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Around the Borromean link

Jos é Maria Montesinos-Amilibia

Abstract. This is a survey of some consequences of the fact that thefaedtal group of the orbifold

with singular set the Borromean link and isotropy cyclic oder4 is a universal kleinian group.
En torno al enlace de Borromeo

Resumen. Se presenta una panoramica de lo que se ha podido dedueirdasa del hecho de ser
universal el grupo fundamental de los anillos de Borromevisotropiad.

1 Introduction

Three golden ratio cards symmetrically intertwined prazitine12 vertexes of an icosahedron.
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The boundaries of the three cards form the following link:

This is the famou8orromean link so called for its relationship with the Borromeo familyg4&]). A
cousin of the Borromean link appears in the house of Admiiéhdo at Mount Ulia in San Sebastian
(Spain). The link seems to be used here as a hieroglyphieaftind Oquendo.

AR peg-
0O-QU-EN-(D)-O

The Borromean link (a true link made up of three unknots) app@for the first time in a mathematical
context in Tait’s Table of Knots (1876). Ralph H. Fox refefte this link as the “Borromean rings” in
his celebrated surve{/|[3], but for cacophony reasons | wfiérto it, along this expository article, as the
Borromean link, denotef. This is the link63 in Rolfsen’s Table of Knots and Link5R4].

The Borromean link is important in relation with the topojand geometry of three-manifolds. | intend
to give here a very short exposition of my investigationstbgr with Maite Lozano and Hugh Hilden in
these matters. | am very much indebted to them for many ydaiese colaboration. Thus | dedicate this
paper to Maite Lozano and Hugh Hilden with affection and ksan

Along the paper we will make frequent use of the geometry apdlogy of2-manifolds (surfaces) to
illustrate facts that generalize to dimension three.

For the basic definitions it would be of interest to some restteconsult Ratcliffel[23], Rolfser_[24]
and Thurston([26].

2 Combinatorial level

Manifolds of dimension® and3 are triangulable (Moise). This is the starting point to exant these
manifolds as branched coverings of the sphere.
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Around the Borromean link

Let us see in detail the case of surfaces.

Take an arbitrary unbounded, orientable surfd@nd a triangulatiok’ of it. Subdivide barycentrically
K to obtain another triangulatiofi’. The vertexes of(’ fall naturally in three classes: barycenters of ver-
texes (resp. edges, faces)lofcalled, respectively, bary-vertexes, bary-edges or feags. Accordingly,
any face ofK’ has a natural orientation, namely the one given by the fafigwrdering of its vertexes:
bary-vertex, bary-edge, bary-face. Color this face wHftéhis natural orientation coincides with a fixed
orientation ofx. Otherwise color it black. Then we have obtained a checkéboaloration of the faces of
K’ because two different faces sharing an edge get differdmtso

This simple argument of Ramirez has an important conseguddamely, thaevery unbounded, ori-
entable surface is a covering of the sphere branched oveetpointd27].

In fact, think of the spher§' as the result of pasting linearly together two triangles(ahite; the other
black) along their edges. Call the resulting verteXes, 2. Then we map linearly white (black) triangles
of the surfaceX to the white (black) triangle of in such a way that bary-vertexes (resp. bary-edges,
bary-faces) go to (resp.1, 2).

This argument works in fact for every triangulated unbouhdeiented.-manifold. Therefore, we have
proved the following Theorem.

Theorem 1 ([22]) Every unbounded, orientab¥manifold is a covering of the sphere, branched over a
graphG. This graph is the set of edges of a tetrahedron embeddee ispthere.

Therefore the graplyr is universal in the sense that eveymanifold branches over it. But note that,
while in the case of surfaces, the branching set is a manifbisl is not the case if the dimension of the
manifold is greather or equal th8n

The graph G

Problem 1 Is there a universal branching set which is a manifold forrguddmension?

Gonzéalez-Acufia asked this question and W. Thurston f¢rah unpublished paper) the first example
of a (complicated) link in th8-spheres? that was universal. Thurston also asked if some familiatsaod
links, (like the figure eight knot, Whitehead link or the Bamean rings) were in fact universal. This was
answered positively in the papers$ [6] ahd [7] (see dlsbl[27928]), but the arguments are too complicated
to be reproduced here. (It was also clear at the time that &mmies and links, like the trefoil knot, could
not be universal.)

Theorem 2 The figure-eight knot and the Whitehead and Borromean lidksiaiversal branching sets
for all closed, orientablg-manifolds.
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AT

Figure eight knot

5D

Whitehead link

3 Controling branching indexes

Coming back to surfaces, remember that we have proved thatvéry unbounded, orientable surfae
there is a covering: ¥ — S of the spheres branched over three points, v1, v2, marked, respectively,
0, 1, 2. But note that ifw € f~!(v) the branch index ofv is 3 becausé barycentric triangles ok’ are
mapped onto two triangles &. Similarly, the branch index ab € f~1(v;) is 2. But there is absolutely
no control on the branch index of points belonging to the fdfer,.

Problem 2 s it possible to find, for any{, a coveringf: ¥ — S of the spheres, branched over three
pointswg, v1, v With extrict control on the branching indexes?

We will answer this question in the affirmative for compaatpbaunded, orientable surfaces (closed
surfaces).

Octogon

Take a regular octogdn and from its center draw segments to its vertices. This giveisngulation of
Q by 8 triangles. Pasting together alternating sides of two af¢htdangulated octogons we obtain a sphere
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Soooo with 4 holes. Pasting the holes in pairs we get the orientablesfaof genus2. Note thatFs is
triangulated byi 6 triangles so that each vertex belongs wf them (has valenc®). If we pasten copies of
Soooo together we can obtain a surfaEg_; oooo of genusn — 1 with four holes. Pasting now the holes in
pairs we get the orientable surfagg; of genus: + 1. In this way we have proved the following result:
every orientable, closed surfaég of genusg > 2 is triangulated byl6(g — 1) triangles with vertexes of
valences.

What about the surfaces of genus less tiran
We can see the torug, as a square with opposite sides identified. We can divide4ttimngles by
connecting its center to its vertexes. Thus the torus carMiged in triangles with one vertex of valende
and one vertex of valence
>

?_

On the other hand, the sphefg can be triangulated with vertexes of valedd@ctahedron).
If we apply Ramirez construction to these triangulatiéhge obtain the following Theorem.

Theorem 3 Every closed, orientable surface is a coveringséfbranched over three points, B andC.
The branching indexes on top df(resp.B; C) are all 2 (resp. all3; all 4 or 8).

We can reformulate this theorem in orbifold terms. 15288 denote the2-orbifold with underlying
spaceS and singular pointsl, B, C with isotropies cyclic of order, 3, 8 respectively. Then a covering
f: ¥ — S branched overd, B andC such that the branching indexes on topbfresp.B; C) are all2
(resp. all3; all 4 or 8) can be considered as an orbifold coverifig Q — 5238, whereQ is an orbifold
with underlying spac& and whose set of singular points is the set of points with ¢lrandex4 under the
branch covering.

Define anorbifold U to beuniversalif and only if every closed, orientable manifold is the urigieg
spacg )| of an orbifold@ coveringU. Then we have proved the following Theorem.

Theorem 4 The orbifoldS238 is universal.
On the other hand no euclidean orbifold can be universal.

Example 1 The orbifoldS236 is not universal.
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To show this, note that236 is a euclidean orbifold. In fac§236 is the result of pasting together
along their boundary two euclidean triangles of ang@s, 60 ° and90 °. An orbifold @) coveringS236
is euclidean except at some cone points with angles 2. These angles concentrate positive curvature
27w — a. Therefore the underlying surfag@| has a metric of non-negative curvature. TherefGremust
have genus less or equal thenThusS236 is not universal.

As we have seen, proving thé38 is universal is an almost trivial result. To obtain an analogresult
for every dimension is difficult.

Think for instance in the dimensidgncase. We know that the s@étof edges of a tetrahedron embedded
in the 3-sphere is a universal branching set. We even have sometontthe branch indexes. In fact, the
interior points of an edge are all covered by branch ind8xpoints; and the interior points of three edges
meetinge are all covered by branch ind@xpoints. We do not have, in principle any control on the branch
indexes for the points covering the remaining two edges. IAtainot see any direct method to control this.

Thus the next Theorem[{[B,111]) is really surprising. Toestaiis theorem is convenient to denote by
(L, m) a3-orbifold with underlying spacé?, singular set a knot or link and isotropy cyclic of ordem
in every component of:

Theorem 5 The orbifolds (Figure-eight knot, 12), (Whitehead link) 4&d (Borromean link, 4) are uni-
versal orbifolds.

It is also known [[IB] thathere is a universal orbifold K, 2) where K is a knotthough all known
examples are extremely complicated (see alsp [17]). Hildernano and | have conjectured that the orbifold
(10161, 2) is universal but so far we have been unable to prove this.

S=F

10161 knot

4 Geometric level

It follows from the previous section that if we are able to g@drize some universal orbifolds we will be
able to geometrize also their coverings. That is, in a selbmanifolds.

Note, for instance the case of the orbifdd38. This is a hyperbolic orbifold. In fact, take the hyper-
bolic triangle of angles /2, =/3, =/8 and double it along its boundary. This is a sphere with a Rierizen
metric of curvature, say-1 and three cone-pointd, B, C of angles2w/2, 27/3, 27/8. Thatis, a hy-
perbolic orbifold. The orbifold coverings correspondingiranched coverings with all branch indexes on
top of A, B, C equal to2, 3, 8, respectively, are in fact hyperbolic surfaces. Thus aflases of genus
greather or equal thahare hyperbolic.

For the torus, th@2-fold branched covering: F; — S has just one point of branch indéxoverC.
Then the corresponding orbifold covering is

fe(F1,2) — 5238,
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where the orbifold F1, 2) has underlying space the toréis and singular set a point of isotrofy(cone-
anglen). The total curvature ofFy,2) is the sum of the negative curvature lifted fro$238 and the
positive total curvature concentrated at the cone poinis [Hst is

21 — angle = 7.

The former is, using Gauss-Bonet,
12(2my °(S238)) = —7

because the Euler characteristi® (5238) of the orbifoldS238 is

L
STty T
Therefore the total curvature of the cone-manif@d, 2) is zero, as expected.

For the spher& we have &4-fold branched covering: S — S with 6 points of branched indekon
top of the pointC of 5238. Thenf induces an orbifold coveringy : 5222222 — 5238 from the hyperbolic
orbifold $222222 with 6 singular points of isotropy of ordéronto S238. Here the total curvature of the
cone-manifold5222222 is

24(2mx°(5238)) + 6(27m — ) = 4m
as it shoul be.

Now we consider the question in dimension three. Batenote the Borromean link and IgB, 4) the
orbifold with underlying spac#é?, singular sef3 and isotropy cyclic of ordet. We have stated before the
theorem that B, 4) is a universal orbifold. That is, every closed, orientabimanifold is the underlying
space of an orbifold, covering the orbifo(é, 4).

Now the orbifold(B, 4) is a hyperbolic orbifold. In fact, consider the followingrobinatorial dodeca-
hedron:

pd

Pasting faces in pairs, by reflection on ththickened edges (there a3ef them that are not visible in
the picture, but the ones in opposite faces of the parajgdejoin are parallel) we gét. The boundary of
the dodecahedron is sent to the three golden ratio cardgharttickened edges go to the borromean link
B. If we think on the above dodecahedron as a euclidean pgipedon, ther? inherits a euclidean
structure with singular se®. Here the cone angle is Thus(B, 2) is a euclidean orbifold.

But if we take a regular dodecahedréhinside a spheré, both centered at the origen Bf, then
the interior ofS is the projective model of hyperboli&zspaceH/3. The dodecahedrob is also regular in
H? but its dihedral angles depend on the radius of the spfietkthe vertexes ofD lie on S the dihedral
angles are 060 ° and when the radius &f tends to infinite therD tends to be euclidean with angles of
approximatelyi 16 °. In between there is a radius for which the angles a6t After the identifications,
$3 inherits a hyperbolic structure with singular &t The cone angle is/2. Thus(B,4) is a hyperbolic
orbifold.
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Then the universal orbifold covering 68, 4) is H* and the group of automorphisms of this covering,
sayU, is a group of direct hyperbolic isometries acting B with compact quotienti3/U = S3, and
defining the universal orbifold covering H? — (B, 4).

Define a subgroup of direct isometries Hf to be a universal group if and only if given a closed,
orientable3-manifold M there is a finite index subgroupof it such thatf73 /T is homeomorphic td/.

Then

Theorem 6 ([8]) U is a universal group.

In fact, let M be a closed, orientabmanifold. Since(B,4) is a universal orbifold, thed/ is the
underlying spacé?| of an orbifold@ covering(B, 4). Letq: Q — (B, 4) be this orbifold covering. Since
p: H3 — (B, 4) is the universal orbifold covering, it follows that thereais orbifold covering: H®> — Q
such thatyr = p. Therefore the regular orbifold coveringis the quotient off? under the action of a
subgroud” of U. Thus

M =|Q| = H/T
andI" has finite index irU because this index is the degree;oT his degree is finite becausé is compact.

5 The universal group U

The universal group is the group of automorphisms of the universal covefing?® — (B, 4). ThenU
is isomoarphic to the fundamental group(B, 4) of the orbifold(B, 4).

The groupr{ (B, 4) comes fromr; (S3\ B) by killing the fourth powers of the meridians &f (see, for
instancel[2D]). The group; (S3\B) has a presentation with three generatarsy, z (meridians of the
components of3) and three relations (anyone of which is unnecessary) #naade the commutativity of
each meridian with its corresponding longitud. Thus

Meridians

we have the following presentation for = 7{(B, 4) is:
U=leyz: [2[27hy]] = v [o7h 2] = [2 [y el =2 = 9" =20 =1

Under the isomorphism from the grodp of automorphisms of: H®> — (B, 4) and the fundamental
group?(B,4) of the orbifold (B, 4) the meridians:, y, z correspond to th€0 ° rotations around the
three thickened edges of the dodecahedron. Thus the gfasigenerated by these three rotations (that we
denoter, y, z) subject to the above relations.

The groupU acts onH? and the regular dodecahedrénwith 90 ° dihedral angles is the Voronoi
domain of this action with respect to the centeldf ThusH? is tessellated by replicas &. There are

4 replicas around every edge afdeplicas around every vertex. The dual tessellation is &ty cubes
with 27r/5 dihedral angles.
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6 Some consequences of U being universal

Now let M be an arbitrary closed, orientable manifold. Then theremsed” < U of finite index such that
H?3 /T is homeomorphic td/. In the course of proving thadf is universal in[[8] it was shown that can
always be supposed to contaif@° rotation. We will assume this.

In the next diagram the horizontal lines are short exacteecgs of groups and homomorphisms and
the vertical arrows are natural inclusion homomorphisms.

0 L U Cy 0
I I [~

0 N r Cy 0
| I [~

0 S ¢(T) Cy 0

Here L is the kernel of the epimorphism sending y, ztol1 € Cy = Z/4Z; N = LNT is a normal
subgroup ofl"; #(T") is the subgroup of generated by rotations (it is a normal subgroup); &nd the

subgroupV N ¢(T"). Since we are assuming thdf") — C, is onto, the vertical arrows in the third column
are isomorphisms.

SinceS is normal inT', it is normal inN. The groupN/S = N/(N n¢(T")) is isomorphic toN +
t(T")/¢(T). But N + ¢(T") = T because(T") contains a rotation of order4 and

I'= NUYNU~ N U~®N.

ThusN/S is isomorphic td/¢(T").
The groupl’/¢(T") is isomorphic tor; (M) [A]. In fact, letq: H> — M denote the quotient under the
groupI’. ThenT is also the group of automorphisms of the regular (ordinesygring

alma: H\A — M\q(A),
whereA is the set of axes df. ThenI is isomorphic via soma to
m1(M\q(A))/qumi(H*\A).

Heregxm (H3\ A) is generated by powers of meridiansggfd) because?® is simply connected. Now
A(t(T")) is generated by the meridiansgfA). Therefore/¢(T") is isomorphic to

™1 (M\q(A))/A((I)) = m1 (M).
Hence

Theorem 7 ([8l) M is simply connected if and onlyTif is generated by rotations, that is, if and only if
I =1¢D).
Note also thatV/S is isomorphic tor (M).

Consider the diagram of orbifold coverings associated ¢oathove diagram of groups and homomor-
phisms (in what followsA denotest 3 /A):

L —— (B,4)
[
N ——TI'=M
L1
S —— ()
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Here the horizontal arrows atefold cyclic orbifold coverings. The orbifold (and thereforeV, S) are
hyperbolic manifolds (empty singular set). Then

Theorem 8 ([9]) Every closed, orientablg-manifold has ai-fold cyclic branched covering which is a
hyperbolic manifold. The cyclic action is by isometries.

The orbifold covering$ — N is regular and the group of automorphismaigs = 1 (M). Therefore,

Theorem 9 ([9]) The fundamental group of a closed, orientaBlenanifold acts freely as a group of
isometries of a hyperbolic manifold.

Another consequence comes from the fact that the hypenbdiifold (B, 4) is universal. Then

Theorem 10 Every closed, orientablg-manifold is the underlying space of a hyperbolic orbifoldhw
singular set a link, and isotropy cyclic of ordezor 4.

Since every closed, orientaldemanifold is a branched covering 6f with branching seB and bran-
ching indexes divisors of and (B, 2) is euclidean, we deduce

Theorem 11 Every closed, orientabl&-manifold has a euclidean cone manifold structure with & s
singular set. The cone angles are eitheor 4.

Note that this singular riemannian structure can be defamiged by putting positive (resp. negative)
curvature near the (resp.4r) singular setl[15, 16].

7 Relating (B,4) with (B,2)

As we have proved the orbifold$3, 4) and(B, 2) are respectively hyperbolic and euclidean. In {dg{2)

is euclidean in many non isometric ways (change the paepileéd defining it). Take as standd#, 2)
the one defined by the culieof sidel. Letp: H® — (B,4), q: E3 — (B, 2) be their universal orbifold
coverings. Thug\ut(p) = U is the universal group anéiut(q) = U is a euclidean crystallographic group
that appears in the international crystallographic tabteger the notatiod2,2,2;. The group/2,2;2; =

U is generated by80 ° rotations around the three thickened axes upon three ohtesfof the cub€'. As
before:

0= foyz: [ 7] = I 2] = o o] =22 = 92 = 27 =1

The map

Yy
(12)(34)

—  (13)(24)

—  (14)(23)

is a transitive homomorphism with image isomorphic to theiik group

e 8 d)
!

2

Sopo=li,jk; i* =j>=k>=ijk=e| C Sa.

The kernelK of this map is the subgroup of all translationslaf Then the orbifold covering map defined
by K has the torug™ = S' x S x S! as covering space. This orbifold covering

p: T3 — (Bv2>

is a4 fold regular covering. The group of automorphism®a$ Ss » . It is not difficul to see that there
exist a presentation df? as trivial 72-bundle overS! such that the fibers are transversalte= p~—!(B)
in exactly8 points.
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Now consider the universal grodp. The map:

w U — s
z — (172’57 6)(3’47 7’8)
y — (173’57 7)(2’87 6’4)
z +— (1,8,5,4)(2,7,6,3)

is a transitive homomorphism with image isomorphic to thatgtnion group
Saza =|i,j,k; i = % = k? = ijik |

The kernelk,, of ;1 defines ar8-fold regular orbifold covering: M — (B,4) . HereM is a hyperbolic

manifold. The group of automorphismsgfs isomorphic to the quaternionic gro@;/g.
The map
b: T3 - (Bv 2)

can also be understood as an orbifold coveing(T?, L) — (B, 4) from the hyperbolic orbifold 73, L)
with singular set. = p~!(B) and isotropy2. It corresponds to the kerndf,,, of the compositiory o x
whereg: 3;\2/2 — Ss.9.9 is defined byg(i) = i, g(j) = 7, g(k) = k. The kernel ofg is cyclic of
order2. Sincek, < K,,, the coveringy factors throughy’ defining a2-fold cyclic orbifold covering
r: M — (T3, L).

The torus bundle structure @ which cutsL in 8 points lifts to aF,-bundle overS! structure on\/,
where the fibe, is the double covering of the fib&@ of T, branched over th& points of intersection
with L. Then the fibelF’, is connected. The computation of the Euler characteriticanched coverings
of 2-dimensional orbifolds giveg = 5. Thus

Theorem 12 ([14]) There exists a hyperbolic manifold which iggbundle overs?, such that the quater-
nion group acts on it as a subgroup of isometries, giving thefold (B, 4) as quotient.

Since, in factT™ has infinitely many torus bundle structures with fiber tramsal toL it follows that

Theorem 13 ([{4]) The manifold) has infinitely many different surface-bundle structuresrd/ .

8 The universal group as an arithmetic group

The universal group is an arithmetic group (deé [10], [12] [Ard]).

The Borromean link is the singular locus of a familly of hylpelic structures parametrized by the cone
angle. Betweef and~ the structure is hyperbolic. Fromto 2 is spherical. Forr is euclidean. Fo2r
the link degenerates into three geodesics of the round sgtie@onstant sectional curvature Of course,
these structures lift to all closed, orientaBlenanifolds providing analogous structures. Therefornegfch
angle of the forn2x /n, n an integer, we have a hyperbolic orbifdl8, ») if n > 3. The volumes of these
orbifolds can be computed.

In fact the angles in the three component®aan be different. Hilden, Lozano and | have investigated
these structures and their degenerations (unpublished).

The problem of finding automorphic functions for the uniersoverings of B, n) is still open. The
case(B, oo) has been solved by K. Matsumofa[19].

The paper by Toda[25] study the question of Thurston of wéredh not all closed 3-manifolds admit a
finite cover with positive first Betti number. It solves it ially by proving that ifl" is a subgroup of finite
index in By 4,4 such that the torsion subgrouplofeduces modulo a congruence subgroup to a finite group
I containing no non-central normal subgroup, then the ugigrispace of the orbifold corresponding to
T" has a finite cover with positive first Betti number.
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