process
that is consistent with the Nelson-Siegel family. In a recent study De Rossi
[14] applies consistency results to propose a consistent exponential dynamic
model, and estimates it using data on LIBOR and UK swap rates. On the
other hand, Buraschi and Corielli [12] add results to theoretical framework
indicating that the use of inconsistent parametric families to obtain smooth
interest rate curves, violates the standard self financing arguments of repli-
cating strategies, with direct consequences in risk management procedures.

In order to illustrate this situation, we describe a very common fixed-
income market procedure. In the real world, the practitioners usually re-
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estimate yield curve and HJM model parameters on a dayly basis. This
procedure consists of two steps:

• They fit the initial yield curve from discrete market data (bond prices,
swap rates, short-term zero rates), then

• They obtain an estimation of the parameters of the HJM model,
minimizing the pricing error of some actively traded (plain vanilla)
interest rate derivatives (commonly swap options or caps)

Perhaps, this fact is not relevant for mark to market, but it could have
practical consequences on the hedging portfolios associated with these fi-
nancial instruments. Recall that such dynamic strategies depend on the
model assumptions. Thus, re-calibration is conceivable because the prac-
titioners are aware of model risk. A particular HJM model is not a perfect
description of reality, and they are forced to re-estimate day to day model
parameters in order to include new information that arrives from the mar-
ket. On the other hand, unstable estimates may be caused by reasons that
are more theoretical, because the above mentioned setup does not take
into account that HJM model parameters are linked, in general, to the
the initial yield curve fit parameters. If a practitioner uses an interpola-
tion scheme which is not consistent with the model, then the parameters
will be artificially forced to change. Thus, it seems there are a plethora
of motivations for the study of the empirical evidence and the practical
implications that are predicted by a consistent HJM build model.

The consistency hypothesis stated by Björk, implies that the zero coupon
bond curve has to be determined at the same time as the parameters of the
model. In [1] and [2], Angelini and Herzel, propose the use of a optimization
program related to the mentioned dayly calibrations, which is compatible
with this joint estimation. The milestone of this methodology is the use of
an objective function based on an error measure for just the caps portfolio.
Then, the theoretical prices for the caps along with the minimization of
this measure can be calculated at the same time that yield-curve is fitted.
This is an efficient method because consistent families of yield-curves have
a good behaviour in a Gaussian framework.

The purpose of this work is to extend the above strategy to a more
general framework. It modifies the objective function mentioned, by taking
into account the error measure for the discount bonds estimation. To this
scope, we construct the objective function using a convex combination of
the cap and the bond error measures, by means of a fixed parameter. As
a matter of fact, this rigorous approach is richer in possible outcomes.

To this end, we restrict ourselves to a particular humped volatility HJM
model, proposed by Mercurio and Moraleda [22] and Ritchen and Chuang
[25] independently. We will discuss this formalization and give some theo-
retical results relevant to our analysis. We chose this model because it is
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quite popular and analytically treatable. In particular, it provides closed
formulas for europeans caps. Moreover, it is the one-factor Gaussian model
that seems more capable for reproducing the humped shape of the implied
volatility term structure for caps, that the normal market scenarios usually
depicts. Moreover, it is also the most flexible in other market conditions.
We perform our study by calibrating this model, first by using simulated
data and second by a US–market data set composed by the US discount
factors and the cap at-the-money flat volatilities quotes in two different
periods, see Figure 4. The first one depicts a normal fixed-income market
scenario, the term structure of implied volatilities for caps (hereafter TSV)
have humped shape and the term structure of interest rates (hereafter
TSIR) is decreasing in the short term with a local minimum, and then it
increases to mid-long term maturities –spoon-shaped. Second period lays
within the Post-2001 era. Its may be considered an excited period with a
TSV monotonically decreasing, and with a higher overall implied volatil-
ity and a TSIR monotonically increasing without local minimum. To our
knowledge is the first attempt to search for empirical evidence focusing on
US–market data.

This paper is organized as follows. In Section 2 we give a brief overview
of the model and present in this context the option valuation and the
construction of the consistent families with the model. In Section 3 the
calibration procedure is described. Section 4 is devoted to empirical results,
first comparing the consistent calibration algorithm to the non-consistent
approaches with simulated data, then presenting the results of the fitting
of the different models with US–market data. In the last section we give
some final conclusions and remarks.

2 The Model

Let W be a one dimensional Wiener stochastic process defined in a
complete probability space (Ω,F , P ).

Single factor Heath-Jarrow-Morton [17] framework is based on the dy-
namics of the entire forward rate curve, {rt(x), x > 0}. Thus, under
Musiela’s [23] parameterization it follows that the infinite dimensional dif-
fusion process given by

{
drt(x) = β(rt, x)dt + σ(rt, x)dWt

r0(x) = r∗(x),
(1)

where {r∗(x), x ≥ 0}, can be interpreted as the observed forward rate
curve. The standard drift condition derived in Heath, Jarrow and Morton
[17] can easily transferred to the Musiela parametrization (see, for instance,
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Musiela [23]),

β(rt, x) =
∂

∂x
rt(x) + σ(rt, x)

∫ x

0
σ(rt, s)ds.

Thus, a particular model is constructed by the choice of an explicit volatil-
ity function σ(rt, x).

Our work is devoted to a Gaussian humped volatility model where

σ(rt, x) = σ(x) = (α + βx)e−ax,

i.e. σ is a deterministic function depending only on time to maturity, and
then rt(x) is a Gaussian process.

Finite Dimensional Realizations of Gaussian Mod-
els

It should be also noted that σ(x) is a one dimension quasi-exponential
function (QE for short), because is of the form

f(x) =
∑

i

eλix +
∑

i

eαix[pi(x) cos(ωix) + qi(x) sin(ωix)],

with λi, αi, ωi being real numbers and pi, qi are real polynomials.
It is well-known that if f(x) is a m-dimensional QE function, then it

admits the following matrix representation

f(x) = ceAxB,

where A is a (n×n)-matrix, B is a (n×m)-matrix and c is a n–dimensional
row vector (see Lemma 2.1 in Björk [5]). Thus, σ(x) can be written as

σ(x) = ceAxb, where (2)
c = [α β − aα],

A =
[

0 −a2

1 −2a

]
,

b =
[

1
0

]
.

By means of Proposition 2.1 in Björk [6] we can write the forward rate
equation (1) as:

dqt(x) = Fqt(x) dt + σ(x) dWt, q0(x) = 0 (3)
rt(x) = qt(x) + δt(x), (4)

5



here F is a linear operator that is defined by

F =
∂

∂x
,

and δt(x) is the deterministic process given by

δt(x) = r∗(x + t) +
∫ t

0
Σ(x + t− s) ds,

with Σ(·) = σ(·) ∫ ·
0 σ(s) ds. Moreover, qt(x) has the concrete finite dimen-

sional realization

dZt = AZt dt + b dWt, Z0 = 0, (5)
qt(x) = C(x)Zt, (6)

because σ is a QE function (see, for instance, Proposition 2.3 in Björk
[5]) with A, b as in (2) and C(x) = ceAx. Thus, (5) is a linear SDE in
the narrow sense (see Kloeden and Platen [21] for details) with explicit
solution

Zt = Φt

∫ t

0
Φ−1

s b dWs, (7)

where

Φt = eAt = e−at

[
1 + at −a2t

t 1− at

]
.

Now, with the definition of S(x) =
∫ x
0 σ(u)du, it is easy to obtain that

∫ t

0
Σ(t + x− s) ds =

1
2

[
S2(t + x)− S2(x)

]
,

and, therefore, combining these explicit results with decomposition (4) we
arrive to the operative expression

rt(x) = r∗(x + t) +
1
2

[
S2(t + x)− S2(x)

]
+ C(x)Zt. (8)

The last expression allows to perform the Monte Carlo simulation of future
forward curves produced by this HJM particular model. On the other hand,
as we will show later, equation (8) can also be used to build the initial
forward rate curve r∗(x). Recall that it is consistent with the dynamics of
the model.

Interest Rate Option Pricing

To calibrate the model by means of real data, we actually need to de-
termine the vector parameter θ = (α, β, a). In order to estimate the
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forward rate volatility, the statistical analysis of past data can be a possi-
ble approach, but the practitioners usually prefer implied volatility, laying
within some derivative market prices, based techniques. This way involves
a minimization problem where the loss function can be taken as

l(θ) =
n∑

i=1

(C∗
i − Ci(θ, Ti))2,

where Ci(θ) are the i–th theoretical derivative price and C∗
i ≡ C∗(Ti) is

the i–th market price one. As it is well known, see Proposition 24.15 and
pages 364–366 in Björk [4], the price, at t = 0, of the cap is given by

C(T ) = (1 + τK)




n−1∑

j=0

κD(xj)N(−d+)−D(xj+1)N(−d−)


 , (9)

where

d± =
ln D(0,xj)

κD(0,xj+1)
± 1

2ϑ2(xj)

ϑ(xj)
. (10)

the interval [0, T ] is subdivided with equidistant points, i.e.,

xj = (j + 1)τ j = 0, 1, . . . , n; (11)

D(·) is the initial discount function; and κ equals to (1 + τK)−1 with K
denoting the cap rate.

The variable ϑ in (10) is intimately related with the concrete multifactor
Gaussian HJM model realization via the particular [A, B, c] forward rate
TSV selection:

ϑ2(xj) = M(xj)F (xj)M ′(xj),

where M(xj) is the matrix

M(xj) = cA−1
(
eA(xj+τ) − eAxj

)
,

and F (·) satisfies

F (·) =
∫ ·

0
e−AsBB′e−A′sds.

Although the inversion of the matrix A, the series expansion of eAx, re-
veals that M is not a singular matrix even for small values of parameter a.
This result is also true for another Gaussian HJM models built from QE
forward TSV families, because the matrix elements of A are, fortunately,
polynomial functions of the model parameters. However, due to numeri-
cal instability of the calibration process, when a → 0, an asymptotically
equivalent expression for ϑ must be used.

The equations (9) and (10), also expres the effective influence of ab
initio yield curve estimation on cap pricing2.

2See Appendix
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3 Calibration to Market Data Approaches

The calibration procedures can be described formally as follows. Let
θ be the vector (α, β, a) of parameter values for the model under con-
sideration. Assume that we have time series observations of the implicit
volatilities, σB

i , of N caps, with different ATM strikes, Ki, and maturities
Ti with i = 1, . . . , N, here N = 7. Suppose, that at time t = 0 we are also
equipped with the discount function estimation, D(x), and that the mar-
ket participants translate volatility quotes to cash quotes adopting Black
framework. In doing so, they adopt the convention that Ki quantities must
match forward swap rates of the interest rate swaps (IRS) with same reset
periods that the i-th cap (these IRS starts its cashflows at t = x0 + τ as
the corresponding cap and have no cash value at t = 0):

Ki =
D(τ)−D(Ti)
τ

∑n
j=1 D(xj)

, (12)

where τ is the length of the underlying caplets, and x1 = 2τ, . . . , xn = Ti.
The derivation of the formula (12) can be found, for example, in Björk [4]
(Proposition 20.7 on page 313). Now, by inspection, it is clear that this
market convention makes that Ki depends on the yield-curve estimation. It
allows to us to denote market prices of caps with C∗(Ti, D(x), Ki(D(x)), σB

i ).
This last expression emphasizes explicit and implicit dependence (through
ATM strikes) on discount function estimation even for market prices. Let
C(Ti, D(x),Ki(D(x)), θ) be the corresponding theoretical price under our
particular model.

The Two-Step Traditional Method

First, we choose a non-consistent parametrized family of forward rate
curves G(z, x). Let D(z, x) be the zero-coupon bond prices reported by
G(z, x). Let D∗

k be the corresponding discount factor observations on ma-
turities xk with k = 1, . . . ,M = 11. For each zero-coupon bond denoted
with subscript k, the logarithmic pricing error3 is written as follows

εk(z) = log D∗
k − log D(z, xk).

Then, we have chosen in this work the sum of squared logarithmic pricing
errors, lD, as the objective loss function to minimize:

lD = min
z
‖ log D∗ − log D(z, x)‖2 = min

z

M∑

k=1

ε2k(z). (13)

3Recall that, for small εk, it is also the relative pricing error D∗
k−D(z,xk)
D(z,xk) .
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Now, via the least squares estimators ẑ, an entire discount factor estimation
allows the pricing of caps using market practice or a HJM model. Following
a similar scheme for the derivatives fitting than the used at the bond side
we have

ηi(θ) = log C∗
i − log C(θ, Ti).

and

lC = min
θ
‖ log C∗ − log C(θ, T )‖2 = min

θ

N∑

i=1

η2
i (θ), (14)

where we have summarized dependencies for simplicity. Note that yield-
curve estimation is external to the model in the sense that there is no need
to know first any of the model parameters θ for solving non-linear program
(13).

The Joint Calibration to Cap and Bond Prices

Let us now describe in detail the joint cap-bond calibration procedure
which has sense in a consistent family framework. We note that in this
situation the parameters of the model are determined together with the
initial forward rate curve. A simplified derivation for the consistent families
used can be found in the Appendix available at the end of this work.

This is different from the traditional fitting of HJM models, where
the two steps are separate, as we discussed before. From the expression
(21) in the Appendix, we notice the dependency of the family from the
parameter a. Let G(z, x, a) be a family consistent with our gaussian model
(for instance, Gm and GANS) and define least-squares estimators, ẑ(a)

ẑ(a) = arg min
z

M∑

k=1

(log D∗
k − log D(z, xk, a))2. (15)

From the expression

log D(z, xk, a) = −
∫ xk

0
G(z, s, a) ds =

np∑

j=1

Mkj(a)zj , (16)

we note that, for consistent families and for a fixed a the problem (15) is
linear in z-parameters (for the Gm family np = 5, and for the GANS family
np = 6). Thus, ẑ is an explicit and continuous function of a ≡ θ3. Strictly
speaking, joint calibration of interest rate cap derivatives and bonds based
upon a consistent family must be formalized as a multicriteria optimization
problem (MOP):

min
θ∈S

l(θ) =
[

lC(θ)
lD(θ3)

]
, l : R3 →R2
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where
S = {θ : h(θ) = 0, a ≤ θ ≤ b}

with

h(θ) = h(θ3) = z −R(θ3)Q−1(θ3) log D∗ h : R → R5

being Q, R matrices of the reduced QR decomposition of M(θ3) which is
defined by the relation (16) a ∈ (R ∪ {−∞})3 and b ∈ (R ∪ {∞})3, and
partial loss functions, li(θ), defined as

lC(θ) = ‖ log C∗ (D(z, θ))− log (D(z, θ), θ) ‖2

lD(θ) = ‖ log D∗ − log D(z, θ)‖2

Since no single θ∗ would generally minimize every li simultaneously, we
are dealing with Pareto optimality. A popular and rigorous method for
finding the Pareto optimal points consists on minimizing a convex combi-
nation of the objectives, see for instance [15]:

min
θ∈S

λT l(θ) (17)

with λ ∈ (R+ ∪ {0})2 and λC + λD = 1.
This algorithm provides a whole collection of Pareto optimal points

representative of the entire spectrum of efficient solutions by carrying out
the optimization for different choices of λ as noted in [13]. Thus ideally,
consistent calibration based upon consistent families involves the entire
Pareto optimal set, in contrast to the uniqueness for the solution that
appears in the two-step scalar problem.

At this point, note that the program used by Angelini and Herzel [1, 2]
in their works, uses a different goal attainment

l = min
θ

lC(θ) (18)

where lC(θ), and ẑ(a) are defined trough the identities (14) and (15). As
a consequence, the program used by these authors is a degenerate case of
(17) with λ fixed equal to 1.

4 Empirical Results

We compare three different estimations of initial yield curve based on
Nelson-Siegel family (henceforth NS), MC and ANS.

Our first objective is to test the stability of the implicit estimation
of the model parameters θ. We consider mean, standard deviation and
coefficient of variation of parameter estimates time series. In this context
the main goal is to analyze the impact that an alternative interpolation
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scheme has on the fitting capabilities of the model. To this end, we use as
a measure, the mean of the dayly sum of squared errors of derivatives log
prices, hereafter lC . The same measure is used for the zero-coupon bond
prices (we denote it with lD) and it is included in the analysis with the
market data.

It consists of 150 dayly observations divided in two periods: first period
covers from 1/1/2001 to 13/4/2001 (75 trading dates) and the second one
starts in 15/3/2002 and finish on 27/6/2002 (75 trading dates). The data
set is composed of US discount factors for thirteen maturities (3, 6 and
9 months and from 1 to 10 years) and of implied volatilities of at-the-
money interest rate caps with maturities 1,2,3,4,5,7,10 years. This database
is provided by Datastream Financial Service. The simulated data was
obtained from 360 extractions from the model of bond and cap prices under
identical contractual features.

Simulations

We simulate, departing from alternative initial conditions r∗(x), the
forward curve until the time t attainable by this model. We accomplished
this by working out the expression (22), and writing the explicit formula
for the stochastic as well as the deterministic coefficients which are actually
variable in time evolution: the aforementioned gi(t), Zi

t and the extra ones
coming from initial curve translation, r∗(x + t). Now, it is possible to
compute the prices of a set of zero-coupon bonds using exact integration of
rt(x) over cross-sectional variable x at a fixed time t, and then, the prices
of the seven caps with formula (9).

The fixed model parameters, θ = (0.002, 0.007, 0.35), have been taken.
This particular choice has similar order of magnitude as typical empirical
estimations for the model reported by Angelini and Herzel [2]. As alterna-
tive initial curves, we choose MC, ANS and NS fitted to the zero coupon
bond prices shown in Figure 1.

Starting from the initial fitted curves, which may be denoted with
r∗m(x), r∗ANS(x) and r∗NS(x), and according to (8), the corresponding three
different model evolutions are calibrated to MC, ANS and NS. In order
to make calibration results more comparable, Monte Carlo simulations are
built in from identical random sequence (Z1

t , Z2
t ) in all three cases. In

addition, the results reported are restricted to one particular Pareto point,
with weights (1, 0)4. Following the expression (8), it is easy to observe
that there are two consistent families, Gm and GANS , for the first simula-
tion E1, just one, GANS , for the second simulation E2, and no one for the
last simulation E3. Figure 2 shows main consequences of the theory when

4Numerical conclusions reported by the three experiments do not vary due to the effective
scale of the Pareto frontier.
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the model is the truth model. Notice that perfect calibration just occurs,
although model parameters are fixed a priory, when the used family to per-
form calibrations is consistent with all the future forward curves generated
from initial curve r∗(x). This fact explains, for instance, bad performance
for the NS family even on E3 experiment. Moreover, parameter instability
and imprecision that produces an incorrect yield-curve selection can also
be checked in Figure 3.

Real Data

The objective of this section is to compare the performance of the two
different calibration approaches on two different periods of real trading
dates. Thus, from now on we will only consider the calibration results
obtained with the US market data. Calibration with consistent families,
as it have been explained before, must be properly carried out by setting
several combinations of the weight vector λ on a date-by-date basis. Figure
5 shows the comparative results in the objective space (lC , lD) for two
particular and representative dates on both subsamples mentioned at the
beginning of this section. We have chosen in doing this the set of vectors
with second component λD = 0, 0.05, . . . , 0.95.

The table on Figure 6 exhibits the sample mean of the dayly error fitting
measures, namely lC and lD, and the mean and the coefficient of variation of
parameter estimates. On the other hand, Figure 7 shows in-sample fitting
time series. For the shake of simplicity we restrict the results shown to the
Pareto point (0.05, 0.95) because this particular choice performs the best
results for the consistent calibrations on the bond side with a reasonable
trade-off within the derivative side.

The two consistent families under study report better in-sample fitting
results when dealing with bond data. However, on the derivatives side
calibration, only the ANS family performs similarly to the NS one in the
two periods. This fact may be motivated by the extra factor, z1, common
for the families GANS and GNS , which is independent of zero-coupon bond
maturities and responsible that these families fit better observed short-
term discount factors than Gm family (note that this is not incompatible
with the better summary lD reported in this sample by the minimal family
when compared against the Nelson-Siegel ones).

Euro-market results reported in Angelini and Herzel [2] for the same
model, shows a slightly better performance for the minimal consistent fam-
ily when compared against Nelson-Siegel family, even on cap prices5.

This empirical fact can be explained by the existing differences within
the short-term TSIR between Euro and US-market on both excited periods

5It have to be remarked that the program used by these authors does not take into account
vector nature of this optimization problem.
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taken into consideration.

5 Conclusions

When calibrating a HJM model, a TSIR curve choice to fit a few market
data observations is needed. In particular it seems to be natural to use
families of curves which do not modify their structure under the future
evolution of the model, the so-called consistent families.

In this work, we choose three families of curves (two consistent families
and the popular Nelson-Siegel family) and we conclude that this choice have
an effective impact on the quality of in-sample fitting as well as parameter
estimates on both simulated and US-market data.

When using simulated data it is very clear that the consistent fami-
lies for the E1 ans E2 experiments performs much better than the non-
consistent ones. Moreover, Nelson-Siegel family does not work even if it is
chosen as the starting yield-curve (recall E3 experiment). These empirical
facts constitute a nice demonstration of the theory, in the sense that even
on absence of model risk only when consistent families are used, perfect
calibration may occur.

Translation of these consequences to real data is less clear, due to model
risk and quality of data, but we can infer similar encouraging concluding
remarks. In this case, the introduction of a sufficiently rich consistent
families, MC as well as ANS, well motivated theoretically by Björk et al.,
improves in-sample fitting capabilities on bonds. However, consistent fam-
ilies leads to somewhat stable parameter estimates and worse in-sample
derivatives fitting results than the NS family, this could be an insight that
consistent families may exhibit undesired asymptotic features in different
markets. In this sense, this work complements the empiral findings shown
in Angelini and Herzel [1, 2] analyzing another data sets. On the other
hand, note that the vector extension to the consistent calibration presents
more general features. Such extension is structured to allow more numerical
outcomes. According to our experience with other databases, this leads,
in general, to better results also in derivatives calibration as compared
to non-extended consistent calibration and non-consistent methodologies.
Thus, comparative studies between the fitting of short-term zero-coupon
bond capabilities and its consequences on cap pricing performance for sev-
eral consistent families with a particular model and on different market
basis (for instance, using Euro-market inputs as well as US-market data)
should be analyzed deeply in the future. Moreover, we restrict our stud-
ies to a flexible one-factor Gaussian HJM model. Then, future empirical
research on the matter should include multi-factor models for capturing
more appropriately the TSIR and TSV observed in the market.
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Another technical point regards the adaptation of the Normal Bound-
ary Intersection (NBI) method to use it in the calibration problems that
usually appear in the private and public financial institutions. As is men-
tioned by Das and Dennis in [13], NBI method surpass in flexibility as well
as efficiency the popular method of minimizing weighted combinations of
objective functions.
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Figure 1: Discrete data for initial yield-curve estimation.

Maturity, x 0.25 1 2 3 4
Discount Factor, D∗(x) 0.9886 0.9538 0.9069 0.8602 0.8142

Maturity, x 5 6 7 8 9 10
Discount Factor, D∗(x) 0.7693 0.7260 0.6843 0.6445 0.6066 0.5706

Figure 2: Summary statistics for calibration results with simulated data.

MC ANS NS
εr(α) 0 0 0.23
εr(β) 0 0 0.13
εr(a) 0 0 8.7 10−2

E1: Cv(α) 0 0 0.18
r0(x) = r∗m(x) Cv(β) 0 0 0.14

Cv(a) 0 0 9.7 10−2

lC 0 0 1.9 10−3

εr(α) 0.25 0 0.28
εr(β) 0.16 0 0.16
εr(a) 0.12 0 9.5 10−2

E2: Cv(α) 3.8 10−2 0 0.117
r0(x) = r∗ANS(x) Cv(β) 3.9 10−2 0 9.1 10−2

Cv(a) 3.2 10−2 0 4.8 10−2

lC 2.6 10−4 0 6.7 10−4

εr(α) 0.313 2.7 10−4 0.18
εr(β) 0.20 2.10 10−4 0.10
εr(a) 0.16 1.6 10−5 6.7 10−2

E3: Cv(α) 2.3 10−2 1.4 10−4 0.17
r0(x) = r∗NS(x) Cv(β) 2.6 10−2 1.0 10−4 0.111

Cv(a) 2.2 10−2 8.3 10−5 6.3 10−2

lC 3.8 10−4 3.9 10−9 3.5 10−4

Sample statistics of the calibration on simulated data. Relative errors of the pa-
rameters estimates are expressed in absolute value. We set to 0 table entries with
value < 103·eps (variable eps ∼ 10−16 measures Matlab internal accuracy).
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Figure 3: a and α estimates from Monte Carlo run E2, where r0(x) = r∗ANS(x).
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Figure 4: Market TSIR and TSV data in the two different market scenarios.
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Figure 5: Calibration results for the minimal consistent (crosses), augmented
Nelson-Siegel (circles) and Nelson-Siegel (squares) families in the Day 1 (top)
and the Day 2 (bottom). On the right column, a zoom of the the highlighted
regions reveals the scale of the Pareto boundaries.
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Figure 6: Summary statistics for the calibration results with real data on both pe-
riods. In-sample descriptive statistics are carried out using the particular Pareto
point λ = (0.05, 0.95).

MC ANS NS
α 0.0084 0.0085 0.0087
β 0.0055 0.0055 0.0053
a 0.23 0.23 0.23

Period 1 Cv(α) 0.12 0.114 0.11
Cv(β) 0.31 0.29 0.29
Cv(a) 0.24 0.23 0.23

lC 4.9 10−4 4.8 10−4 4.5 10−4

lD 2.4 10−6 1.3 10−6 4.17 10−6

α 0.0076 0.0073 0.0079
β 0.0092 0.011 0.0095
a 0.31 0.36 0.33

Period 2 Cv(α) 0.10 0.14 0.09
Cv(β) 0.11 0.20 0.17
Cv(a) 0.04 0.11 0.10

lC 0.001 3.5 10−4 1.9 10−4

lD 6.15 10−6 1.3 10−6 9.3 10−6
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Figure 7: In-sample fitting time series for the first period (left) and the second
period (right) in logarithmic terms.
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Thick line corresponds to ANS family, normal line to MC family and the dashed
one to the Nelson-Siegel family. Pareto point with λD = 0.95 is used for drawing
the consistent families lines.
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Appendix

Consistent Curves with Gaussian

Models

If we want to measure the actual impact that alternative choices to
the Nelson-Siegel yield curve interpolating approach produces on deriva-
tives pricing and hedging, we need to determine consistent families for
this particular model. The fundamental results can be found in Björk and
Christensen [8] in more detail. We adapt some of them to our Gaussian
case study without further technical discussion for the general case.

Definition 1 Consider the space H is defined as the space of all C∞-
functions,

r : R+ → R
satisfying the norm condition:

||r||2 =
∞∑

n=0

2−n

∫ ∞

0

(
dnr

dxn
(x)

)2

e−γx dx < ∞

where γ is a fixed positive real number.

As proved by Björk and Landen [9], this space H is a Hilbert space.

Theorem 1 Consider as given the mapping

G : Z → H

where the parameter space Z is an open connected subset of Rd, H a Hilbert
space and the forward curve manifold G ⊆ H is defined as G = Im(G).
The family G is consistent with the one-factor model M with deterministic
volatility function σ(·), if and only if

∂xG(z, x) + σ(x)
∫ x

0
σ(s)ds ∈ Im [∂zG(z, x)] , (19)

σ(x) ∈ Im [∂zG(z, x)] , (20)

for all z ∈ Z.

The statements 12 and 13 are called, respectively, the consistent drift
and the consistent volatility conditions. These are easy to apply in concrete
cases as shown Björk and Christensen [8] or De Rossi [14], among others.
For the particular one-factor model we consider along this work, Proposi-
tion 7.2 and 7.3 in Björk and Christensen [8] may be directly applied to
get the useful result:
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Proposition 1 The family

Gm(z, x) = (z1 + z2x)e−ax + (z3 + z4x + z5x
2)e−2ax, (21)

is the minimal dimension consistent family with the model characterized by
σ(x) = (α + βx)e−ax.

Moreover, it should be also noted that augmented families related from the
(21) can be constructed by adding to Gm an arbitrary function φ, that is,
the map

G(z, x) = Gm(z, x) + φ(z, x),

is also consistent with this model.
There is an alternative way to justify (21) focusing on forward rate

evolution deduced at (8), and to get an insight on how the Monte-Carlo
procedure is implemented, we describe it next. By the definition of S(x),
we have that S′(x) = σ(x). Then it is easy to derive that deterministic
term 1

2

[
S2(t + x)− S2(x)

]
is of the form

g1(t)e−2ax + g2(t)xe−2ax + g3(t)x2e−2ax + h1(t)e−ax + h2(t)xe−2ax.

On the other hand, the explicit expansion of stochastic term C(x)Zt

ceAx

[
Z1

t

Z2
t

]
= e−ax [α β − aα]

[
1 + ax −a2x

x 1− ax

] [
Z1

t

Z2
t

]

= e−ax
(
αZ1

t − aαZ2
t + βZ2

t

)
+ xe−ax

(
βZ1

t − aβZ2
t

)
,

and the forward rate evolution becomes

rt(x) = r∗(x + t) + g1(t)e−2ax + g2(t)xe−2ax + g3(t)x2e−2ax+(
h1(t) + αZ1

t − aαZ2
t + βZ2

t

)
e−ax +

(
h2(t) + βZ1

t − aβZ2
t

)
xe−ax.

(22)

From (22) we see that a family which is invariant under time translation
is consistent with the model if and only if it contains the linear space
{e−ax, xe−ax, e−2ax, xe−2ax, x2e−2ax}. Consequently, to make a consistent
version of a translation invariant family φ(z, x) it is enough to add Gm(z, x).

The following concluding remarks about the families used along this
work should now be clear:

• The Nelson-Siegel family (henceforth NS)

GNS(z, x) = z1 + z2e
−z4x + z3xe−z4x,

is not consistent with the model.
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• The family

Gm(z, x) = (z1 + z2x)e−ax + (z3 + z4x + z5x
2)e−2ax,

it is the lowest dimension family consistent with the model (hereafter
MC).

• The family

GANS(z, x) = z1 + z2e
−ax + z3xe−ax + (z4 + z5x + z6x

2)e−2ax,

is the simplest adjustment based on restricted NS family that allows
model consistency (hereafter ANS).
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