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Around the Borromean link

Jos é Marı́a Montesinos-Amilibia

Abstract. This is a survey of some consequences of the fact that the fundamental group of the orbifold
with singular set the Borromean link and isotropy cyclic of order4 is a universal kleinian group.

En torno al enlace de Borromeo

Resumen. Se presenta una panorámica de lo que se ha podido deducir hasta ahora del hecho de ser
universal el grupo fundamental de los anillos de Borromeo con isotropı́a4.

1 Introduction

Three golden ratio cards symmetrically intertwined produce the12 vertexes of an icosahedron.
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The boundaries of the three cards form the following link:

This is the famousBorromean link, so called for its relationship with the Borromeo family (see [2]). A
cousin of the Borromean link appears in the house of Admiral Oquendo at Mount Ulia in San Sebastián
(Spain). The link seems to be used here as a hieroglyphic of the word Oquendo.

O-QU-EN-(D)-O

The Borromean link (a true link made up of three unknots) appeared for the first time in a mathematical
context in Tait’s Table of Knots (1876). Ralph H. Fox referred to this link as the “Borromean rings” in
his celebrated survey [3], but for cacophony reasons I will refer to it, along this expository article, as the
Borromean link, denotedB. This is the link63

2 in Rolfsen’s Table of Knots and Links [24].
The Borromean link is important in relation with the topology and geometry of three-manifolds. I intend

to give here a very short exposition of my investigations together with Maite Lozano and Hugh Hilden in
these matters. I am very much indebted to them for many years of close colaboration. Thus I dedicate this
paper to Maite Lozano and Hugh Hilden with affection and thanks.

Along the paper we will make frequent use of the geometry and topology of2-manifolds (surfaces) to
illustrate facts that generalize to dimension three.

For the basic definitions it would be of interest to some readers to consult Ratcliffe [23], Rolfsen [24]
and Thurston [26].

2 Combinatorial level

Manifolds of dimensions2 and3 are triangulable (Moise). This is the starting point to represent these
manifolds as branched coverings of the sphere.
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Around the Borromean link

Let us see in detail the case of surfaces.
Take an arbitrary unbounded, orientable surfaceΣ and a triangulationK of it. Subdivide barycentrically

K to obtain another triangulationK ′. The vertexes ofK ′ fall naturally in three classes: barycenters of ver-
texes (resp. edges, faces) ofK called, respectively, bary-vertexes, bary-edges or bary-faces. Accordingly,
any face ofK ′ has a natural orientation, namely the one given by the following ordering of its vertexes:
bary-vertex, bary-edge, bary-face. Color this face white iff this natural orientation coincides with a fixed
orientation ofΣ. Otherwise color it black. Then we have obtained a check-board coloration of the faces of
K ′ because two different faces sharing an edge get different colors.

This simple argument of Ramirez has an important consequence. Namely, thatevery unbounded, ori-
entable surface is a covering of the sphere branched over three points[22].

In fact, think of the sphereS as the result of pasting linearly together two triangles (one white; the other
black) along their edges. Call the resulting vertexes0, 1, 2. Then we map linearly white (black) triangles
of the surfaceΣ to the white (black) triangle ofS in such a way that bary-vertexes (resp. bary-edges,
bary-faces) go to0 (resp.1, 2).

This argument works in fact for every triangulated unbounded, orientedn-manifold. Therefore, we have
proved the following Theorem.

Theorem 1 ([22]) Every unbounded, orientable3-manifold is a covering of the sphere, branched over a
graphG. This graph is the set of edges of a tetrahedron embedded in the sphere.

Therefore the graphG is universal in the sense that every3-manifold branches over it. But note that,
while in the case of surfaces, the branching set is a manifold, this is not the case if the dimension of the
manifold is greather or equal than3.

The graph G

Problem 1 Is there a universal branching set which is a manifold for every dimension?

González-Acuña asked this question and W. Thurston found(in an unpublished paper) the first example
of a (complicated) link in the3-sphereS3 that was universal. Thurston also asked if some familiar knots and
links, (like the figure eight knot, Whitehead link or the Borromean rings) were in fact universal. This was
answered positively in the papers [6] and [7] (see also [4, 5,27, 28]), but the arguments are too complicated
to be reproduced here. (It was also clear at the time that someknots and links, like the trefoil knot, could
not be universal.)

Theorem 2 The figure-eight knot and the Whitehead and Borromean links are universal branching sets
for all closed, orientable3-manifolds.
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Figure eight knot

Whitehead link

3 Controling branching indexes

Coming back to surfaces, remember that we have proved that for every unbounded, orientable surfaceΣ
there is a coveringf : Σ → S of the sphereS branched over three pointsv0, v1, v2, marked, respectively,
0, 1, 2. But note that ifw ∈ f−1(v2) the branch index ofw is 3 because6 barycentric triangles ofK ′ are
mapped onto two triangles ofS. Similarly, the branch index ofw ∈ f−1(v1) is 2. But there is absolutely
no control on the branch index of points belonging to the fiberof v0.

Problem 2 Is it possible to find, for anyΣ, a coveringf : Σ → S of the sphereS, branched over three
pointsv0, v1, v2 with extrict control on the branching indexes?

We will answer this question in the affirmative for compact, unbounded, orientable surfaces (closed
surfaces).

Octogon

Take a regular octogonΩ and from its center draw segments to its vertices. This givesa triangulation of
Ω by 8 triangles. Pasting together alternating sides of two of these triangulated octogons we obtain a sphere
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Soooo with 4 holes. Pasting the holes in pairs we get the orientable surfaceF2 of genus2. Note thatF2 is
triangulated by16 triangles so that each vertex belongs to8 of them (has valence8). If we pasten copies of
Soooo together we can obtain a surfaceFn−1oooo of genusn− 1 with four holes. Pasting now the holes in
pairs we get the orientable surfaceFn+1 of genusn + 1. In this way we have proved the following result:
every orientable, closed surfaceFg of genusg ≥ 2 is triangulated by16(g − 1) triangles with vertexes of
valence8.

What about the surfaces of genus less than2?
We can see the torusF1 as a square with opposite sides identified. We can divide it in4 triangles by

connecting its center to its vertexes. Thus the torus can be divided in triangles with one vertex of valence4
and one vertex of valence8.

On the other hand, the sphereF0 can be triangulated with vertexes of valence4 (octahedron).
If we apply Ramı́rez construction to these triangulationsK we obtain the following Theorem.

Theorem 3 Every closed, orientable surface is a covering ofS2 branched over three pointsA, B andC.
The branching indexes on top ofA (resp.B; C) are all 2 (resp. all3; all 4 or 8).

We can reformulate this theorem in orbifold terms. LetS238 denote the2-orbifold with underlying
spaceS and singular pointsA, B, C with isotropies cyclic of orders2, 3, 8 respectively. Then a covering
f : Σ → S branched overA, B andC such that the branching indexes on top ofA (resp.B; C) are all2
(resp. all3; all 4 or 8) can be considered as an orbifold coveringf ′ : Q → S238, whereQ is an orbifold
with underlying spaceΣ and whose set of singular points is the set of points with branch index4 under the
branch coveringf .

Define anorbifold U to beuniversalif and only if every closed, orientable manifold is the underlying
space|Q| of an orbifoldQ coveringU . Then we have proved the following Theorem.

Theorem 4 The orbifoldS238 is universal.

On the other hand no euclidean orbifold can be universal.

Example 1 The orbifoldS236 is not universal.
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To show this, note thatS236 is a euclidean orbifold. In factS236 is the result of pasting together
along their boundary two euclidean triangles of angles30 ◦, 60 ◦ and90 ◦. An orbifold Q coveringS236
is euclidean except at some cone points with anglesα < 2π. These angles concentrate positive curvature
2π − α. Therefore the underlying surface|Q| has a metric of non-negative curvature. Therefore|Q| must
have genus less or equal than1. ThusS236 is not universal.

As we have seen, proving thatS238 is universal is an almost trivial result. To obtain an analogous result
for every dimension is difficult.

Think for instance in the dimension3 case. We know that the setG of edges of a tetrahedron embedded
in the3-sphere is a universal branching set. We even have some control on the branch indexes. In fact, the
interior points of an edgee are all covered by branch index3 points; and the interior points of three edges
meetinge are all covered by branch index2 points. We do not have, in principle any control on the branch
indexes for the points covering the remaining two edges. AndI do not see any direct method to control this.

Thus the next Theorem ([8, 11]) is really surprising. To state this theorem is convenient to denote by
(L, m) a 3-orbifold with underlying spaceS3, singular set a knot or linkL and isotropy cyclic of orderm
in every component ofL:

Theorem 5 The orbifolds (Figure-eight knot, 12), (Whitehead link, 12) and (Borromean link, 4) are uni-
versal orbifolds.

It is also known [13] thatthere is a universal orbifold(K, 2) whereK is a knot though all known
examples are extremely complicated (see also [17]). Hilden, Lozano and I have conjectured that the orbifold
(10161, 2) is universal but so far we have been unable to prove this.

10161 knot

4 Geometric level

It follows from the previous section that if we are able to geometrize some universal orbifolds we will be
able to geometrize also their coverings. That is, in a sense,all manifolds.

Note, for instance the case of the orbifoldS238. This is a hyperbolic orbifold. In fact, take the hyper-
bolic triangle of anglesπ/2, π/3, π/8 and double it along its boundary. This is a sphere with a Riemannian
metric of curvature, say,−1 and three cone-pointsA, B, C of angles2π/2, 2π/3, 2π/8. That is, a hy-
perbolic orbifold. The orbifold coverings corresponding to branched coverings with all branch indexes on
top of A, B, C equal to2, 3, 8, respectively, are in fact hyperbolic surfaces. Thus all surfaces of genus
greather or equal than2 are hyperbolic.

For the torus, the12-fold branched coveringf : F1 → S has just one point of branch index4 overC.
Then the corresponding orbifold covering is

f ′ : (F1, 2) −→ S238,
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where the orbifold(F1, 2) has underlying space the torusF1 and singular set a point of isotropy2 (cone-
angleπ). The total curvature of(F1, 2) is the sum of the negative curvature lifted fromS238 and the
positive total curvature concentrated at the cone point. This last is

2π − angle = π.

The former is, using Gauss-Bonet,
12(2πχ ◦(S238)) = −π

because the Euler characteristicχ ◦ (S238) of the orbifoldS238 is

−1 +
1

2
+

1

3
+

1

8
=

−1

24
.

Therefore the total curvature of the cone-manifold(F1, 2) is zero, as expected.
For the sphereS we have a24-fold branched coveringf : S → S with 6 points of branched index4 on

top of the pointC of S238. Thenf induces an orbifold coveringf ′ : S222222 → S238 from the hyperbolic
orbifold S222222 with 6 singular points of isotropy of order2 ontoS238. Here the total curvature of the
cone-manifoldS222222 is

24(2πχo(S238)) + 6(2π − π) = 4π

as it shoul be.

Now we consider the question in dimension three. LetB denote the Borromean link and let(B, 4) the
orbifold with underlying spaceS3, singular setB and isotropy cyclic of order4. We have stated before the
theorem that(B, 4) is a universal orbifold. That is, every closed, orientable3-manifold is the underlying
space of an orbifold, covering the orbifold(B, 4).

Now the orbifold(B, 4) is a hyperbolic orbifold. In fact, consider the following combinatorial dodeca-
hedron:

Pasting faces in pairs, by reflection on the6 thickened edges (there are3 of them that are not visible in
the picture, but the ones in opposite faces of the paralelepipedon are parallel) we getS3. The boundary of
the dodecahedron is sent to the three golden ratio cards, andthe thickened edges go to the borromean link
B. If we think on the above dodecahedron as a euclidean parallelepipedon, thenS3 inherits a euclidean
structure with singular setB. Here the cone angle isπ. Thus(B, 2) is a euclidean orbifold.

But if we take a regular dodecahedronD inside a sphereS, both centered at the origen ofR3, then
the interior ofS is the projective model of hyperbolic3-spaceH3. The dodecahedronD is also regular in
H3 but its dihedral angles depend on the radius of the sphereS. If the vertexes ofD lie onS the dihedral
angles are of60 ◦ and when the radius ofS tends to infinite thenD tends to be euclidean with angles of
approximately116 ◦. In between there is a radius for which the angles are of90 ◦. After the identifications,
S3 inherits a hyperbolic structure with singular setB. The cone angle isπ/2. Thus(B, 4) is a hyperbolic
orbifold.
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Then the universal orbifold covering of(B, 4) is H3 and the group of automorphisms of this covering,
sayU , is a group of direct hyperbolic isometries acting onH3 with compact quotientH3/U = S3, and
defining the universal orbifold coveringp : H3 → (B, 4).

Define a subgroup of direct isometries ofH3 to be a universal group if and only if given a closed,
orientable3-manifoldM there is a finite index subgroupΓ of it such thatH3/Γ is homeomorphic toM .

Then

Theorem 6 ([8]) U is a universal group.

In fact, letM be a closed, orientable3-manifold. Since(B, 4) is a universal orbifold, thenM is the
underlying space|Q| of an orbifoldQ covering(B, 4). Let q : Q → (B, 4) be this orbifold covering. Since
p : H3 → (B, 4) is the universal orbifold covering, it follows that there isan orbifold coveringr : H3 → Q
such thatqr = p. Therefore the regular orbifold coveringr is the quotient ofH3 under the action of a
subgroupΓ of U . Thus

M = |Q| = H3/Γ

andΓ has finite index inU because this index is the degree ofq. This degree is finite becauseM is compact.

5 The universal group U

The universal groupU is the group of automorphisms of the universal coveringp : H3 → (B, 4). ThenU
is isomorphic to the fundamental groupπo

1(B, 4) of the orbifold(B, 4).
The groupπo

1(B, 4) comes fromπ1(S
3\B) by killing the fourth powers of the meridians ofB (see, for

instance [20]). The groupπ1(S
3\B) has a presentation with three generatorsx, y, z (meridians of the

components ofB) and three relations (anyone of which is unnecessary) that declare the commutativity of
each meridian with its corresponding longitud. Thus

Meridians

we have the following presentation forU = πo
1(B, 4) is:

U =
∣∣x, y, z :

[
x,

[
z−1, y

]]
=

[
y,

[
x−1, z

]]
=

[
z,

[
y−1, x

]]
= x4 = y4 = z4 = 1

∣∣

Under the isomorphism from the groupU of automorphisms ofp : H3 → (B, 4) and the fundamental
groupπo

1(B, 4) of the orbifold(B, 4) the meridiansx, y, z correspond to the90 ◦ rotations around the
three thickened edges of the dodecahedron. Thus the groupU is generated by these three rotations (that we
denotex, y, z) subject to the above relations.

The groupU acts onH3 and the regular dodecahedronD with 90 ◦ dihedral angles is the Voronoi
domain of this action with respect to the center ofD. ThusH3 is tessellated by replicas ofD. There are
4 replicas around every edge and8 replicas around every vertex. The dual tessellation is formed by cubes
with 2π/5 dihedral angles.
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6 Some consequences of U being universal

Now letM be an arbitrary closed, orientable manifold. Then there is someΓ ≤ U of finite index such that
H3/Γ is homeomorphic toM . In the course of proving thatU is universal in [8] it was shown thatΓ can
always be supposed to contain a90 ◦ rotation. We will assume this.

In the next diagram the horizontal lines are short exact sequences of groups and homomorphisms and
the vertical arrows are natural inclusion homomorphisms.

0 −−−−→ L −−−−→ U −−−−→ C4 −−−−→ 0
x

x
x≈

0 −−−−→ N −−−−→ Γ −−−−→ C4 −−−−→ 0
x

x
x≈

0 −−−−→ S −−−−→ t(Γ) −−−−→ C4 −−−−→ 0

HereL is the kernel of the epimorphism sendingx, y, z to 1 ∈ C4 = Z/4Z; N = L ∩ Γ is a normal
subgroup ofΓ; t(Γ) is the subgroup ofΓ generated by rotations (it is a normal subgroup); andS is the
subgroupN ∩ t(Γ). Since we are assuming thatt(Γ) → C4 is onto, the vertical arrows in the third column
are isomorphisms.

SinceS is normal inΓ, it is normal inN . The groupN/S = N/(N ∩ t(Γ)) is isomorphic toN +
t(Γ)/t(Γ). But N + t(Γ) = Γ becauset(Γ) contains a rotationγ of order4 and

Γ = N ∪ γN ∪ γ2N ∪ γ3N.

ThusN/S is isomorphic toΓ/t(Γ).
The groupΓ/t(Γ) is isomorphic toπ1(M) [1]. In fact, letq : H3 → M denote the quotient under the

groupΓ. ThenΓ is also the group of automorphisms of the regular (ordinary)covering

q|H\A : H3\A → M\q(A),

whereA is the set of axes ofΓ. ThenΓ is isomorphic via someλ to

π1(M\q(A))/q#π1(H
3\A).

Hereq#π1(H
3\A) is generated by powers of meridians ofq(A) becauseH3 is simply connected. Now

λ(t(Γ)) is generated by the meridians ofq(A). ThereforeΓ/t(Γ) is isomorphic to

π1(M\q(A))/λ(t(Γ)) = π1(M).

Hence

Theorem 7 ([8]) M is simply connected if and only ifΓ is generated by rotations, that is, if and only if
Γ = t(Γ).

Note also thatN/S is isomorphic toπ1(M).
Consider the diagram of orbifold coverings associated to the above diagram of groups and homomor-

phisms (in what follows̃A denotesH3/A):

L̃ −−−−→ (B, 4)
x

x

Ñ −−−−→ Γ̃ = M
x

x

S̃ −−−−→ t̃(Γ)
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Here the horizontal arrows are4-fold cyclic orbifold coverings. The orbifold̃L (and thereforẽN , S̃) are
hyperbolic manifolds (empty singular set). Then

Theorem 8 ([9]) Every closed, orientable3-manifold has a4-fold cyclic branched covering which is a
hyperbolic manifold. The cyclic action is by isometries.

The orbifold coverings̃S → Ñ is regular and the group of automorphisms isN/S = π1(M). Therefore,

Theorem 9 ([9]) The fundamental group of a closed, orientable3-manifold acts freely as a group of
isometries of a hyperbolic manifold.

Another consequence comes from the fact that the hyperbolicorbifold (B, 4) is universal. Then

Theorem 10 Every closed, orientable3-manifold is the underlying space of a hyperbolic orbifold with
singular set a link, and isotropy cyclic of orders2 or 4.

Since every closed, orientable3-manifold is a branched covering ofS3 with branching setB and bran-
ching indexes divisors of4 and(B, 2) is euclidean, we deduce

Theorem 11 Every closed, orientable3-manifold has a euclidean cone manifold structure with a link as
singular set. The cone angles are eitherπ or 4π.

Note that this singular riemannian structure can be desingularized by putting positive (resp. negative)
curvature near theπ (resp.4π) singular set [15, 16].

7 Relating (B, 4) with (B, 2)

As we have proved the orbifolds(B, 4) and(B, 2) are respectively hyperbolic and euclidean. In fact(B, 2)
is euclidean in many non isometric ways (change the parallelepiped defining it). Take as standard(B, 2)
the one defined by the cubeC of side1. Let p : H3 → (B, 4), q : E3 → (B, 2) be their universal orbifold
coverings. ThusAut(p) = U is the universal group andAut(q) = Û is a euclidean crystallographic group
that appears in the international crystallographic tablesunder the notationI212121. The groupI212121 =
Û is generated by180 ◦ rotations around the three thickened axes upon three of the faces of the cubeC. As
before:

Û =
∣∣x, y, z :

[
x,

[
z−1, y

]]
=

[
y,

[
x−1, z

]]
=

[
z,

[
y−1, x

]]
= x2 = y2 = z2 = 1

∣∣

The map
ω : Û −→ Σ4

x 7−→ (12)(34)
y 7−→ (13)(24)
z 7−→ (14)(23)

is a transitive homomorphism with image isomorphic to the Klein’s group

S2,2,2 = |i, j, k ; i2 = j2 = k2 = ijk = e| ⊂ Σ4.

The kernelK of this map is the subgroup of all translations ofÛ . Then the orbifold covering map defined
by K has the torusT 3 = S1 × S1 × S1 as covering space. This orbifold covering

p : T 3 −→ (B, 2)

is a4 fold regular covering. The group of automorphisms ofp is S2,2,2. It is not difficul to see that there
exist a presentation ofT 3 as trivialT 2-bundle overS1 such that the fibers are transversal toL = p−1(B)
in exactly8 points.
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Now consider the universal groupU . The map:

µ : U −→ Σ8

x 7−→ (1, 2, 5, 6)(3, 4, 7, 8)
y 7−→ (1, 3, 5, 7)(2, 8, 6, 4)
z 7−→ (1, 8, 5, 4)(2, 7, 6, 3)

is a transitive homomorphism with image isomorphic to the quaternion group

S̃2,2,2 =| i, j, k; i2 = j2 = k2 = ijk |

The kernelKµ of µ defines an8-fold regular orbifold coveringq : M → (B, 4) . HereM is a hyperbolic

manifold. The group of automorphisms ofq is isomorphic to the quaternionic group̃S2,2,2.
The map

p : T 3 −→ (B, 2)

can also be understood as an orbifold coveringp′ : (T 3, L) → (B, 4) from the hyperbolic orbifold(T 3, L)
with singular setL = p−1(B) and isotropy2. It corresponds to the kernelKgµ of the compositiong ◦ µ

whereg : S̃2,2,2 → S2,2,2 is defined byg(i) = i, g(j) = j, g(k) = k. The kernel ofg is cyclic of
order2. SinceKµ ≤ Kgµ, the coveringq factors throughp′ defining a2-fold cyclic orbifold covering
r : M → (T 3, L).

The torus bundle structure ofT 3 which cutsL in 8 points lifts to aFg-bundle overS1 structure onM ,
where the fiberFg is the double covering of the fiberT 2 of T 3, branched over the8 points of intersection
with L. Then the fiberFg is connected. The computation of the Euler characteristic of branched coverings
of 2-dimensional orbifolds givesg = 5. Thus

Theorem 12 ([14]) There exists a hyperbolic manifold which is aF5-bundle overS1, such that the quater-
nion group acts on it as a subgroup of isometries, giving the orbifold (B, 4) as quotient.

Since, in fact,T 3 has infinitely many torus bundle structures with fiber transversal toL it follows that

Theorem 13 ([14]) The manifoldM has infinitely many different surface-bundle structures over S1.

8 The universal group as an arithmetic group

The universal group is an arithmetic group (see [10], [12] and [18]).
The Borromean link is the singular locus of a familly of hyperbolic structures parametrized by the cone

angle. Between0 andπ the structure is hyperbolic. Fromπ to 2π is spherical. Forπ is euclidean. For2π
the link degenerates into three geodesics of the round sphere of constant sectional curvature1. Of course,
these structures lift to all closed, orientable3-manifolds providing analogous structures. Therefore, for each
angle of the form2π/n, n an integer, we have a hyperbolic orbifold(B, n) if n ≥ 3. The volumes of these
orbifolds can be computed.

In fact the angles in the three components ofB can be different. Hilden, Lozano and I have investigated
these structures and their degenerations (unpublished).

The problem of finding automorphic functions for the universal coverings of(B, n) is still open. The
case(B,∞) has been solved by K. Matsumoto [19].

The paper by Toda [25] study the question of Thurston of whether or not all closed 3-manifolds admit a
finite cover with positive first Betti number. It solves it partially by proving that ifΓ is a subgroup of finite
index inB4,4,4 such that the torsion subgroup ofΓ reduces modulo a congruence subgroup to a finite group
Γ′ containing no non-central normal subgroup, then the underlying space of the orbifold corresponding to
Γ has a finite cover with positive first Betti number.
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[21] Montesinos, José Marı́a, (1983). Representing3-manifolds by a universal branching set.Math. Proc. Cambridge
Philos. Soc., 94, 1, 109–123.

[22] Ramı́rez, Arturo, (1975). On a theorem of Alexander, (Spanish),An. Inst. Mat. Univ. Nac. Autónoma México, 15,
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