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ABSTRACT 

In this monograph, first, we analyze in detail some of the major limitations of the 

standard procedure to estimate business cycles with the Hodrick-Prescott (HP) 

filter. By incorporating time series analysis techniques, it is seen how some 

intuitive and relatively simple modifications to the filter can improve significantly 

its performance, in particular in terms of cleanness of the signal, smaller revision, 

stability of end-period estimators, and detection of turning points. 

Then, we show how the modified filter can be seen as the exact solution of a well­

defined statistical problem, namely, optimal (minimum mean squared error) 

estimation of components in a standard unobserved-component model, where the 

observed series is decomposed into a trend, a cycle, a seasonal, and an irregular 

component. This problem is straightforward to solve with Kalman or Wiener­

Kolmogorov filter techniques. The models for the components incorporate some-a­

priori features, that reflect the ad-hoc nature of the HP filter, and some series­

dependent features, that ensure that the aggregate ARIMA model implied by the 

components is exactly the parsimonious ARIMA model identified directly on the 

observed series. It is shown how the model-based interpretation greatly facilitates 

diagnostics and inference, thereby facilitating systematic analysis and 

improvement. The procedure is trivially implemented with already available free 

software. 
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Preface 

This monograph addresses the problem of measuring economic cycles (also 
called business cycles) in macroeconomic time series. In the decade that fol­
lowed the Great Depression, economists developed an interest in the possible 
existence of (more or less systematic) cycles in the economyj see, for example, 
Haberler ( 1944) or Shumpeter (1939). It became apparent that in order to 
identify economic cycles, one had to remove from the series seasonal fluctua­
tions, associated with short-term behavior, and the long-term secular trend, 
associated mostly with technological progress. Burns and Mitchell ( 1946) pro­
vided perhaps the first main reference point for much of the posterior research. 
Statistical measurement of the cycle was broadly seen as capturing the vari­
ation of the series within a range of frequencies, after the series has been 
seasonally adjusted and detrended. (Burns and Mitchell suggested a range of 
frequencies associated with cycles with a period between 6 and 32 quarters.) 

Statistical methods were devised to estimate cyclical variation, and these grad­
ually evolved towards methods fundamentally based on the application of mov­
ing average filters to the series; see, for example, Bry and Boschan (1971). The 
last 20 years have witnessed methodological research on two broad fronts. The 
first front dealt with further developments of the moving-average type of ap­
proach; the second front was the development of more complex statistical ap­
proaches. Examples of research in both directions can be found in Sims ( 1977), 
Lahiri and Moore (1991), Stock and Watson (1993) and Hamilton (1994). Al­
though the first approach is known to present serious limitations, the new and 
more sophisticated methods developed in the second approach (most notably, 
multivariate and nonlinear extensions) are at an early stage, and have proved 
still unreliable, displaying poor behavior when moving away from the sample 
period. As Baxter and King (1995) point out, we still face at present the 
same basic question "as did Burns and Mitchell fifty years ago: how should 
one isolate the cyclical component of an economic time series? In particular, 
how should one separate business-cycle elements from slowly evolving secular 
trends, and rapidly varying seasonal or irregular components?" 

Be that as it may, it is a fact that measuring (in some way) the business cycle 
is an actual pressing need of economists, in particular of those related to the 
functioning of policy-making agencies and institutions, and of applied macroe­
conomic research. Lacking a practical and reliable alternative, moving-average 
methods are the ones actually used, to the point that economic agencies (such 
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as the OECD, the International Monetary Fund, or the European Central 
Bank) often have internal rules or recommendations to measure economic cy­
cles that are MA-type methods. One can say that, very broadly, within the 
set of applied business-cycle analysts, there has been a convergence towards 
what could be called "Hodrick-Prescott" (HP) filtering, a methodology pro­
posed by Hodrick and Prescott (1980); see also Kydland and Prescott ( 1982) 
and Prescott(1986). The emergence of the HP filter as a paradigm has, proba­
bly, been fostered by economic globalization and European integration, which 
has required a relatively high level of methodological homogeneity in order to 
compare countries. An unavoidable consequence is that, to some degree, the 
procedure eventually is often used as a black box. 

Academic criticism of the HP filter has pointed out some serious drawbacks. 
But, beyond the criticism, not much effort has been spent on addressing these 
shortcomings. An important exception is Baxter and King (1995), where an 
alternative (related) filter is proposed, that improves smoothness of the esti­
mators for the central years, but avoids estimation at both extremes of the 
series (including, of course, current and recent periods.) Systematic improve­
ment ofthe filter performance has been clearly hampered by its ad-hoc nature 
and the lack of an underlying statistical model with a precise definition of the 
components (see, for example, Harvey, 1985, and Crafts, Leyburne and Mills, 
1989). 

In this monograph, first, we analyze in detail some of the major limitations 
of HP filtering. By incorporating time series analysis techniques, mostly de­
veloped over the last 20 years as an aftermath of the explosion in the use of 
ARIMA-type models (Box and Jenkins, 1970), it is seen how some intuitive 
and relatively simple modifications to the filter can improve significantly its 
performance, in particular in terms of cleanness of the signal, smaller revision, 
stability of end-period estimators, and detection of turning points. 

Then, we show how the modified filter can be seen as the exact solution of 
a well-defined statistical problem, namely, optimal (minimum mean squared 
error) estimation of components in a standard unobserved-component model, 
where the observed series is decomposed into a trend, a cycle, a seasonal, and 
an irregular component. This problem is straightforward to solve with the 
well-known Kalman or Wiener-Kolmogorov filter techniques (see, for example, 
Harvey, 1989, or Maravall, 1995). The models for the components incorporate 
some a-priori features, that reflect the ad-hoc nature of the HP filter, and some 
series-dependant features, that ensure that the aggregate ARIMA model im-
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plied by the components is exactly the parsimonious ARIMA model identified 
directly on the observed series.· Further, summing the trend and the cycle, the 
standard trend-cycle / seasonal / irregular decomposition of Burman (1980) or 
Hillmer and Tiao (1982) is obtained. An obvious advantage of the model-based 
interpretation is that it greatly facilitates diagnostics and inference, thereby 
facilitating systematic analysis and improvement. Finally, it is shown how the 
procedure is trivially implemented with already available free software. 
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1 Introduction 

There are two different uses of trends in applied work. First, in short-term 
monitoring and seasonal adjustment, trends are equal to 

p, = x, - (s, + utl 

where Xt is the observed series, St is the seasonal component, and tit is the 
irregular component, that typically captures white (or close to it) noise behav­
ior. These short-term trends are discussed in Maravall ( 1993), and examples 
are the trends produced by the Henderson filters in Xll or X12, or the ones ob­
tained in the model-based decomposition of a series, as in programs STAMP 
or SEATS (see Findley et aI, 1998, Koopman et aI, 1996, and Gomez and 
Maravall, 1996). Since they only differ from the seasonally adjusted (SA) se­
ries by a highly erratic component, often they will contain variation of the 
series within the range of cyclical frequencies (which can be broadly defined 
as the one between the zero and the fundamental seasonal frequency) .  As a 
consequence, these trends will only be of interest as a short-term signal (for 
example, to monitor period-to-period growth). An example is provided in Fig­
ures l .la and l . lb. The gain of the filter extends over a wide range of cyclical 
frequencies, and the trend is seen to contain short-term cyclical oscillations. 
Throughout the paper, these short-term trend will be referred to as trend­
cycles, and denoted Pt; on occasion, they will also be called "noise free" SA 
senes. 

The second use of trends is in business cycle analysis, where the cycle is typi­
cally measured as what is left of the series, after detrending and seasonal ad­
justment. Short-term trends cannot be used in this context because they are 
contaminated with cyclical variation; longer-term trends are needed. Despite 
the fact that business cycle estimation is basic to the conduct of macroeco­
nomic policy and to monitoring of the economy, many decades of attention 
have shown that formal modeling of economic cycles is a frustrating issue. 
Therefore, applied research and work at policy making institutions has had to 
rely heavily on ad-hoc "band-pass" filters, the most popular of which is the 
Hodrick-Prescott (HP) filter (see, for example, Prescott, 1986). Thus a present 
standard procedure to estimate economic cycles is to apply the HP filter to 
Xl l-SA series. Figures l .lc and l . ld display the HP long-term trend gain and 
estimator. Long-term trends will be called simply trends, and represented by 
m,. 
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Figure 1.1 Short-term versus long-term trends 
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The use of the HP filter for business-cycle estimation has been the subject of 
considerable academic discussion. Criticisms are found in, for example, Canova 
( 1998), Cogley and Nason(1995), Harvey and Jaeger(1993), King and Rebelo 
(1993), and Maravall (1995). Norwithstanding the criticisms, its widespread 
use in practice may evidence (besides its simplicity) the empirical fact that, as a 
first (or rough) approximation, analysts find the results useful. The decision of 
which is the cutting point between a trend and a cycle is, ultimately, arbitrary, 
and to some extent depends on the purpose of the analysis. For example, from a 
month to month horizon, a periodic lO-year component may well be considered 
trend; if business cycle is the objective, it should be considered cycle. 

Be that as it may, the HP filter presents some serious limitations. First, it 
is generally accepted that economic cycles have a non-linear structure that 
is not well captured with linear ones (see, for example, Hamilton,1989). In 
this paper we do not deal with non-linear improvements. We address, first, 
the well-known criticism of spurious results due to the ad-hoc character of the 
filter, and the (often ignored yet important) limitation implied by revisions, 
which produce imprecision in the cycle estimator for recent periods. Then, 
we show how the integration of some relatively simple ARIMA-model-based 
(AMB) techniques with HP filtering can produce important improvements in 
the performance of the cyclical signal. Finally, the complete procedure of 
applying the HP filter to a "clean" series is presented within a model-based 
methodology.(Freely available software that permits to apply the method is 
described in an Appendix.) 

This AMB methodology displays several nice features. First, it incorporates 
automatically optimal treatment of end points and provides a cleaner cyclical 
signal. Second, it provides an internally consistent full decomposition of the 
series into "trend + cycle + seasonal + irregular" components, where the trend 
plus cycle aggregate into the standard trend-cycle component of the AMB de­
composition. Third, the method is based on the AMB approach, that is, it 
starts with the ARIMA model for the series, which can be directly identified 
from the data. In this way, misspecification errors and spurious results are 
avoided. The procedure consists of straightforward minimum mean squared 
error estimation of unobserved components, modeled as ARIMA processes, 
which aggregate into the model identified for the observed series. The models 
for the trend-cycle, seasonal and irregular components are thus determined 
from the observed series model. The splitting of the trend-cycle into a trend 
plus a cycle depends on the choice of the HP-filter parameter .\. Given this pa-
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rameter, the complete decomposition is then fully determined. An additional 
advantage is that the parametric model-based procedure provides a convenient 
framework for diagnostics and inference. An example of inference can be the 
construction of confidence intervals around the growth of the components es­
timators, or the computation of optimal forecasts for the components. 

2 The Hodrick-Prescott filter: Wiener­

Kolmogorov derivation 

We start by providing an alternative representation of the HP filter which, on 
the one hand, provides an efficient and simple computational algorithm and, 
on the other, turns out to be very useful for analytical discussion. Let It 
(I = 1 ,  . . .  , T) denote an observed series. The HP filter decomposes x, into a 
smooth trend (m.) and a residual (c.) , where the trend is meant to capture the 
long-term growth of the series, and the residual (equal to the deviation from 
that growth) represents the cyclical component. Since seasonality should not 
contaminate the cycle, the filter is typically applied to SA series, but for the 
moment we shall assume that the series contains no seasonality. 

The HP filter is a low-pass filter and can be seen as a Whittaker-Henderson 
type A filter and as a member of the Butterworth family of filters (see Gomez, 
1998). The filter was derived as the solution of a problem that balances a trade­
off between fit and smoothness in the following way. In the decomposition 

(2.1)  

m, represents the trend (the "fitted value") and Ct the cycle (the "residual") .  
The HP filter provides the estimator of c ,  and m, such that the expression 

T T 
L c; + >. L('v'm,)' 
t=l t=3 

(2.2) 

is minimized (V' = 1 - B is the difference operator, B is the backward operator 
such that Biz, = z,_;, and F will denote the forward operator, such that 
Fi z, = zt+i) The first summation in (2.2) penalizes bad fitting, while the 
second one penalizes lack of smoothness. The parameter>. regulates the trade-
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off between the two criteria: when A = 0, mt = Xt, when A -+ 00, mt becomes 
a deterministic linear trend. The solution to the problem of minimizing (2.2) 
subject to the restriction (2. 1 )  is given by (see Danthine and Girardin, 1989) 

A = 1+ ),K'K, (2.3) 

where m and x are the vectors (ml,"" my)' and (XI,"" XT)' respectively, 
and K is an (n - 2) x n matrix with its elements given by 

Ki; = 1 if i=j or i = j + 2, 

Ki; = -2 if i = j + 1 ,  

Kij = 0 otherwise. 

Clearly, the estimator of the trend for a given period will depend on the length 
of the series. Consider the trend for period T, the last observed period. Appli­
cation of (2.3) yields an estimator to be denoted mTIT, where the first subindex 
refers to the period under estimation, and the second to the last observed pe­
riod. This estimator will be called the concurrent estimator. When one more 
quarter is observed and x becomes (Xl , "  . ,  XT+I)', application of (2.3) yields 
a new estimation of mr, namely mTIT+I' As more quarters are added, the 
estimator is revised. It is easily.seen that, for large enough k, mTIT+k con­
verges to a final or historical estimator, to be denoted mT. Therefore, for a 
long enough series, the final estimator may be assumed for the central periods, 
while estimators for the last years will be preliminary. 

This two sided interpretation of the HP filter seems unavoidable. Because 
additional correlated new information cannot deteriorate an estimator, mTIT+l 
should improve upon mTIT. Moreover, actual behavior of the US Business 
Cycle Dating Committee (or similar institutions) reveals in fact a two-sided 
filter, which starts with a preliminary estimator, and reaches the final decision 
with a lag of perhaps two years. 

As shown in King and Rebelo (1993), the HP filter can be given a model-based 
interpretation. Let c, in (2 .1)  be white noise with variance v;, and m, follow 
the model 

(2.4) 

where amt IS a white noise variable (with variance Vm) uncorrelated to Ct_ 
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Throughout the paper, the expression "white noise" will denote a zero-mean 
normally identically independently distributed variable. Let >. = II,';Vm so 
that, without loss of generality, we can set Yc = .x, Vm = 1. The minimum mean 
squared error (MMSE) estimator of m, can be obtained in a straightforward 
manner via the Kalman filter (see Harvey and Jaeger, 1993). 

Alternatively, the same MMSE estimator can be obtained with the so-called 
Wiener Kolmogorov (WK) filter. To do so, in terms of the observations, the 
previous model can be rewritten as 

or the IMA (2,2) model 

\7'x, = (1 + OIB + O,B')b, = OHP(B)b" (2.5) 

where bt are the innovations in the Xt series. The variance of bt, \.i, and the 
Ol,82-parameters are found by factorizing the spectrum from the identity 

(1 + OIB + O,B')b, = am' + \7'c,. (2.6) 

As an example, for quarterly series the standard value of >. is 1600, in which 
case 

OHP(B) = 1 - 1.77709B + .79944B'; Vb = 2001.4. (2.7) 

For an infinite realization of the series, the MMSE estimator of mt is given by 
(see, for example, Maravall, 1995) 

(2.8) 

where km(HP) = Vm/K The filter lI'Jip(B, F) is symmetric and, since (2.6) 
implies that OHP(B) is invertible, also convergent. Following Cleveland and 
Tiao (1976), for a finite series, expression (2.8) can still be applied, with x, 
replaced by the series extended with forecast and backcasts. A simple and 
efficient algorithm to apply the filter, similar to that in Burman (1980), is 
detailed in Appendix A. 
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For the estimator of the cycle, 

c, = [1 - IIHP{B, F)]x, = IIHP{B, F)x" (2.9) 

where vHP(B, F) is also a two-sided centered, symmetric, and convergent linear 
filter I which can be rewritten as, 

(2.10) 

where kc(HP) = Vc/Vb, and a bar over an operator denotes the same operator 
with B replaced by F. When properly applied, the Danthine and Girardin, 
the Kalman filter, and the WK solutions are numerically identical (see Gomez, 
1999). The last two are considerably more efficient than the first, and can be 
applied to series of any length. The WK filter turns out to be convenient 
for analytical discussion. It will prove useful to present the frequency domain 
version of the filter (2.10), to be denoted vHP{w), where w is the frequency 
measured in radians. Using (2.6), the filter (2.10) can be rewritten as 

with Fourier transform given by 

4{I - cosw)' 
VH P (w) = "-A - l;-+

�
4,-; {c-l --- c- o

'-
s-w=)' · (2.ll) 

For seasonal series, since the seasonal variation should not contaminate the cy­
cle, the HP filter is typically applied to Xll SA quarterly series. Throughout 
the paper, "Xll" will denote the default linear filter for an additive decompo­
sition, as in Ghysels and Perron (1993). To adjust a series, the filter Xll will 
always be applied (in the XllARIMA spirit) to the series extended at both 
extremes with ARIMA forecast and backcasts. 

We shall center attention, first, on historical (or final) estimation. If VXl1{ B, F) 
denotes the XU-SA filter, and vHP{B, F) the HP filter (2.9), let 

v'HPX{B, F) = v'HP{B, F)vxl1{B, F) (2.12) 
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denote the convolution of the two. Because both, the Xll and the HP fil­
ters, are symmetric, centered, and convergent, so will their convolution. For 
seasonal series, the estimator of the cycle (2.9) should thus be replaced by 

(2.13) 

Throughout the paper we assume quarterly series and denote by S the annual 
aggregation operator) 

S = 1 + B + B' + B3. 

Further) in all decompositions of a series into unobserved stochastic compo­
nents, the components will be assumed orthogonal, and innovations in their 
stochastic models will be assumed normally distributed. 

3 Revisions 

3.1 Preliminary estimation of end points and revisions 

In section 2 we presented the HP filter as a symmetric two-sided filter. Given 
that the concurrent estimator is a projection on a subset of the set of infor­
mation that provides the final estimator) the later cannot be less efficient. 
Besides, concurrent estimators, obtained with a one-sided filter, induce phase 
effects that harm early detection of turning points. 

If CrIT denotes the estimator of the cycle for the last observed period (i.e., 
the concurrent estimat�r,) as new periods are observed the estimator will be 
revised to CrIT+l,CTIT+21'" until it converges to the final estimator CT- The 
difference between the final estimator and the concurrent estimator measures 
the total revision the concurrent estimator will undergo, and can be inter­
preted as a measurement error contained in the concurrent (more generally, 
preliminary) estimator_ 

Although the poor behavior of the HP filter for recent periods has been often 
pointed out (see Baxter and King, 1995), the revisions implied by HP filtering 
have not been analyzed _ Two main features of the revision are of interest: a) 
the magnitude, and b) the duration of the revision process (i.e., the value of k 
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for which cTIT+k has, in practice, converged). To look at these features we use 
the WK version of the filter (i .e . ,  the ARIMA model based filter,) and proceed 
as follows. 

Assume the observed series follows the ARIMA model 

1>(B)x, = 8 (B)a" (3.1 ) 

with x, � I(d), 0 ::; d ::; 4 (hence 1>(B) contains the factor \7".) Because the 
numerator of vHP in (2.10) cancels the unit roots in It , the estimator of the 
cycle can be expressed as 

c, = �(B, F)a" (3.2) 

where the weights of the polynomial � (B, F) can be obtained through the 
identity �(B, F)1>(B) = v),p(B, F)8(B). Expression (3.2) can be rewritten as 

where 

and 

C(B) = L�_jBj, 
i�O 

�+ (F) = L�jFj 
i;:::O 

(3.3) 

are convergent polynomials. The first one contains the effect of the innova­
tions up to and including period t ,  and the second one includes the effect of 
innovations posterior to period t .  Because 

E,( at-;) = a'_j when j 2: 0, 

E,(a,_j) = 0 when j < 0, 

the concurrent estimator equal to the expectation at time t of the estimator 
(3.3), is given by the first term in the right hand side of the equation. The 
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revision in the concurrent estimator will thus be given by 

k 
r'I' = �+(F)a'+l = I: �ja'+j, j=l 

(3.4) 

where the second equality uses a finite approximation based on the conver­
gence of �+(F). From (3.4), it is straightforward to compute the variance and 
autocorrelations of the revision process. (We have focussed on the concurrent 
estimator; the analysis is trivially extended to any preliminary estimator CtIT.) 

Although the filter vkp(B, F) is fixed, the coefficients of the forward filter 
�+(F) depend on the ARIMA model for the observed series. Without loss of 
generality, we set Yarra,) = 1 ,  so that the variance of the revision 

k 
Var(r,l,) = I:(�;)' (3.5) 

j=l 

is then expressed as a fraction of the variance of the series innovation Va. Table 
3 .1  exhibits, for three models, the size of the revision and the number of periods 
needed for the concurrent estimator to converge to the final one (convergence is 
defined in practice as having removed more than 95% of the revision variance). 
The first example is for the case of a white noise series (x, = a,) , and illustrates 
thus the "pure filtern effect. The second is the random walk model "VXt = at, 
and the third example is the model for which the HP filter is optimal, namely 
'V'x, = OHP(B)a,. The three examples represent, thus, an 1(0), 1 (1) and 1(2) 
variable, respectively. 

Variable Standard deviation of revision in concurrent Periods needed 
estimator (as iii. percent of O"Q.) for convergence 

White noise 13.9 12 
Random walk 91.3 9 
HP-IMA(2,2) 34.0 9 

Table 3.1. Revisions implied by the HP filter. 

Even for the case in which the model is the one associated with optimality of 
the filter, the size of the revision is not negligible and the revision period lasts 
in practice more than 2 years .  
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As already mentioned, the HP filter is often applied to XU-SA series, and 
the convolution of the two filters was earlier denoted vXHP(B, F). It is well 
known that XIl ,  another two-sided filter, also produces revisions. Therefore, 
the revisions associated with the filter Vx H p will reflect the combined effect 
of the two filters. To look at this effect, we consider the case of white-noise 
input. Proceeding as before, it is found that 95% of the revision variance 
disappears after 13 quarters, and that the revision standard deviation is 1/4 
of the standard deviation of at. Comparing these results with the first row of 
Table 3.1, the addition of Xll substantially increases the revision size; but the 
revision period barely changes. 

To illustrate the revisions for series of more applied relevance we select the 
so-called "Airline model" , discussed in Box and Jenkins (1970), given by the 
expressJOn 

(3.6) 

The model fits well many series with trend and seasonality, and has became a 
standard example. For the most relevant range for the parameters (}l and 041 
Table 3.2 presents the fraction u(revision)/u(at) and the number of periods 
(T) needed for a 95% convergence in variance. The standard deviation of the 
revision represents between .4 and 1.5 of a(at), and convergence takes, roughly, 
between 2 and 5 years. Given that 0, close to - 1  implies very stable trends, 
while 0, close to -1 implies very stable seasonals, what Table 3.2 shows is that 
series with highly moving trends and seasonals will be subject to bigger, longer 
lasting, revisions. It is worth pointing out that, for the range of values most 
often found in practice (see the study on more than 14000 real series from 17 
countries in Fischer and Planas, 1998) which is the botton right corner, the 
revision period is equal to 9 quarters. 

8, - 0 8, _ -.2 8, _ -.4 8, _ -.6 8, _ -.8 
ur/ua T ur/ua T (Jr/ua T (Jr/(Ja T ur/(Ja T 

8, _ .4 1.53 19 1.44 18 1.36 17 1 .28 9 1.21 9 
8, = .2 1.34 19 1.26 18 1.18 17 1 . 12 9 1.06 9 
8, = 0 1.15 19 1.08 18 1.02 16 0.96 9 0.90 9 
8, = -.2 0.97 19 0.91 18 0.85 15 0.80 9 0.76 9 
8, = -.4 0.79 18 0.74 17 0.70 14 0.65 9 0.61 9 
8, = -.6 0.64 15 0.60 14 0.55 9 0.51 9 0.47 9 
8, = -.8 0.52 9 0.48 9 0.44 9 0.40 9 0.36 9 

Table 3.2. Revisions implied by the HP-Xll filter. 
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3.2 An example 

An application, that will also be used in later sections, will complete the dis­
cussion. We consider four quarterly Spanish short-term economic indicators 
that can be reasonably suspected of being related to the business cycle. The 
series are the industrial production index (IPI), cement consumption (GG), car 
registration (GR) and airline passengers (AP), for the period 1972/1 - 1997/4, 
and contain 104 observations. (For the IPI series, the first 12 observations were 
missing and the period was completed using backcasts) . The series were log 
transformed (following proper comparison of the BIG criteria), and the appli­
cation will be discussed for the additive decomposition of the logs. Moreover, 
so as to facilitate comparison�, we standardize the 4 logged series to have zero 
mean and unit variance. The 4 series are represented in Figure 3.1 ;  their trend 
and seasonal behavior is clearly discernible. 

ARIMA modeling of the 4 series produced similar results: the models were 
of the type (3.6) (i.e., of the Airline type) and a summary of results is given 
in Table 3.3; none of the series appeared to be in need of outlier adjustment. 
(Estimation was made with the program TRAMO run in an automatic mode, 
see Gomez and Maravall, 1996). Using the ARIMA models to extend the 
series, the HP (>. = 1600) filter was applied to the XU-SA series, and the 4 
trends and 4 cycles obtained are displayed in Figure 3.2 and 3.3. For the series 
GG and GR the short-term contribution of the cyclical variation is relatively 
more important than for the series IPI and, in particular, AP. 

Parameter Estimates Residual BL test Normality 
9, 9, Variance Va Q( < xl.) N( < xl) 

CC -.405 -.957 .175 18.4 .32 
IPI -.299 -.721 .054 23.3 .14 
CR -.387 -.760 .156 18.7 .79 
AP -.392 -.762 .017 21 .1  2.76 

Table 3.3_ Summary of ARIMA estimation results. 
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Figure 3. 1 .  Short-term economic indicators:original series 
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Figure 3.2. X11-SA series and HP trend 
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Short-term monitoring focuses on recent periods, that is, on the concurrent 
estimator and its first revisions and, in fact, it is often the case that the HP 
filter is treated as a one-sided filter (see Prescott, 1986). We have argued 
before that the 2-sided final estimator is preferable. Using the first and last 
22 periods for safe convergence of the XU and the HP filters, we obtained the 
sequence of concurrent and final estimators of the trend and cycle for the 60 
central periods of the 4 series. Then, we evaluated the standard loss function 
of the HP filter, given by (2.2)' for the concurrent and final estimators of the 
trend and cycle; the results are given in Table 3.4. 

Concurrent Final 
Estimator Estimator 

CC 624.7 13.3 
IPI 172.8 2.9 
CR 513.4 1 1.9 
AP 43.2 1.0 

Table 3.4. HP loss-function for concurrent and final estimator 

The improvement achieved by using final estimators instead of concurrent ones 
is indeed large. Figures 3.4 and 3.5 compare the series of concurrent and final 
estimators, for the trend and cycle respectively. The differences are consid­
erable, and a clear phase effect in the concurrent estimator can be observed 
for the 4 series. Figure 3.6 illustrates the evolution of the cycle estimator 
from concurrent to final for three periods (t = 61 , 65 and 70,) and Table 3.5 
compares these two estimators for the 3 periods. Considering that the origi­
nal series were standardized (J.L = 0,0' = 1 ) ,  the revision in the estimator of 
the cycle is, in many cases, remarkable. For the 4 series, 95% of the revision 
is completed in 9 quarters, in agreement with the results of Table 3.2. The 
standard error of the revision is in the order of .50'a, certainly non negligible. 
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Figure 3.4. Concurrent versus final trend estimator 
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Figure 3.5. Concurrent versus final cycle estimator 
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Figure 3.6. Revisions in concurrent estimator 
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Period t-61 t-65 t-70 
CC Concurrent .83 .70 .44 

Final .21 .32 .60 
IPI Concurrent .30 .34 .16 

Final .06 .34 .39 
CR Concurrent .65 .46 .01 

Final .30 .57 .69 
AP Concurrent -.01 .16 -.05 

Final -.16 .13 .04 

Table 3.5. Concurrent a.nd final cycle estimator for three periods 

A point of applied relevance is to asses the imprecision of the estimator of 
the cycle for recent periods, as measured by the standard error of the revi­
sion. Computing the �-weights of the filter (3.4), and Var(r'I') as in (3.5), the 
variance of the revision in any preliminary estimator can be computed as 

k 
Varht+k) = Var(r'I') - L(�j)2, 

;=1 

given that at+ll ... ' at+k have been "observed" at period t + k. In so far as 
the revision represents a measurement error, its variance can be used to build 
confidence intervals around the cycle estimator. Figure 3.7 displays the 95% 
confidence interval for the 4 series. Direct inspection shows that, although the 
estimators converges in 2 (at most 3) yeaTs, the estimator for recent periods 
is unreliable. This fast and large increase in the measurement error of the 
most recent signals implies that, although straightforward to obtain, forecasts 
would be close to useless. (In computing revisions, the Xli-SA series for the 
full sample of 104 observations has remained constant. The revisions we have 
computed are thus those implied solely by the HP filter.) 

We shall come back to the issue of revisions in Section 5; until then we shall 
center our attention on final estimators. 
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Figure 3.7. 95% confidence intervals for cycle (based on revisions) 
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4 Spurious results 

While the problem of revisions has been often overlooked, the danger of obtain­
ing spurious results induced by HP filtering has been frequently mentioned. 
To this issue we turn next. 

The squared gain of vHPx(B, F) is shown in Figure 4.1. It displays zeros for 
the zero and seasonal frequencies. (In the model-based interpretation of the 
HP and Xll filters these zeros are implied by the presence of \7' and of S in 
the autoregressive polynomials for the trend and for the seasonal component 
models; see MaravaH, 1995.) Assuming a white-noise input, the squared gain 
becomes the spectrum of the estimated cycle. As Figure 4 . 1  indicates, this 
spectrum displays two wide peaks, one for a frequency in the range (0, 1r /2), 
i.e., the range of cyclical frequencies; the other for a frequency in the range 
(1r /2, 1r) , the range of intraseasonal frequencies. This two-peak structure of 
the spectrum brings the possibility of obtaining spurious results. On the one 
hand, it will affect the autocorrelation structure of the series and, due to the 
common structure, spurious correlations between series may be obtained (in 
the line of Granger and Newbold, 1974). On the other hand, the first peak 
may induce a spurious periodic cycle. 
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0 
0 

Figure 4.1. Squared gain: Convolution of HP and Xii filters 
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4.1 Spurious crosscorrelation 

We performed a simulation in M ATLAB ,  whereby 10.000 independent ran· 
dom samples of 600 observations each were drawn from a N(O, 1) distribution. 
Each white-noise series was filtered through the X11  and HP filters and the last 
100 values were selected. Next, 10.000 lag-zero erosscorrelation between two 
series were sampled (in what follows, all crosscorrelations are lag-zero ones). 
The average of the absolute value of the crosscorrelation between the white 
noise input series was .08 (SE=.06), for the seasonally adjusted series, .09 
(SE=.06), and for the cycle, .09 (SE=.07). Not much crosscorrelation seems 
to have been induced. Table 4.1 presents the first four moments of the distri­
bution of Po, the crosscorrelation estimator (including the sign) for the original 
series and the cycle, Figure 4.2 plots the two densities. 

Mean Std.deviation Skewness Kurtosis 
I Original (white noise) -.001 .11 -.03 2.9 
I Cycle -.001 .11 -.05 2.9 

Table 4.1. Crosscorrelation; Filtered White Noise Case 

Figure 4.2. Density for correlation coefficient: white noise case 
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The two distributions are very close and are well approximated by a N(O, liT). 
Clearly, no spurious crosscorrelations has been induced. 

When the input follows the random walk model \lx, = a" using the same 
simulation as in the previous section, the average over the 10.000 absolute 
value of the crosscorrelation between the differenced series is .08(.06), and 
between the differenced SA series, .09 (.07), the same values as before. For 
the cycle, however, the average increases to . 16  (.ll), still a small value. Table 
4.2 presents the first four moments of Po (with sign included) for the original 
series and for the cycle; the two densities are plot in Figure 4.3. 

Mean Std. deviation Skewness Ku rtosis 

I Original (random walk) -.000 .10 -.04 2.9 
L Cycle .000 .19 -.01 2.8 

Table 4.2. Crosscorrelation; Filtered Random Walk Case 

Figure 4.3. Density for correlation coefficient: random walk case 
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The zero-mean normality assumption can still be accepted comfortably, but 
the spread of the distribution of Po for the cycle becomes wider. In fact, the 
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proportion of Po estimates that lie outside the 95% significance level is 32%. For 
the random walk case, thus, a spurious crosscorrelation effect can be detected. 
Altogether, the effect is nevertheless moderate. 

A similar simulation was performed for the more complex airline model (3.6), 
with the parameter values set at 81 = -.4 and 84 = -.6. Figure 4.4 plots the 
densities of the crosscorrrelation estimator for the stationary transformation 
of the original and SA series and of the Xll-SA and HP detrended series. 
The filter Xl!  is seen to have virtually no effect while, as before, the HP filter 
induces a small increase in the spread of the distribution. In summary, from the 
point of view of spurious crosscorrelation, the HP-Xll filter seems to induce 
a small amount of spuriousness and hence the detection of relati vely large 
crosscorrelation between cycles obtained with it are unlikely to be spurious. 
(Although the filter will have some distorting effect on the crosscorrelations 
when the series are indeed correlated; see Cogley and Nason, 1995.) 
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Figure 4.4. Density for correlation coefficient: Airline model 
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4.2 Spurious autocorrelation; calibration 

Assume that a theoretical economic model implies that a particular variable 
follows a 4-year cycle given by the AR(2) process: 

(4.1 ) 

with act a white-noise innovation, with variance Vc = 1 .  Assume that a large 
number of simulations of the model yield in fact an ACF for the variable equal 
to the theoretical ACF of (4. 1 ) ,  shown in the second column of Table 4.3. The 
basic idea behind calibration is to validate the economic model by comparing 
the previous ACF with the one implied by the observed economic variable. To 
compute the latter, the non-stationary trend and seasonal component need to 
be removed. (Besides, seasonality and often the trend are typically excluded 
from the theoretical economic model.) 

Assume the observed series is generated precisely by the cycle given by (4.1), 
contaminated by a random walk trend (p,) and a seasonal component (s,) as 
in the Basic Structural Model of Harvey and Todd (1983). Thus the observed 
series Xt is given by Ct + Pt + 5 1 ,  where Ct is generated by (4. 1 ) '  and 

'VPt = apt 
SSt = ast 

with act, apt and ast mutually orthogonal innovations, with variances Vel V; and 
11, .  

Seasonally adjusting (with XU) and detrending (with the HP filter) the ob­
served series, the estimator of the cycle is obtained. Its variance and ACF 
(the observed moments in the calibration comparison) are straightforward to 
derive analytically; they are given in the third, the fourth and the fifth column 
of Table 4.3 for the three cases Vp = V, = .1 ;  Vp = . 1 ,  V, = 1; and v" = V, = 1 .  
Comparing these three columns with the second, the ACF of the cycle con­
tained in the series and of the one obtained by filtering will differ considerably. 
Although the theoretical model is perfectly correct, the second moments ob­
tained from the observed series would seem to indicate the contrary. 

The distortion that seasonal adjustment and detrending induces in the second 
moments of the "observed" series is a general property which also occurs when 
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the components are estimated as MMSE estimators in a model based approach; 
the ACF of the cycle obtained in this case is given in the 6th row of Table 4.3. 
Still, the distortion induced by MMSE estimation is considerably smaller than 
that induced by HP-Xll filtering. 

Calibration of models using filtered series seems, thus, an unreliable procedure. 
If the theoretical economic model is correct, then calibration should not look 
for similarities between the ACF of the theoretical model and of the empirical 
series. It should compare instead the empirical moments with the theoretical 
ones that include the effect of filtering the data. Performing this compari­
son, however, requires incorporating in some way into the model trend and 
seasonality (in its simplest way, as unobserved components. ) 

Lag-k ACF True X11-HP filtered MMSE 
component component estimator 

Vp - .1 ,  Vp - .1 ,  Vp _ 1 Vp - .1 ,  
V, = .1 V, = 1 V, = 1 V, = 1 

k-1 .87 .71 .19 .37 .83 
k=2 .63 .44 .22 .30 .43 
k=3 .39 .10 -.06 .00 -.02 
k=4 .20 -.05 .22 .18 -.35 
k=5 .06 -.25 -.23 -.15 -.45 
k=6 -.01 -.30 -.19 -.16 -.43 
k=7 -.05 -.34 -.27 -.26 -.31 
k=8 -.06 -.27 -.01 -.07 -.20 
k=9 -.05 -.25 - . 18  -.20 -.10 
k=10 -.04 - . 19 -.12 -.16 -.04 
k=l1 -.02 -.16 -.17 -.20 -.00 
k=12 -.01 -.09 .06 -.03 -.02 
k=13 -.00 -.08 -.07 -.12 -.03 
k=14 -.00 -.05 -.03 -.08 -.03 
k=15 -.03 -.04 - . 11  - . 13 -.02 
k=16 -.00 -.01 -.13 .05 -.01 

Table 4.3 Theoretical ACF of the component model and of its estimators 
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4.3 Spurious periodic cycle 

As mentioned at the beginning of this section, the HP filter has often been 
accused of inducing spurious cycles. To this issue we turn next. 

4.3.1 White-noise input 

A priori, one can think of capturing the two spectral peaks of Figure 4.1 
through an AR(4) model with two pair of complex conjugate roots. We per­
formed the same simulation of Section 4.1 (10

'
.000 random samples from a 

N(O, 1 )  distribution were filtered through the Xl l and HP filters, and the last 
100 values were selected from each series) .  Then, an AR(4) model was fit to 
the filtered series (i.e., to the "cycle" ). Averaging the AR parameter estimates 
yields very approximately the model 

(1 + .31B4)e, = a" (4.2) 

and a test for the significance of the AR( 4) regression yields an average F 
value of 3.6 (critical value 2.7). Figure 4.5 plots the spectrum of model (4.2) 
and it is clearly seen how the peaks of the AR approximation attempt to 
capture the peaks of the spectrum of the filtered white noise. It is also seen 
that the AR format does not permit a good approximation, reflecting the fact 
that the invertible AR model cannot approximate well the spectral zeros of 
the noninvertible cycle. The two spectral AR peaks correspond to two pairs 
of complex conjugate roots for the AR polynomial. The average value of the 
modulus and period for the two roots are given in Table 4.4, where the standard 
errors are given in parenthesis. (It is easily seen that factorization of the AR( 4) 
polynomial in (4.2) yields nearly identical roots.) 

Average Mod ul us Average Period 
I First root .75 (.06) 7.95(.79} 
I Second root .74 (.06) 2.68( .08} 

Table 4.4. AR roots: Filtered White Noise 
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Figure 4.5. Spectrum of AR(4) for the white noise case 
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In summary, the HP-Xll procedure is likely to induce spurious cycles in a 
white-noise series. If captured with an AR model, these cycles are of similar 
amplitude and clearly significant. One of the components has a 2-year period; 
the other one has a 8-month period. The sum of the two produces a highly 
erratic series and it is difficult to link this behavior to the concept of a business 
cycle. Figure 4.6 presents an example where a white noise series is decomposed, 
with the HP-Xll pr?cedure, into a trend, a seasonal component, and a cycle. 
In so far as white noise is not subject to trends, nor to seasonal fluctuations, 
the HP-Xll decomposition is spurious, purely filter-induced. The spurious 
trend and seasonality removed from the series are nevertheless moderate. 
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Figure 4.6. Decomposition of a white noise series 
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4.3.2 Random-walk input 

The previous discussion, based on a white-noise input, illustrates the effect 
of the filter. It is of interest to see how this effect interacts with input that 
displays some trend structure. We consider the simplest case of the random­
walk model, 

(4.3) 

as before, the cycle is estimated through (2.13). 

Letting w denote the frequency in radians, if vHPX(w} is the Fourier transform 
of lIj,px(B, F), the spectrum of the estimator of the cycle is given by, 

(4.4) 

where gz(w) is the pseudospectrum of x, (see Harvey, 1989); thereafter the 
term spectrum will also be used to refer to a pseudospectrum. (To simplify 
notation, all spectra will be implicitly expressed in units of 1/2".) Figure 4.7 
plots the spectra of the series (dotted line) and of the cycle (continuous line). 
The difference with respect to the cycle obtained with white noise (Figure 4 .1 )  
is  remarkable. The peak for the high frequency is hardly noticeable, while the 
peak for the frequency in the cyclical range is associated with a longer period 
of 31-32 quarters, or, approximately, 8 years. 

Performing the same simulation as before, an AR(4) model was fit to 10.000 
generated random walks of 100 observations each, filtered through the Xll 

and HP filters, and the average F-test was equal to 38.35, overwhelmingly 
significant. For the random walk series, the HP-Xll filter induces a cycle 
dominated by an 8 year period, and hence more in line with the frequencies of 
interest to business cycle analysts. Figure 4.9 presents an example of a random 
walk decomposed by the Xl l and HP filters into a trend, a seasonal component 
and a cycle. Although the trend and cycle are, as before, moderately small, 
by its own definition, does it make sense to see a random walk as generated by 
a trend, a seasonal component, and a 8-year cycle? Is it not rather a case of 
"overreading" the data? The answer to this question is not quite so obvious, 
as we proceed to discuss. 
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Figure 4.9. Decomposition of a random walk series 
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4.3.3 Spectral characteristics of the cycle; spuriousness reconsid­
ered 

The two examples considered show that the cycle obtained with Xl l-HP filter­
ing displays a stochastic cyclical structure} with spectrum given by the general 
expression (4.4). This spectrum will depend on the ARIMA model followed 
by the observed series, and on the A-parameter of the HP filter. 

To look at the effect of the model, we set A = 1600. Figure 4.8 compares the 
cycles obtained when the series follows the IMA{I , I )  model V'x, = { I  + OB)a" 
with Va' = 1 ,  for a range of values for O. In all cases, the period of the cycle 
(i.e., the period associated with its spectral peak) is approximately constant , 
and very close to 8 years. The amplitude of the cycle varies, adapting to the 
width of the spectral peak for w = 0 in the series model, which is determined 
by the parameter O. 

The relative constancy of the period with respect to the model parameter is 
also shown in Table 4.5 for a MA{I) and an IMA{2,1) models. What the 
table seems to indicate is that, for a fixed value of A, the period of the cycle 
is determined fundamentally by the order of integration of the series, rather 
than by the model parameters. As the order of integration increases} so does 
the period of the cycle. 

Theta 0 -.3 -.6 
MA(l) 2 3 3.2 
IMA(l,l) 7.9 7.9 7.9 
IMA(2,1) 10.5 10.5 10.5 

Table 4.5. Period of cycle (in years) . 

When the HP filter is applied to an X l l SA series, a similar effect is seen to 
occur. For the Airline model (3.6) we computed the period associated with 
the spectral peak of the cycle for the range - .9 < 0, < .5 and - .9 < 0, < 0, 
and in all cases the period was equal to approximately 10 years. For fixed 
parameter .x, three conclusions em�rge: 

• Given the type of ARIMA model for the series, the associated cyclical 
period becomes roughly fixed . 

• The period seems to be mostly determined by the order of integration at 
the zero freq',ency; the stationary part of the model has little influence. 
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• For most actual time series containing a trend (d=1 or 2), the standard 
value of ,\ = 1600 implies a period between 8 and 10 years. 

As for the parameter A of the HP filter, its interpretation varies according to 
the rationalization of the filter. We saw that it regulates the trade-off between 
fitness and smoothness when the function (2.2) is minimized, and that it is 
also equal to the ratio of the cycle and trend innovations in the model-based 
approach. When expressed as a Butterworth type filter, its gain is expressed 
as 

G{w) = [1 + ( sin{w/2) ) '] -1
, 0 ::;  w ::; 7r 

sm{wo/2) 

where Wo is the frequency for which 50% of the gain has been completed, that 
is G{wo) = 1/2. As seen in Gomez and Maravall (1998), 

,\ = [4sin'{wo/2Jr', 

which gives a frequency interpretation for A. Accordingly, A plays an important 
role in determining the period associated with the cycle spectral peak. 

Fixing the series model to that of a random walk, we proceed to analyze the 
dependence of the cycle period on ,\. For the random-walk series (4.3), it is 
found that g{x) = [2{1 - COSW)]-I Va , and considering (4.4) -with vHPX(w) 
replaced by vHP{w)- and (2.11) ,  the spectrum of the HP-filtered cycle is equal 

, 8{I - cosw)3 
gHP{W) = [,\-1 + 4{1 _ cosw)'l' 

Va
. 

( 4.5) 

It is straigthforward to find that, within the interval 0 ::;  w ::; 7r, (4.5) attains 
a single maximum at 

,\ = 3 
4{1 - cosw), 

For the range of frequencies associated with periods between 2 and 25 years, 
this function is represented in Fig. 4.10. It can be seen that the convolution 
with X11  has little effect on the period of the cycle peak (in fact the two 
figures would be indistinguishable). This was to be expected, given that, for 
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the range of frequencies where the spectral peak is located, the gain of the 
X l !  filter is close to 1. The values for the periods equal to an integer number 
of years are displayed in the second and fourth columns of Table 4.6. The 
relationship between >. and the period of the cycle spectral peak is seen to be 
highly nonlinear. When >. is small (and cycles are short) , small increases in >. 
affect very strongly the period of the cycle; for long cycles, very large values 
of >. need to be used. 

Period >. Period >. 
(in years) (in years) 
2 8.7 14 18970 
3 41.8 15 24992 
4 129.4 16 32346 
5 313.1 17 41215 
6 646 18 51794 
7 1193 19 64291 
8 2031 20 78924 
9 3250 21 95923 
10 4948 22 115532 
11 7239 23 138004 
12 10247 24 163605 
13 14108 25 192614 

Table 4.6. Values of >. for different cycles (period in years) .  

The effect of >. i s  illustrated in Figure 4 . 1 1 ,  which compares the spectra of the 
cycles obtained with >. = 1600 and >' = 25000 for the same random walk series 
(the periods associated with the spectral peaks are about 8 and 15 years, 
respectively) . The figure shows that the longer period implies a stochastic 
cycle that is more concentrated around its peak (i.e., a more stable cycle). 
The estimators of the trend and of the cycle for the two >. values are compared 
in Figures 4.12 and 4.13, respectively. The difference between the two trends 
is seen to consist of a cycle with a relatively long period. Comparison of the 
cycles shows that the short-term profile of the cycle is basically unaffected, 
and the main effect is a "pulling away" from the zero line, which allows for 
longer cycles. 

As a consequence, the use of the XII-HP filter (or simply the HP filter) to 
measure the cycle implies an a-priori choice of the cycle period. Before using 
the HP filter to estimate a cycle, the analyst should decide the length of the 
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period around which he wishes to measure cyclical activity. Then, given d 
(the number of unit roots at the zero frequency in the series at hand), he can 
choose the appropiate value of A. To some extent, this may be reasonable. For 
example, a business cycle analyst involved in policy making may be interested 
in using 8 or IO-years cycles; an economic historian looking at several centuries, 
may be interested in spreading activity over longer periods. Viewed in this way, 
the HP cycle cannot be seen as spurious but as a rather particular yet possibly 
sensible way to look at the data. This statement will be made more precise at 
the end of Section 6.2. 

Be that as it may, the filter presents shortcomings; the next sections address 
two important ones. 
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Figure 4.12. Estimated trends 
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5 Improving the Hodrick-Prescott filter 

In Section 3 we saw that the filter implies large revisions for recent periods 
(roughly, the last 2 years). The imprecision in the cycle estimator for the 
last quarters implies, in turn, a poor performance in the detection of turning 
points. Further, direct inspection of Figure 3.2 shows another limitation of the 
HP filter: the cyclical signal it provides seems rather uninformative. Seasonal 
variation has been removed, but a large amount of noise remains in the signal. 
An obvious measure of this erraticity is that, averaging over the 4 series, the 
number of times the series crosses the zero line is 31 times, unreasonably 
high for a span of 104 periods. In the next two sections, we proceed to show 
how these two shortcomings can be considerably reduced with some relatively 
simple modifications. 

5.1 Reducing revisions 

As is the case with fixed filters (for the Xll case, see Burridge and Wallis, 
1984,) estimation of the cycle for the end periods of the series by the HP 
filter implies a somewhat abrupt, discontinuous truncation of the filter. In 
terms of the model based interpretation, this truncation is equivalent to the 
assumption that model (2.5) is always the model that generates forecasts to 
extend the series at both end points. The assumption will in general be false, 
and proper optimal forecasts (obtained with the appropriate ARIMA model 
for the series) can be used instead to improve the filter extension. This idea is 
the same as the one behind the Xl! ARIMA modification of the Xl!  filter (see 
Dagum, 1980) and the HP filter applied to the series extended with ARIMA 
forecasts will be referred as the Hodrick-Prescott ARIMA (HPA) filter. The 
poor performance of the HP filter at the end of the series has been often pointed 
out by business cycle analysts (see, for example, Apel et aI, 1996 and Baxter 
and King, 1995) and application of the filter to series extended with forecasts 
is often recommended in practice (see EU Commission, 1995). 

For any positive integer k, write the final estimator of the cycle as 

= = 

Ct = vHP(B, F)Xt = L Vj+kXt+k_j + L Vj+kXt+k+j , (5 .1) 
j=O j=1 
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and assume a series long enough so as to ignore starting values. Because the 
preliminary estimator Ctlt+k is a projection onto a subset of the set onto which 
c, is projected, it follows that 

or 

00 00 

CtlHk = L l/j+kXt+k_j + L l/j+kEHk(XHk+j) ,  
j=O j=l 

(5.2) 

which expresses the preliminary estimator as a function of the series extended 
with forecasts. Substracting (5.2) from (5.1) ,  the revision in "'I'H is equal to 

00 
rtlt+k = L l/j+k et+k+jIHk, 

j=l 

where et+k+ilt+k denotes the forecasts error associated with forecasting Xt+k+j 
at time t + k. It follows that, reducing these forecasts errors, revisions should 
decrease (and early detection of turning points should improve). 

To check this result, and to get an idea of the improvement that can be ex­
pected from the use of the HPA versus the HP filter we performed a simulation 
exercise. First, we consider the IMA(l,l)  model for different values of the B­
parameter. Then, we consider the ARIMA(2,1 ,1) model, where the AR(2) 
polynomial is given by (1 - . 168 + .358') .  This polynomial is the one found 
in Jenkins(1975) for the mink-muskrat Canadian data, and contains a cycle 
of period 4.4. The AR(2) structure will therefore produce an increase in the 
number of turning points. Again, different values of the O-parameter were 
considered. A total of 14.000 series of length 100 each were simulated, and 
for each series the HP filter was compared to the HPA one extended with 
16 ARIMA forecasts and backcasts. Table 5 . 1  compares the variances of the 
revision in the concurrent estimator and in the estimator revised after 1, 2, 
3 and 4 more years of data are added. It is seen that, in all 70 cases, the 
HPA filter reduces considerably the revisions. This is particularly noticeable 
for the ARIMA(2,1,1) model, where the use of the standard HP filter more 
than triplicates the revision variance. 
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Concurrent I I year rev. I 2 year rev. I 3 year rev. I 4 year rev. 
Model HPA HP I HPA HP HPA HP I HPA HP HPA HP 

lMA(l,l) 
8 =  -.8 .31 .41 .08 .10 .02 .03 .01 .01 .00 .01 
8 = -.5 .9� 1.34 .24 .33 .07 .11 .03 .06 .02 .04 
8 = -.3 1.58 2.54 .39 .63 . 1 1  .19 .06 .12 .04 ,08 

8 = 0  2.86 4.84 .71 1.18 .21 .39 .12 .24 .08 .15 
8 = .3 4.51 8.29 1.11 2.03 .32 .64 .19 .38 .13 .24 
8 = .5 5.44 1 1.02 1.40 2.62 .44 .86 .26 .50 .17 .32 
8 = .8 7.33 14.89 1.87 3.70 .60 1.17 .34 .70 .22 .46 

ARlMA(2,1,1) 
8 = -.8 .12 .55 .05 .14 .01 .03 .00 .01 .00 .01 
8 = ":.5 .41 1.27 .15 .33 .04 .09 .01 .04 .00 .03 
8 =  -.3 .74 2.23 .25 .56 .06 .15 .02 .08 .01 .05 

8 = 0  1.35 4.26 .44 1.09 .12 .29 .03 .15 .02 .10 
8 = .3 2.06 7.00 .71 1.77 .18 .46 .05 .25 .03 .18 
8 = .5 2.75 9.68 .95 2.44 .23 .64 .06 .33 .03 .22 
8 = .8 3.70 12.95 1.20 3.25 .31 .88 .09 .47 .05 .33 

Table 5.1. Variance of the revision in estimator. Values are multiplied by 100. 

As for the detection of turning points, we use the following simple criterion 
(along the lines of method B discussed in Boldin, 1994): a turning point is 
the first of at least two successive periods of negative/positive growth. Table 
5.2 compares the performance of the HP and HPA filters in the first and last 
8 observations of the simulated series, both in terms of the mean number of 
turning points that are dated on the original series and missed by the filtered 
one, and in terms of the mean number of turning points detected on the fil­
tered series but not present in the original one ("peaks" and "throughs" are 
considered separately). Of the 56 comparisons, in 53 cases the gain from using 
the HPA filter is substantial. 

Tables 5.3 and 5.4 compare the performance of the two filters when all obser­
vations in each series are considered. Table 5.3 compares the performance in 
detecting turning points present in the original series, and Table 5.4 looks at 
the false turning points indicated by the filtered series (and not present in the 
original one). For both tables, Fo is the relative frequency of cases in which the 
two filters coincide, FI denotes the relative frequency of cases in which HPA 
performs better, while F_l denotes the relative frequency of cases in which 
HP performs better. Both tables show that the HPA filter performs (in all 56 
cases) remarkably better. 
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Original Missed Fa.lse Alarms 

Peak. Throughs Peaks Throughs Pea.ks Throughs 

IMA(I,I)  HPA HP HPA HP HPA HP HPA HP 

9 = -.8 1.4 1.50 ,10 ,16 ,10 , 15 ,18 ,19 , 19  ,20 
9 = -.5 1.51 1.52 ,18 ,22 ,19 ,23 ,29 ,31 ,26 .28 
8 =  -.3 1.52 1.52 .22 ,28 ,24 ,30 ,36 ,37 ,38 ,39 

9 = 0  1.62 1.59 ,23 ,32 ,25 ,37 .49 ,51 .47 .49 
9 = .3 1.69 1 .72 ,29 .40 ,29 .41 .49 ,59 ,55 ,63 
8 = .5 1.77 1.79 ,32 .46 ,29 .41 ,54 ,68 ,51 ,63 
9 = .8 1.83 1.86 ,30 .43 ,34 .48 ,52 ,65 ,54 ,69 

ARIMA(2,1,1) 

9 _ -.8 1.78 1.79 ,05 ,13 ,05 ,13 ,21 ,18 ,19 ,18 
9 = -.5 1.78 1.77 ,09 ,19 , 11  ,19 ,25 ,24 ,26 ,26 
8 = -.3 1.84 1 .77 ,12 ,23 ,10 ,20 .25 ,31 ,25 ,30 

8 = 0  1.87 1.84 .13 .25 ,16 .27 ,27 ,38 .26 .36 
9 = .3 1.93 1.89 .17 .27 .20 .31 ,25 .40 .25 .41 
9 = .5 1.94 1.96 .18 ,31 , 17 ,32 ,24 .40 .25 .42 
9 = .8 2,02 1.95 ,18 ,32 ,16 ,31 ,22 ,38 ,24 .41 

Table 5.2. Mea.n number of turning points (First a.nd last 8 observa.tions) . 

I Capt, peaks I Capt, Throughs 
Model FI Fo F_I FI Fo F_ I 

IMA(I , I) 
0 _  -,8 ,07 ,92 ,01 ,07 ,93 ,00 
0 = -.5 .07 .91 .02 .07 .89 .04 
0 =  -.3 .11 .84 .05 . 10 .86 .04 
0 = 0  .14 ,80 .06 .16 .80 ,04 
0 = .3 . 17  .78 .05 ,17 ,78 ,05 
0 = ,5 ,18 ,76 ,06 ,19 .74 ,07 
0 = ,8 ,18 ,76 ,06 ,20 ,75 ,05 

ARIMA(2,1,1) 
0 - -,8 , 1 1  ,88 ,01 , 1 1  ,88 ,01 
0 = -,5 ,14 .84 .02 .13 .84 ,03 
0 =  -.3 .17 ,79 .04 .16 .80 ,04 
0 = 0  ,18 ,77 ,04 .18 .77 ,05 
0 = ,3 .18 ,77 .05 ,20 ,73 .07 
0 = ,5 ,21 ,73 ,06 ,23 ,71 ,06 
0 = ,8 ,21 ,74 ,05 ,22 ,73 ,05 

Table 5,3. Relative performance of HP vs HPA: captured turning points, 
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I False peaks I False Throughs 
Model F, Fo F_, F, Fo F_, 

IMA(l,l) 
9 _ -.8 .06 .91 .03 .05 .91 .04 
9 = -.5 .09 .85 .06 .10 .84 .06 
9 = -.3 . 12  .81 .07 .13 .78 .09 
9 = 0 .15 .74 . 1 1  .15 .74 .11 
9 = .3 .22 .68 .10 .19 .71 . 10 
9 = .5 .23 .68 .09 .20 .70 . 10  
9 = .8 .25 .64 . 1 1  .24 .65 . 1 1  

AFlIMA(2,1,1) 
9 _  .8 .07 .86 .07 .06 .84 .10 
9 = -.5 . 10  .80 .10 .10 .81 .09 
9 = -.3 . 15 .77 .08 .14 .78 .08 
9 = 0  . 19 .74 .07 .19 .75 .06 
9 = .3 .28 .66 .06 .25 .67 .08 
9 = .5 .23 .70 .07 .23 .70 .07 
9 = .8 .28 .66 .06 .25 .69 .06 

Table 5.4 Relative performance of HP vs HPA: spurious turning points. 

In summary, the results of the simulation exercise strongly suggest that apply­
ing the HP filter to the series extended at both ends with appropriate ARIMA 
forecasts and hackcasts is likely to provide a more precise cycle estimator for re­
cent periods, that requires considerably smaller revisions and improves thereby 
detection of turning points. 

5.2 Improving the cyclical signal 

Concerning seasonality, its removal implies the removal of the spectral peaks 
associated with seasonal frequencies. Since the width of this peak varies across 
series, fixed filters such as Xll may over or underestimate seasonality. Having 
obtained an ARIMA model for the series, one could use, instead of Xl! ,  an 
ARIMA-model-based (AMB) type of adjustment, following the approach of 
Burman (1980) and Hillmer and Tiao (1982). We use the program SEATS 
(Gomez and Maravall, 1996) to seasonally adjust the 4 series of the example 
in Section 3. For the airline model (3.6), appropriate for the 4 series, the AMB 
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method decomposes the series x, as in 

(5.3) 

where nt denotes the SA series and St the seasonal component, which follow 
models of the type 

';7'n, = On(B)an" 
58, = O,(B)a" , 

(5.4) 
(5.5) 

where O=(B) and O,(B) are of order 2 and 3, respectively. The estimator 
of n, is the conditional expectation ii'IT = E(n, I x" . . .  , XT) . If O(B) = 
( 1  + 01B)(1 + O,B'), the final estimator is given by the expression 

• [ On(B)5 On(F)S] n, = kn 
O(B) O(F) x, . (5.6) 

The expression in brackets is the WK filter and it avoids over /underestimation 
by adjusting itself to the width of the spectral peaks present in the series (see, 
for example, Maravall, 1998). 

Figure 5.1 compares the cycles obtained by applying the HP filter to the AMB 
and Xl ! SA series, and Figure 5.2 exhibits the spectra of the two cycles for 
the 4 series. It is seen that the estimates of the cycle produced using the 
two SA series are close, and no improvement results from applying the AMB 
method: turning points remain basically unchanged and the cyclical signal 
remains very noisy_ (Figure 5.2 illustrates the overestimation of seasonality 
implied by the Xl! filter for the case of the CC series: seasonality is very stable 
and consequently the width of the spectral peaks for the seasonal frequencies is 
very narrow. It is seen how the "holes" that XII induces for these frequencies 
are excessively wide.) 

Given that the SA series produces a cyclical signal with too much noise it 
would seem that this signal could be improved by removing the noise from the 
SA series. Thus we replace the decomposition (5.3) by 

(5.7) 

where S t  is a before and tit, for the case of the Airline model, is white noise. 
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Figure 5.2. Spectrum of cycle based on X11 and SEATS SA series 
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From (5.3) and (5.7), n, = p, +u" so that the component p, is the noise-free SA 
series. This component Pt is usually referred to as the trend-cycle component 
or the short-term trend. It follows in the four cases an IMA{2,2) model of the 
type, 

(5.8) 

where Bp{B) can be factorized as ( 1-<>B)(1+ B), with the second root reflecting 
a spectral zero for the frequency 7r, and Q' not far from 1 .  

Figure 5.3 plots the SA series, together with the short and long-term trends 
(the latter ones obtained with the HP filter). The long-term trend contains 
little information for short-term analysis, and the SA series simply adds noise 
to the short-term trend. Using the HP filter on the trend-cycle estimator fi" 
the estimated cycles are displayed in Figure 5.4. Compared to Figure 3.2, use 
of the trend-cycle instead of the SA series drastically improves the cyclical 
signal, which becomes much cleaner. Figure 5.5 compares the spectra of the 
cycles obtained with the two series (p, and n.) . It is seen that the difference is 
due to the fact that the cycle based on p, has removed variance associated with 
frequencies of no cyclical interest and, as shown in Figure 5.6, the spectrum of 
the difference between the cycle spectra based on the trend-cycle and on the SA 
series is close to that of white noise. So to speak, the band-pass features of the 
cycle are much better defined. This improvement of the cyclical signal allows 
for a clearer comparison of cycles among series, as is evidenced by comparing 
Figures 5.7 and 5.8. (Considering the different scales, Figure 5.4 shows that 
for the series AP the cyclical component has become very small and hence we 
do not include it in the figures.) In Figure 5.8 it is seen that the series CC, 
IPI, and CR have fairly similar cyclical patterns, moving roughly in phase. 
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Figure 5.3. Trend and trend-cycle components 
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Figure 5.4. HPcycle based on SEATS trend an on X11 SA series 
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Fig. 5.5. Spectrum of cycle (SEATS trend and X11 SA series) 
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Fig. 5.6. Difference between cycles (SEATS trend and X1 1 SA series) 

cc IPI 
5 5 

4 4 

3 3 
2 2 
1 1 
0 /  y 0 /  " 0 1 2 3 0 1 2 3 

frequency frequency 

CR AP 
5 5 

4 4 

3 3 
2 2 
1 1 
o / , o / , 0 1 2 3 0 2 3 

frequency frequency 

- 64 -



-, 

o 

-0.8 

Figure 5.7. HP cycles based on X1 1 SA series 

' 0  20 30 40 .0 
periods 

.0 70 eo 

Figure 5.8. HP cycles based on SEATS trend 

.0 ' 00 

-'0;---�,OOC---0200C---0300C---C400C---�'�0C---�'�0C---C7;0C---�e:'0C---c.:'o�--","oOoc' 
periods 

- 65 -



Table 5.5 compares the erosscorrelations between the cycles in the 3 series when 
the SA series and the trend-cycle are used as inputs. The noise contained in the 
SA series is seen to reduce the magnitude of the estimated crosscorrelations. 
The cyclical comovements are better captured with the cycle based on the 
trend. 

Lag CC-IPI CC-CR IPI-CR 
Xll-SA SEATS-TREND Xli-SA SEATS-TREND XII-SA SEATS· TREND 

-4 • • • • • • 

-3 .20 .36 • • • .23 
-2 .31 .55 • .40 .25 .43 
-1  .52 .74 .38 . 58 .42 .61 
0 .74 .81 .58 .71 .59 .74 
1 .40 .73 .46 .72 .50 .75 
2 .31 .57 .44 .67 .46 .69 
3 .23 .40 .31 .56 .36 .57 
4 • .25 • .44 • .44 

Table 5.5. Correlations between cycles, using SA series or trends as input. 
( • not significant) 

One further advantage of using the more stable signal p, is that it produces 
a decrease in the size of the revisions in the cyclical estimate for the last 
periods, as shown in Figure 5.9. Although the full revision process takes close 
to 10 years, in practice after two years most of the revision has been completed. 
Finally, Figure 5 . 10 displays the 95% confidence interval for the cycle estimator 
for the full period, based on the associated revisions when the trend-cycle 
component is used as input. 
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Fig 5.9. Standard deviation of revision from concurrent to final estimation 
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Fig 5 . 10. 95% CI for HP cycle (based on revisions) 

CC 

-1 

0 50 100 
periods 

CR 

-1 L-___ � _ __ ...J 
o 50 

periods 
100 

- 68 -

IPI 

0.5 

-0.5 

0 50 1 00 
periods 

AP 
0.4 

_0.4L----�-----..J 
o 50 

periods 
1 00 



6 Hodrick-Prescott filtering within a model 

b ased approach 

6.1 A simple model-based algorithm 

What we have suggested in the previous section is to estimate the cycle in two 
steps. First, the AMB method is used to obtain the trend-cycle estimator p, 
(i.e., the noise-free SA series). In a second step, the HP filter is applied to p,. 

Assume the observed quarterly series follows the (most often encountered in 
practice) ARIMA model 

(6 . 1)  

with O( B) an invertible polynomial. (The discussion extends to other AR 
structures, but it is greatly simplified using (6.1).) Let (5.8) denote the model 
for the trend-cycle component obtained from the AMB decomposition (this 
model is provided in the output of SEATS). The MMSE estimator of p, IS 
given by the WK filter (see, for example, Maravall 1995) 

• [ 0.(B)5 O.(F)S] 
p, = k. O(B) O(F) x" 

where kp = Yp/Vo. and ¥p denotes the variance of apt. The second step consists 
in obta.ining 

(6.2) 

where the vHP filter is as in (2.10). Without loss of generality, let us standarize 
the units of measurement by setting Va = 1 ,  and let k = v"k,(HP) where k,(HP) 
was defined in (2.10). Then it is obtained that, in terms of the observed series, 

(6.3) 

Direct inspection shows that the filter in (6.3) is the ACVF of the model 

(6.4) 
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with Var(bt) = k. 

It is well-known (see, for example, Bell and Hillmer, 1984) that if a series fol­
lowing the general ARIMA model (6.1) is decomposed into signal plus white 
noise, the MMSE estimator of the noise is given by a filter equal to the auto­
covariance function (ACVF) of the inverse model (multiplied by the variance 
of the noise). The inverse model is the one that results from interchanging the 
AR and MA parts, that is, 

O( B)Zt = <f>( B)at. 

Since, 

(6.5) 

is the inverse model of (6.4), it follows that Ct, given by (6.3) , is the estimator 
of the noise in the decomposition of (6.5) into signal plus white-noise when the 
varjance of the latter is k. 

In this way the cycle estimator can be obtained as follows. Let Xt follow 
the ARIMA model (6 .1) ,  and let Op(B) and Vp be the MA polynomial and 
innovation variance of the model for the trend-cycle Pt in the standard AMB 
decomposition Xt = Pt + St + Ut, with St and Ut denoting the seasonal and 
irregular components. To obtain the cycle estimator: 

• Multiply the AR part of the model for Xt by Op(B) , i .e., 

a(B) = Op(B)V'V'4 

• Multiply the MA part of the model for Xt by OHP(B), i .e., 

f3(B) = OHP(B)O(B) 

Then the WK filter that yields Ct is the estimator of the noise in the decom­
position of the model 

a( B)Xt = f3( B)at (6.6) 
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into signal plus white noise with the variance of the noise equal to k. This 
filter is directly obtained as the ACVF of the model 

{3(B)Xt = a(B)a; , 

with V ar( a;) = k. 

This way of proceeding relies on a white-noise assumption for the cyclical 
component Ctl which is not very appealing. The procedure, thus, offers a 
simple algorithm, not a useful model-based interpretation. It is worth noticing 
that this algorithm will produce estimators for the end points different from the 
ones obtained in the previous procedure (computing first Ph and then using the 
HP filter) .  This difference is implied by the fact that, in this latter procedure, 
the forecasts and backcasts, used to extend the series in the Burman-Wilson 
algorithm described in Appendix A.I ,  are obtained with model (2.5), while 
in the signal plus noise decomposition of (6.6), they are obtained with model 
(6.5). The difference between the two procedures of course vanishes if the 
ad-hoc forecasts and backcasts are replaced by the appropriate ARIMA ones, 
that is, if the HPA filter is used instead of the HP one. 
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6.2 A complete model-based method 

Looking again at expression (6.3), that provides the cycle estimator for the 
general model (6. 1 ) ,  another more appealing model-based interpretation is 
immediately obtained. Expression (6.3) provides the MMSE estimator of the 
cycle in model (6.1) , when the model for the cycle is of the type 

(6.7) 

with Var(a,,)/Var(a,) = k. This model-based interpretation of the complete 
Xl l-HP filter, whereby the cycle obtained can be seen as the MMSE estimator 
of an unobserved component c, that follows model (6.7), when the observed 
series follows the general model (6.1) , is of some interest. The AR.part of the 
model for the cycle is always the same, and equal to OHp(8); it incorporates 
the "fixed" character of the HP filter. On the other hand, the MA part, equal 
to Op(8), as well as the variance of the innovation (k),  will depend on the 
particular series at hand, and will adapt the filter to the series model. 

Therefore, the model for the cycle mixes the band-pass desirable features of 
the filter with the need to respect the series stochastic structure. Model (6.7) 
is based on the cycle obtained using the trend-cycle component p, as input. If, 
instead, the SA series n, is used, replacing Op(8) and v" by 0.(8) and V. (the 
MA polynomial and the innovation variance in the model for the SA series), 
the interpretation remains the same. 

For the 4 Spanish series, now standarized to have Va = 1 ,  Figure 6 . 1  plots the 
spectra of the series (dotted line), of its trend-cycle p, (dashdot line) and of 
the cycle component c, (shaded area), when the standard value A = 1600 is 
used. The latter component is seen to have well defined band-pass features 
which adjusts to the width of the spectral peak of the trend-cycle component in 
the series. Figure 6.2 shows the spectra of the difference between the original 
series and the cycle spectra (solid line). This difference is clearly made of 
a long-term trend, a seasonal component, and white noise. The figure also 
displays the spectra of the original series (dotted line) so that the shaded area 
represents the series variation captured by the cycle. The decomposition of 
the series into the two components Ct and Xt - Ct = mt + Sf + Ut, represented in 
Figure 6.3 seems perfectly legitimate if interest centers in optimal estimation 
of the series variation associated with the shaded area of Figure 6 . 1 .  
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Figure 6.2. Spectra of the difference (original series minus cycle) 
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Figure 6.3. Decomposition of the series 
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Interpretation of the HP filter applied to the trend-cycle component as the 
optimal estimator of the theoretical cyclical component (6.7), when the ob­
served series follows model (6 . 1 ) ,  does not specify the models for the rest of 
the components that have been extracted from the series. The question arises 
of whether it is possible to give a full model interpretation of the complete 
decomposition of the series. More specifically, assuming (6 .1 )  is the ARIMA 
model for the observed series, OUf two-step previous decomposition can be 
summarized as follows: 

Step I. Decompose the series x, in the standard AMB manner as x, = p, + 
s, + u" where the model for the trend-cycle p, is of the type (5.8), the model 
for the seasonal is of the type (5.5), and u, is white noise. We obtain then the 
MMSE estimators p" s, and il,. 

Step II. Next, the estimator fit is decomposed as in fit = mt + Ct, where mt 
is the (long-run) trend estimator, and c, the estimator of the cycle, obtained 
through the HP filter. 

Step II computes directly estimators, without specifying underlying models 
for the components, and hence the complete decomposition of the series yields 
It = mt+Ct +St+Ut· Can we rationalize this decomposition as the one obtained 
from MMSE estimation of orthogonal components in a structural model, 

(6.8) 

where each component has a sensible model expression, and for which the 
reduced form (i.e., the model for the aggregate series) is of the type (6 .1)? 
The answer to this question is in the affirmative. First, if the observed series 
follows the model (6 .1) ,  then the standard AMB decomposition of x, yields a 
trend-cycle Pt, a seasonal component S f )  and an irregular component Ut, such 
that x, = p, + s, + u" and the models for the components are of the type 

'V'p, = Op{B)ap" Var{ap,) = Vp, 
Ss, = O,{B)a" , Var{a,,) = 11" 
u, = O.{B)a." Var{a.,) = V., 

(6.9) 

(6.10) 

(6 . 1 1 )  

where Op{B)ap" O,{B)a" , and O.{B)a., are stationary processes. {If the order 
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of O(B) in (6. 1 )  is not larger than 5, then Ou(B) = 1 and ti, is a white noise 
irregular. This is indeed the case for the 4 series considered in the example.) 
In the seconsd step of the procedure, the HP filter is applied to the MMSE 
estimator of p, in the above model, and this yields the estimator of the cycle, 
Ctl and of the trend, mt. 

Consider now the following unobserved component model, 

OHP(B)'V2m, = Op(B)am" Var(am,) = Vm, 
OHP(B)c, = Op(B)a", Var(a,,) = 1/,;, 

(6.12) 
(6.13) 

plus equations (6 . 10) and (6.11) for the seasonal and irregular components, 
where Vm = v"km(HP» 1/,; = v"k,(HP) , and all components are mutually orthog­
onal. As seen in Appendix B.2, Pt = mt + Ctl and, hence It = mt + Ct + St + tit. 
Thus the sum of the components (6.10), (6 .11) ,  (6.12), and (6. 13) yields the 
model (6.1) for the observed series. The MMSE estimators of the compo­
nents will thus be identical to the ones obtained with the two-step procedure. 
Notice, further, that adding m, and c, exactly yields the AMB standard de­
composition of Xt into a trend-cycle, seasonal, and irregular components (the 
latter two remain, of course, unchanged.) Therefore, the AMB trend-cycle 
component accepts in turn a sensible AMB decomposition into trend plus (or­
thogonal) cycle. The 2-step procedure, thus, is seen to collapse into direct 
optimal estimation of the components in an unobserved component model. 
Notice that in the complete model-based representation, the two compon.ents 
mt and Ct are canonical, because their models contain the MA root (l+B), 
present in the polynomial Op(B), which implies a spectral zero for w = " (of 
course Pt also presents this feature.) 

As an example, we show the unobserved component model for the car registra­
tion (CR) series, one of the 4 Spanish indicators previously used. The models 
for the trend-cycle, seasonal and irregular components in the AMB decompo­
sition are given in Appendix B.3. It is seen that, for the CR case, and using 
the standard value ), = 1600, for which OHP(B) = 1 - l .7771B + .7994B2, 
it is obtained that k,(HP) = .7994, and km(HP) = 1/200l.4. The full model 
specification becomes 

(1 - l .7771B + .7994B2)'V2m, = ( 1  + 0662B - .9338B2)am" 
(1 - l .7771B + . 7994B2)c, = (1 + .0662B - .9338B2)a" , 
Ss, = ( 1  + .0383B - .4967 B2 - .4650B3)a" , 
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and Ut white noise, with the components innovation variances given by Vm = 
.0386 * 10-3, v., = .0628, V, = .0685 * 10-1 , V. = .3695. It is straightforward to 
verify that the model for the components sum is the Airline 'model 

Y'Y'4X, = ( 1 - .387B){1 - .760B4)a" 

with Va = 1, which coincides with the model identified for CR in Section 3. 

If one were to use the seasonally adjusted series n, as the input to the HP 
filter in the 2-step procedure, the unobserved component model interpretation 
would slightly vary. Given that, 

(6.14) 

from expressions (B.9) and (B.10) in Appendix B.2 it is found that n ,  follows 
a model of the type 

Y" n, = Bn( 8)an" V art an') = V., 

where the polynomial Bn( 8) and the innovation variance Vu are straightforward 
to find from the identity 

Bn(B)an, = Bp(B)ap, + Y" Bu(B)au" 

The irregular component disappears since it is absorbed by the seasonally 
adjusted series. Replacing v;, by V., so that now k, = Vnk,(H PI and km = 
Vnkm(HPI > the unobserved component model i s  given by 

where m, and c, are as in (6.12) and (6.13) , with Bp(B) replaced by Bn(8) , and 
s, is as in (6.10). The model for x, remains unchanged. The effect of these 
replacements is to add noise to the HP filter input, part of which is passed on 
to the cyclical signal (as was seen in Section 5.2), so that the cycle obtained 
from the seasonally adjusted series is in fact equal to the one obtained from 
the trend-cycle plus some added noise. For the CR series example, considering 
Appendix B.3, the unobserved component model becomes 

( 1 - 1.77718 + .79948')Y" m, = ( 1  - 1 .3215B + .36218')am" 
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( 1  - l.7771B + .7994B')c, = ( 1  - 1 .3215B + .3621B')a" , 

with Vm = .00041, V; = .6562; the model for s, and the variance V, remam 
unchanged, as does the model for x" 

For the 4 series of the application (CC, IPI, CR, and AP), Figures 6.4 to 6.7 
display the spectral decomposition into the trend, cycle, seasonal, and irreg­
ular components. All of them have sensible shapes, and their sum yields the 
spectrum of the series, also shown in the figure. Figures 6.8 to 6 . 1 1  display 
the squared gains of the components filter; it is seen how they adapt to the 
spectral characteristics of each series. The complete specification of the unob­
served component model for the 4 series in the example is given in appendix 
B.3. 

An interesting remark concerns the spuriouness question discussed in Section 
4, which can now be answered in a more precise manner. In so far as the 
overall A RIMA model for the observed series fi ts reasonably well the data, it 
is worth stressing that, because this model and the unobserved components 
model we have derived from it are observationally equivalent, the latter will 
also fit equally well the data. The two models, by construction, imply identical 
joint distributions functions generating the data (assuming appropiate starting 
conditions are set). If the ARIMA model for the observed series is acceptable 
on empirical grounds, so should be the unobserved component formulation. 
One may or may not agree, on a priori grounds, with the models specified 
for the components, but in no way can the unobserved components model be 
called spurious. 
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Fig. 6.4. Spectra for original series and components; series CC 
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Fig. 6.5. Spectra for original series and components; series IPI  
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Fig. 6.6. Spectra for original series and components; series CR 
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Fig. 6.7. Spectra for original series and components; series AP 
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Fig. 6.9. Squared gain of filters for components; series IPI 
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Fig. 6.1 1 .  Squared gain of filters for components; series AP 
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6.3 Some comments on model-based diagnostics and in­
ference 

One important feature of the model-based procedure is that it automatically 
overcomes the two limitations of the HP filter mentioned in Section 5, namely, 
the poor performance of the filter at the end of the series (associated with 
large revisions,) and the noisy behavior of the cyclical signal. On the one 
hand, revisions (and end-point treatment) is improved because the series is 
expanded now with forecasts and backcasts computed with the correct model. 
On the other hand, the presence of 0,( B) in the MA part of the model for 
Ct ensures that no noise will contaminate the cycle. For the 4 series of the 
example we have been considering, Figures 6.12 to 6.15 compare the standard 
cyclical signal, computed with the HP filter applied to the Xll seasonally 
adjusted series, with the cyclical signal obtained as the MMSE estimator of 
c, in the complete unobserved components model, and serve to illustrate the 
improvement. (The complete model for each one of the series is detailed in 
Appendix B.3.) It is seen that the trends obtained with the two procedures are 
practically identical, except for the first and final years; this difference is due to 
the use of optimal forecasts and backcasts in the model-based procedure. This 
procedure yields a considerably smoother (much less noisy) cycle than that 
obtained with the HP-Xll procedure. The seasonal components are quite 
similar, the largest difference occurring for the CC series, for which (as was 
mentioned in Section 5.1) XII  clearly overestimates the moving features of the 
seasonal component. For the H P-Xll procedure, the full decomposition yields 
trend, cyclical and seasonal components; in the model-based procedure there 
is an additional component, the irregular, which mainly captures the noise 
contained in the HP-Xll cycle. 

From a more general perspective, while (blind) application of the HP-Xll filter 
can be seen as a black-box-type procedure, the model-based approach sets a 
convenient framework to analyze results, by using well defined (sensible) mod­
els and estimation criterion (MMSE). The models contain "ad-hoc" features, 
reflected in the polynomial OHP(B) , and in km(HP) and k,(HP) (all three deter­
mined from A,  as was seen in Section 2), and series-dependent features (such 
as the polynomial O,(B) and the variance v" , derived from the overall model 
for the observed series). Ad-hoc features are thus easily incorporated into the 
AMB approach. 

The model-based structure permits us to asses the statistical properties of the 

- 88 -



cycle such as, for example, its theoretical distribution, as well as the distri­
bution of its optimal estimator. From equation (6.13), the distribution of Ct 
is easily derived; replacing Xt in expression (6.3) yields the estimator Ct as a 
function of the innovations in Xt) 

(6.15) 

from which the distribution ofthe MMSE estimator (a linear stationary stochas­
tic process) is trivially obtained. Further, since expressions similar to (6.15) 
can he derived for all component estimators, their joint distribution is easily 
found. The knowledge of these distributions facilitates diagnostics and infer­
ence. 

Consider first diagnostics. Our parametric model fully specifies the distri­
butional features of the processes. Therefore, a natural diagnostic tool is to 
compare those features (derived from the ARIMA model for the observed se­
ries) with the corresponding sample estimates. We choose as illustration an 
example of some applied concern: the covariance between component estima­
tors. 

It is a well known result (see, for example, Nerlove, Grether and Carvalho, 
1979) that, although the theoretical model specifies orthogonal components, 
the covariance between the components MMSE estimators will be nonzero. 
This covariance can he computed as follows. 

Equation (6.15) expressed C, as a convergent filter of the innovations at. For 
the trend estimator in" using (2.8) instead of (2.10) with Xt replaced by Ph a 
similar derivation yields 

(6.16) 

so that the cross covariance generating function (CCVF) between the two esti­
mators, after simplification, is found to be given by 

(6.17) 

Direct inspection of (6.17) shows that this CCVF is equal to the ACVF of the 
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model 

(6.18) 

The model is stationary and hence covariances are bounded. The lag-O cross­
covariance, being equal to the variance of model (6.18), will always be positive. 

Be that as it may, in so far as the 1(2) component m, has no proper variance, 
the theoretical crosscorrelation between the estimators mt and Ct is not well 
defined. For the 4 series of the example, Table 6.1 displays the sample cross­
correlations between the different components: they are seen to be small with 
the largest one ocurring, as could be expected, between the two components 
that are stationary, Ct and Ut. 

CC IPI CR AP 
mll Ct .18 -.01 .12 .02 
ml, St .02 -.03 -.02 .00 

mt , Ut .02 .01 .02 .00 

Ctl St -.01 .00 .00 .01 
etl tit .32 .33 .32 .35 
St) itt -.06 .10 .09 .10 

Table 6.1. Crosscorrelations between component estimators: levels. 

Having bounded variances, however, stationary transformations of the com po­
nents (namely, "V2mtl et l SSt ) and 1.£t} will be crosscorrelated, even asymptot­
ically, in conflict with the theoretical assumptions made for the components. 
Proceeding as before, the "theoretical" crosscovariance between the MMSE 
estimators of the different components can be derived, and, from that, the 
crosscorrelation. Therefore, an element for diagnostic of model adequacy in 
the model-based preocedure can be to compare this theoretical crosscorrelation 
of the MMSE estimators with the ones provided by the sample estimates. The 
compa.rison, for the 4 series of the example and the 4 components, is given in 
Table 6.2. The table also contains the standard errors (SE) of the crosscorrela­
tion estimators. These standard errors have been obtained by simulating 1000 
series; it is worth mentioning that the model-based framework considerably 
simplifies simulation because the esti.mators ca.n be directly generated from 
the simulated series a, using the models (6.15), (6.16), and the equivalent ones 
for the seasonal and irregular components. 
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CC IPI CR AP 
V:.Imt, Ct Estimator -.64 -.57 -.59 -.59 

Estimate -.66 -.65 -.70 -.65 
(SE) (.09) (.09) (.09) (.09) 

V�mt, SSt Estimator -.00 -.00 -.00 -.00 
Estimate -.00 -.00 -.00 -.00 

(SE) (.01) (.01 ) (.01) (.01) 
V"m" Ut Estimator -.08 -.05 -.06 -.06 

Estimate -.07 -.06 -.08 -.08 
(SE) (.02) (.02) (.02) (.02) 

Ctl SSt Estimator .00 .01 .01 .01 
Estimate .01 .02 -.01 .02 

(SE) (.02) (.01) (.01) (.01) 
Ctl ii, Estimator .30 .30 .28 .27 

Estima.te .30 .31 .30 .33 
(SE) ( .04) (.04) (.04) (.04) 

SSt,Ut Estimator .05 .13 .13 .13 
Estima.te .09 .14 -.04 .22 

(SE) (.09) (.07) (.07) (.07) 
V:J.P, I Ut Estimator -.16 -.13 - .16 - .17 

Estimate -.09 - .10 - .16 -.16 
(SE) (.05) (.05) (.05) (.05) 

Table 6.2. Crosscorrelations between component estimators: stationary transfor­
mation. 

Three results seem clear: 

• The seasonal component is practically orthogonal to the other compo­
nents (and hence to the SA series) .  In fact, the AMB decomposition into 
trend-cycle, seasonal and irregular components provides estimators that 
in practice are close to satisfying the orthogonality assumption made for 
the theoretical components. Therefore, the conflict between orthogonal 
components and correlated estimators is more apparent than real and 
should not be the cause of much concern . 

• However, splitting the trend-cycle into trend plus cycle induces negative 
correlation between the estimators of these two components. Heuristi­
cally, this correlation is a reminder of the artificiality of the trend-cycle 
decomposition. While the data, summarized in the ARIMA model iden­
tified for the series, clearly imply spectral peaks for the zero and seasonal 
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frequencies which are well captured by the trend-cycle and seasonal com­
ponents, they have nothing to say about the partition of the zero spectral 
peak into trend plus cycle . 

• The theoretical autocorrelations are in fair agreement with their sample 
counterparts. In only one case out of 24 the difference (in absolute value) 
between the estimator theoretical and sample crosscorrelations is larger 
than 1 .96 SE and, even in this case, the associated t-value is moderate. 
Table 6.2 offers thus a favorable diagnostic concerning model adequacy. 

To see an example of the use of the model in inference, assume we are interested 
in the following two questions: 

1 .  What is the size of the revision in the concurrent estimator and how long 
does the revision process last in practice? 

2. Based only on the size of the revisions, how big -in absolute value- the 
quarterly growth in the concurrent estimator of the cycle has to be in 
order to reject the hypothesis of zero growth? In other words, when can 
we accept that the present growth of the cycle is not zero? 

Both questions are of applied relevance and can be easily answered by ex­
ploiting the model structure. Letting expression (3.2) represent (6.15), the 
derivation of Section 3.1 can be applied in a straightforward manner. That is, 
we can write 

and, similarly to (3.4), the revision in the concurrent estimator of Ct is equal 
to 

• 
rtit = (+ (F)at = L(jat+; , 

j=l 

where the second equality relies on the finite truncation. For the 4 series of 
the example we have used k=250, more than enough for convergence to the 8th 
decimal place. The variance of rtit, as well as the periods it takes to have 95% 
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of it removed from the estimator, are straightforward to derive. Specifically, 
for an integer h , 0 < h < k, from 

k 
rtlt+h = L: �t at+j , j::::t+h+l 

one can compute the smallest h such that Var(r'lt+h) ::>: .95Var(rtit) . Table 
6.3. displays, in the first column, the duration in quarters of the revision 
period measured in the previous way. In all cases the revision period lasts 
1 1  quarters, and hence close to 3 years. (Notice that in the present case 
the revision includes also the one associated with reestimation of the trend­
cycle p,. ) The second column of the table shows the standard deviation of the 
revision in the concurrent estimator expressed as a percentage of the level. For 
example, for the IPI series, a 95% confidence interval around the concurrent 
measurement would be in the order of ±3.7 percent points of the level. The 
third column of the table presents the standard deviation of the revision as 
a fraction of the residual standard errorj roughly, the size of the revision is 
about 1/2 that of the one-quartet-ahead forecasts. Altogether, .revisions are 
certainly nonnegligible. 

Number of periods Standard deviation of the revision 
to complete 95% as a percent of the level as a proportion of a a 
of the revision 

CC 11 3.34 .44 
IPI 11 1.88 .58 
CR 11  6.46 .49 
AP 11  2.55 .48 

Table 6.3. Size and duration of the revision in concurrent estimator of cycle. 

As to the question of how big the last quarter growth should be in order to 
confidently assert it is different from zero, assume that at time t the estimator 
of the cycle for time t is Ct[! . When the next observation becomes available at 
period (t+l) , the estimator of the cycle for the period becomes (;'+11'+1 - Since 
Ct is measured in logs, differences between (not too distant) periods can be 
seen as rates of growth. Therefore, 
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represents the quarterly rate-of-growth of the cycle as measured by two consec­
utive concurrent estimators. The final estimator of the growth between these 
two periods is given by 

so that the error associated with revisions in Ct is equal to: 

Substracting from (6.15) its expectation at time t, it is found that 

and, likewise, 

so that the error can be expressed as 

00 

�lat+l + 2:)�; - �;+dat+i+l' (6.19) 
;=1 

From this expression, the variance of et is easily found, and hence, we can 
conclude that, using a 95% significance level, only rates of growth of the cycle 
larger than 1 .96<7, in absolute value can be assumed to be significantly different 
from zero. 

A more accurate measure of the quarterly growth would be given by r, = 
ct+llHl - (:tlt+l 1  where the estimator of the cycle for period t has been revised 
to take into account the new observation for (t+1). The previous derivation 
remains valid, except for the fact that the term e. a'+l disappears from the 
r.h.s. of (6.19). For the 4 series of the example, Table 6.3 presents the border­
line growth values (namely, 1.96 <7,) below which the (absolute value of the) 
measured rates of growth cannot be assumed to be significantly different from 
zero. As before, the values are expressed in percent points. The table indi­
cates, for example, that the last quarterly growth of the cyclical component in 
the IPI series needs to be bigger than 1 .35%, or smaller than -1.35%, in order 
for us to be 95% confident that it cannot be taken as zero. 
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CC IPI CR AP 
Measured with 2.41 1.35 4.48 1.76 

concurrent estimators 
Measured with 2.39 1 .17 4.18 1.65 

concurrent and revised estimators 

Table 6.3. Statistical significance of the quarterly rate of growth of the cycle (in 
percent points) . 

One can easily think of many other extensions. An example could be the 
computation of optimal forecasts for the components as well as their SE. By 
construction, these forecasts would be in full agreement with the ones provided 
by the ARIMA model for the series, directly identified from the data. 

Notice that, being a zero-mean stationary ARMA(2,2) process with OHP(B) 
as the AR polynomial, the forecasts of the cycle will gradually approach zero, 
following damped cosine-type fluctuations. Added to the limitation implied 
by the size of the revision error) forecasts of the cycle can be of interest only 
for very short horizons. 
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Fig. 6.12. AMB and HP-X1 1 procedures; estimated components of CC 
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Fig. 6 . 13. AMB and HP-X1 1 procedures; estimated components of IP  
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Fig. 6 . 14. AMB and HP-X1 1 procedures; estimated components of CF 
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Fig. 6.1 5. AMB and HP-X1 1 procedures; estimated components of AP 
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6.4 MMSE estimation of the cycle: a paradox 

As before, let the model for the observed series be given by (6. 1 )  and let the 
trend-cycle component (or noise-free SA series) in the AMB decomposition 
of section 5.2 be given by (5.8). We have seen that the cycle obtained with 
the HP filter applied to the trend-cycle component can be seen as the MMSE 
estimator of a cyclical component Ct that follows model (6.7). 

As seen in Appendix B.3, the MA polynomial in (5.8) is always of order 2, 
and its factorization will be of the type (1 - aB)(l + B), where a is close to 
1 and the root B = -1  (a spectral zero for w = IT) reflects the "canonical" 
requirement that the trend-cycle be uncontaminated by noise. The models for 
the 4 cycles are seen to be quite similar and, to a rough approximation, the "a 
priori" specification OHP(B)Ct = ( 1 - .98)(1 + B);  v" = . 1  V. could be expected 
to perform reasonably well. The common structure of the models illustrates 
how the band-pass approach to filtering can be well accommodated within 
the model-based approach, so that, the advantages offered by a model-based 
method can be exploited. 

Yet the process of computing the MMSE estimator of Ct in the model-based 
framework presents some conceptual ambiguity, which we proceed to illustrate. 
If we compute the spectrum of c" from model (6.7), for the 4 Spanish series, 
and then find the frequency that corresponds to the maximum of the spectrum, 
the associated period is equal to 10 years. (This period is identical to the 
one that maximizes the cycle spectrum when X ll-HP are applied to a series 
following the airline model. )  Therefore, our model would specify a theoretical 
cycle dominated by the 10-year period. 

As we have seen, however, MMSE estimation of a stochastic unobserved com­
ponent has a distorting effect on the stochastic structure of the component. 
Given that (6.3) represents the MMSE estimator of Ct when (6.7) and (6 . 1 )  
are the models for the cycle and for the observed series, respectively, using 
(6.1) in (6.3) the MMSE estimator Ct is expressed in terms of the innovations 
at in the observed series as in equation (6.15), from which its spectrum can be 
easily computed. Denote this spectrum by g,(w). One of the major distortions 
induced by MMSE estimation, easily derived from (4.4), is g,(w) :$ g,(w) for 
all w, in the same way as iiplw) :$ g.lw), where g.(w) denotes the spectrum of 
the trend-cycle estimator and g.(w) the spectrum of (5.8). As a consequence, 
the MMSE of Ct will systematically underestimate the variance of Ct· 
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Figure 6 . 16 shows the spectra of the trend-cycle and cycle estimators for the 
4 Spanish series. The width of the cycle estimator adjusts now to the width 
of the spectral peak of the trend-cycle estimator. Comparing Figures 6 .1 and 
6. 16, it is seen that the net effect will be an underestimation of the stochastic 
variance of the cycle. Perhaps, more disturbingly, MMSE affects the shape of 
the cycle spectrum and, in particular, the location of its peak. For the four 
Spanish series, the period associated with the maximum of the cycle estimator 
spectrum lies between 7.5 and 8 years. 

As a consequence, although our theoretical model for the cycle is associated 
with a main period of 10 years, the (theoretical) MMSE estimator will reduce 
this period. In other words, if we wish to model a cycle with a lO-year period, 
our best estimator (in a MMSE sense) will systematically underestimate the 
period. This creates some ambiguity in terms of. which of the two should be 
taken as the period that characterizes the cycle. For a stubborn analyst wishing 
that the main period of his model for the cycle be respected by the estimator, 
MMSE may not be appropriate criterion. On the other hand, knowing the 
bias in the underestimation of the period, one could proceed with MMSE 
estimation, letting the definition of the main cyclical period become a matter 
of convention. 
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Appendix A 

A.1 Wiener-Kolmogorov version of the Hodrick-Prescott 
filter 

In this appendix we apply the Burman-Wilson algorithm (Burman, 1980) to 
compute the HP trend with the Wiener-Kolmogorov filter. Consider the model 
given by (2.1) and (2.4) where c, and b, are uncorrelated white noises with 
variance V, and Vm and let km = Vm/V.; the reduced form model is given by 
(2.5) and, to simplify notation, remove subindexes from polynomials (hence 
OHP(B) becomes O(B) ). 

Due to its symmetry, the WK filter to estimate m" given by (2.8), can be 
expressed as 

km [G(B) G(F) ] v(B, F) = O(B)O(F) = 
k
m O(B) + O(F) , (A.l)  

where G( B) = 90 + 9, B + 92B2. Removing denominators in the above identity 
and equating the coefficients of the terms in BO, B' and B2, yields a system 
of equations that can be solved for 90,9, and 92 . If 

0 0 ] [ 0 0 02 ]  
1 0 + 0 O2 0, , 
0, 1 O2 0, 1 

the solution is given by 

(A.2) 

Using (A.l) ,  write m, = v(B, F)x, as 

(A.3) 

where 

xf = [G(B)/O(B)]x, (A.3a) 
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xf = [G(F)/O(F))x, (A.3b) 

We shall need 4 backcast and 4 forecast of x,; they can be computed in the 
usual Box-Jenkins way through model (2.5). 

i)  Computation of xr Differencing (A.3b) twice, and considering (2.5), 
yields 

T'7'xF G( F) T'7' G(F) O(B) v , = O( F) v x, = O( F) a, = 

= (,po + ,p,F + ,p,F' + . . .  ) (1 + O,B + O,B')a" or 
00 , "' . = (a,B + a, B + ao +  LJ a-iF')a, . 

j=1 

(A4) 

Taking expectations at time T in both sides of (A4), since Er[aT+k) = 0 for 
k > 0, for t = T + 3 and T + 4, it is obtained that 

(A.5a) 

(A.5b) 

Let XI include the four forecasts of the series, and compute the auxiliary series 
y, = G(F)x" t = 1 ,  . . .  , T + 2. From (A.3b), O(F)xf = y" or, for t = 
T + l, T + 2, 

(A.5c) 
(A.5d) 

The system of four equations (A.5) can be solved for xt+l > " " xtH' The 
remaining x� are computed recursively through 

t = T, . . .  , 1 .  

ii) Computation of xf: Proceeding in a symmetric manner, compute the 
auxiliary series z, = G(B)x" where x, includes now 4 backcasts at the begin­
ning and 4 forecasts at the end. From (A.3a), 

, B  G(B) 
(1 - F) x, = O(B) O(F)e" (A.B) 
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where (1 - F)'x, = O(F)e" so that e, is the forward residual. These resid­
uals will now satisfy Er[eT-,J = 0 for k > o. Proceeding as before, taking 
conditional expectations in (A.6) for t = -3 and -2 yields 

and, from (A.3a), O(B)x� = z, for t = -1 , 0 , 1 ,  . . .  , T + 4. Therefore 

(A.7a) 
(A.7b) 

(A.7c) 

(A.7d) 

The system of four equations (A.7) can now be solved for x�3, X�" x�l > xf 
The rest of the xf are obtained recursively from 

t = 1 ,  . . .  , T. 

Finally having obtained x� and xf 1 the estimator mt is obtained through 
(A.3). Notice that the algorithm automatically provides four forecasts. 

A.2 The algorithm 

We consider the standard quarterly case with >' = 1600, for which OHP(B) 
and Vo/\!/, are given by (2.7). From (A.2) it is found that go = -44.954, 
g, = 1 1 .141, and g, = 56.235. The matrix of coefficients in the 2 sets of 
equations (A.5) and (A.7) is [ 1 -2 

o 1 
1 -1 . 7771 
o 1 

1 
-2 

. 7994 
-1 .7771 

o 1 1 
o . 

.7994 

Denote by H the inverse of this matrix. Let x, = [x" . . .  , XTJ be the series for 
which we wish to compute the HP trend m" and extend the series at both ends 
with 4 forecast and 4 backcast, computed with model (2.5) .Then the algorithm 
that yields m, is the following: 
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Step I. For t = 1, . . .  , T + 2, compute (using 4 forecasts) 

and, for t = T, . . . J 1 ,  obtain recursively 

Step II. For t = -1 , 0 , 1 ,  . . .  , T + 4 compute (using 4 backcasts) 

and, for t = 1, . . .  1 T + 4, obtain recursively 

Step III. For t = 1 ,  . . .  , T + 4, obtain 

This yields the trend estimated for the sample period t = 1 ,  . . .  , T, and fore­
casted for the periods t = T + 1 ,  . . .  , T + 4. The algorithm consists of a few 
convolutions and some minor matrix multiplications. It is fast and reliable, 
even for a series with (say) a million observations. 

A.3 A note on computation 

The procedure assumes that the models are linear stochastic processes, in 
which case the optimal estimators are obtained with the linear filters we 
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dereived earlier. In practice, many series may need prior treatment before the 
linearity assumption can be made. Examples are determination of the series 
transformation, detection and correction of outliers, and correction for special 
effects. Program TRAMO ("Time Series Regression with ARIMA noise, Miss­
ing values, and Outliers" ) can be used for automatic (or manual) pretreatment. 
The program outputs the series for which an ARIMA model can be assumed. 

This ARIMA model can then be decomposed (automatic or manually) with 
program SEATS ("Signal Extraction in ARIMA Time Series"), and the trend­
cycle estimator, together with its forecasts and backcasts can be obtained. 
Running SEATS again on the extended trend-cycle series, with the fixed spec­
ifications of the HP filter (for the standard quarterly series given by (2.7),) the 
estimator of the cycle, as well as its forecasts, is obtained. 

Both (documented) programs can be freely downloaded from the site "http)/www. 
bde.es" , and are described in Gomez and MaravaH (1997). They can also be 
supplied by the second author upon request. 
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Appendix B 

B.l ARIMA-model-based decomposition of a time se­
nes 

For the type of quarterly series considered in this work I we briefly summarize 
the AMB decomposition method, as originally developed by Burman (1980) 
and Hillmer and Tiao ( 1982). The method starts by identifying an ARIMA 
model for the observed series. Assume this model is given by an expression of 
the type: 

\7\7,x, = O(B)a" a, � niid(O, Va) ,  (B.1)  

where, for simplicity, we assume that q (the order of O(B)) ::; 5 and that the 
model is invertible. Next, components are derived, such that they conform to 
the basic features of a trend, a seasonal, and an irregular component, and that 
they aggregate into the observed model (6.1) .  Considering that \7\7, factorizes 
into "\723, the series is seen to contain nonstationary trend (or trend-cycle) and 
seasonal components. The series is decomposed, then, into 

(B.2) 

where Ptl St} and Ut denote the trend-cycle, seasonal, and irregular components, 
respectively, the latter being a stationary process. 

The following models are assumed for the components 

\7'p, = Op(B)ap" ap' � niid(O, Vp) 
Ss, = Op(B)a,,, a" � niid(O, Va) 

u, � niid(O, Va) 

(B.3a) 

(B.3b) 
(B.3c) 

where apt, ad and tit are mutually uncorrelated white noise variables . We refer 
to (B.3) as the (unobserved component) "structural model" associated with 
the reduced form model (B.1) .  Applying the operator \7\7, to both sides of 
(8.2), the identity 

(BA) 
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is obtained. The l.h.s. of (B.4) is an MA(5) process. Setting the order of 
Op( B), qp, equal to 2, and that of 0,( B), q" equal to 3, all terms of the sum in 
the r.h.s. of (B.4) are also MA(5). Thus we assume, in general, qp = 2, q, = 3 
and equating the ACVF of both sides of (B.4), a system of 6 equations are 
obtained (one for each nonzero covariance). The unknowns in the system are 
the 2 parameters in Op(B), the 3 parameters in O,(B), plus the variances Vp , V; ,  
and Vu; a total of 8 unknowns. There i s ,  as a consequence, an infinite number 
of solutions to (B.4). 

Denote a solution that implies components as in (B.3) with nonnegative spectra 
an admissible decomposition. The structural model (B.3) will not be identified, 
in general, because an infinite number of admissible decompositions are possi­
ble. The AMB method solves this underidentification problem by maximizing 
the variance of the noise VUJ which implies inducing a. zero in the spectra of 
(B.3a) and (B.3b). The spectral zero translates into a unit root in Op(B) and 
in O,(B),  so that the two components p, and s, are noinvertible. This par­
ticular solution to the identification problem is referred to as the " canonica}" 
decomposition (see Box, Hillmer and Tiao, 1978, and Pierce, 1979); from all 
infinite solutions of the type (B.3), the canonical one maximizes the stability of 
the trend-cycle and seasonal components that are compatible with the model 
(B.l) for the observed series. Notice that the spectrum of p, should display 
the zero at the frequency 7r, since it should be a decreasing function of w in 
the interval (0, IT) . Thus the trend-cycle MA polynomial can be factorized as 
Op( B) = ( 1  + aB)(1 + B). The zero in the spectrum of s, may occur at w = 0 or 
at a frequency roughly halfway between the two seasonal frequencies w = 7r /2 
and w = 7r .  

The AMB method computes the trend-cycle, seasonal, and irregular compo­
nent estimators as the MMSE ("optimal" ) estimators based on the available 
series [Xtl = [Xl, ' . " xT1· Under our assumptions, these estimators are also con­
ditional expectations of the type E(componentl [x,]), and they are obtained 
using the Wiener-Kolmogorov filter (see Bell, 1984). For a series extending 
from t = -00 to t = 00, that follows model (B.l), assume we are interested in 
estimating a component, which we refer to as the "signal" .  the model for the 
signal can be expressed as 

<I>,(B)8, = O,(B)a" , a" � niid(O, V,) .  

An easy way to derive the WK filter for s ,  i s  the following. Group the com-
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ponents that are not St into a "non-signal" (or noise) component nt) an let nt 
follow the model 

4>n(B)n, = On(B)an" an' � niid(O, v,,) ,  

then the signal estimator i s  given by 

. _ [V; O,(B)4>n(B) O,(F)4>n(F)] 
s, 

- Va O(B) O(F) x" 

where the brackets contain the WK filter. This filter is symmetric and can be 
seen as the ACVF of the model 

O(B)z, = [O,(B)4>n(B)]b" b, � niid(O, 11, ) .  Va (B.5a) 

Applying this result to model (B.3), the WK filter to estimate the trend-cycle 
component is equal to the ACVF of the model 

O(B)z, = [Op(B)S]b" b, � niid(O, :;) ; a 
for the seasonal component it is given by the ACVF of 

O(B)z, = [O,(B)'i7']b" b, � niid(O, 11, ); 
Va 

and for the irregular component, by the ACVF of 

O(B)z, = 'i7'i74b" b, � niid(O, ::. ) . 

(B.5b) 

(B.5c) 

Notice that this last model is the "inverse" model of (B .1 ) ,  which is assumed 
to be known. Also invertibility of (B .1 )  guarantees stationarity of the models 
in (B.5) and hence the 3 WK filters will converge in B and in F. 

For a finite realization, as seen in Cleveland and Tiao (1976) ,  the optimal 
estimator of the signal is equal to the WK filter applied to the available se­
ries extended with optimal forecasts and backcasts obtained with (B. 1 ) .  An 
extremely efficient way to compute this estimator is the Burman-Wilson algo­
rithm described in Burman (1980). 
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B.2 Equivalence ofthe full Hodrick-Prescott and ARIMA­
based approaches 

We consider an observed time series that follows the model 

'\l'\l.x, = O(B)a" Var(a,) = 1 ,  (B.6) 

where the polynomial O(B) is invertible, and a, is a zero mean niid (i.e., white 
noise) innovation. The units are standardarized by setting V. = 1 .  For a quar­
terly economic series model (8.6) is quite general, and further generalizations 
would complica.te notation unnecessarily; moreover, the 4 series considered in 
the example are particular cases of (8.6), where O(B) is a finite, 2-parameter, 
MA term. 

The AMB decomposition of x, yields a trend-cycle component p" a seasonal 
component Sf, and an irregular component Ut) such that 

Xt = Pt + St + Ut 

where the models for the components are of the type 

'\l2p, = Op(B)ap" Var(ap,) = Vp, 
Ss, = O,(B)a" , Var(a,,) = Y" 
u, = Ou(B)au" Var(au,) = Vu, 

(B.7) 

(B.8) 
(B.9) 

(B ID) 

and Op(B)ap" 0,( B)a" and Ou( B)au, are mutually orthogonal stationary pre>­
cesses. The optimal estimator of p" expressed with the WK filter, is given 
by 

• [ Op(B)S Op(F)S] p, = If" O(B) O(F) 
x, . (B.11 )  

Consider now the WK expression of the HP filter explained in Section 2. Given 
A (the HP-filter parameter in its standard version,) setting A = Vo/Vm,  and 
considering (2.6) , one obtains the polynomial 01lP(B) and the variance Vd from 
the identity 

(B. 12) 
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(the easiest procedure is to factorize the spectrum of the r.h.s.; see the Ap­
pendix in Maravall and Mathis, 1994). Define 

Expression (B.12) implies that the following constraint will be satisfied 

(B.13) 

From (2.10), application of the HP filter to obtain the cycle from the trend­
cycle estimator Pt yields 

(For the usual case ), = 1600, as was seen earlier, standarizing by setting 
Vm = 1 , 11" = 1600, it is obtained that k,(HP) = 1/2001.4, km(HP) = .7994, and 
OHP(B) = 1 - 1.7771B + .7994B' . )  Using (B.11)  and letting 

the estimator Ce can be expressed in terms of the observed series as 

Op(B) 
OHP(B) 
ii( BJ 
\7\7 4 

(B .14) 

This last expression can be seen as the ratio of two pseudo-ACVF (see Hatanaka 
and Suzuki, 1967), the one in the denominator being that of the observed se­
ries, and the one in the numerator that of the component. This shows that Ct 
is the WK (MMSE) estimator of a cycle Ct that follows the model 

(B. 15) 
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when x, is the output of model (B.6) 

In an analoguos manner, replacing x ,  by p, in expression (2.8) and using (B . l l ) ,  
the long-term trend estimator m" obtained by applying the HP trend filter to 
the trend-cycle estimator (;t1 can be expressed in terms of the observed series 
x, as 

Op(B) 
OHP(B)'V' 

O(B} 
'V 'V , 

Op(F) 
OHP(F)'V' 

O(F} 
'V'V, 

The expression can be seen as a ratio of pseudo-ACVF, which directly shows 
that m, is the WK (MMSE) estimator of the component m" given by the 
model 

(B.16) 

when x, is the output of model (B.6) .  

Consider the unobserved component model formed by equation (B.9) for the 
seasonal component s" (B. l0) for the irregular component u" (B . 15) for the 
cyclical component Ct, and (B.16) for the trend component m,. Their sum 
(m, + Ct + s, + u,) is equal to x,. To see this, let 

Yt = mt + Ct + St + Ut 

Since, by construction, St and tit are the same as those in (B.7)' to show that 
y, = x, it suffices to show that p, = m, +c" or equivalently 'V'p, = 'V'( m, +c,) .  
From (B.15) and (B.16)  

, Op(B) Op(B)'V' 
z, = 'V (m, + c,) = OHP(B) am' + 

OHP(B) ad ·  

Since 'V'p, and z, are both zero-mean, normally distributed variables, they will 
he the same if they have identical autocovariance generating functions. The 
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ACVF of Zt is equal to 

Op(B)Op(F) km + Op(B)V" Op(F)fj' k, = 

BHP(B)BHP(F) BHP(B)BHP(F) 

where use has been made of (B.14). In view of (B.13) ,  the term in brackets is 1 ,  
both \l'Pt and Zt have identical ACVF, and hence Yt = X, .  That is, underlying 
the 2-step procedure we followed, there is a full unobserved component model 
whose MMSE estimators yield identical results. 

It should be mentioned that the equivalence of the 2-step and direct model 
approach has been shown for historical estimators. For preliminary estimators 
(i.e., estimators at the end points of the series) ,  the direct model approach, 
implemented via the WK filter, offers directly optimal treatment of end points 
by extending the series Xt (long enough) with the correct model (B.6). Thus 
the poor behavior of the estimate for recent periods would be considerably 
improved. 

If one uses the seasonally adjusted series instead of the trend�cycle as input for 
the HP filter, the previous unobserved component model is trivially modified. 
Let nt denote the seasonally adjusted series 

From (B.9) and (B.10), the model for nt is also of the type 

\l'nt = Bn(B)ant, Var(ant) = v., (B. 17)  

where On( B) and Vn are straightforward to obtain from the factorization of 
Bp(B)apt + \l'Bu(B)aut. Deletting the component tit, the unobserved com­
ponent model is given by (B.9) for the seasonal component, and (B.15) and 
(B.16), with Bp(B) and Vp replaced by Bn(B) and Vn, for the cycle and the 
trend. These replacements are equivalent to adding the noise Ut to the input 
in the HP filter, which deteriorates the signal, as was seen in Section 5. 
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B.3 Complete unobserved component model for the 4 
series of the example 

For all cases, the decomposition is given by 

where 

• Xt = observed series, 

Xt = nt + Sf, 
nt = Pt + Ut, 
Pt = mf + Ct ,  

• n, = seasonally adjusted (SA) series, 

• Sf = seasonal component, 

• Pt = trend-cycle component, 

• Ut = irregular component, 

• mt = trend component, 

• Ct = cyclical component . 

The series are standarized by setting Va. = 1 ;  "w.n." denotes a white-noise 
variable. 

The components are assumed mutually orthogonal. Given >. (the parameter of 
the HP filter), all component models are fully derived simply from the ARIMA 
model for the observed series. 

We list next the models for each one of the components. (The factorization of 
the MA polynomials for the trend-cycle and SA series is also given.) 

1 Cement Consumption (series CC) 

Model for series: 

'i7'i74x, = ( 1  - .405B)(1 - .957B4)a,. 
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AMB decomposition into trend-cycle, seasonal, and irregular components 

Trend-cycle: 

'\l'p, = (1 + .011B - .989B')ap' = ( 1  - .989B)(1  + B)ap" Vp = .0856 

Seasonal: 

Irregular: 

SA series: 

Ss, = ( 1  - .049B - .495B' - .455B3)a", V. = .00023 

u, = w.n(O, Vo), V. = .4723; 

'\l'n, = (1 - 1.394B + AOIB')an, = (1 - .405B)(1 - .989B)an" Vn = .9675. 

HP Decomposition of the trend-cycle into trend plus cycle. 

Trend: 

( 1 - 1.777B + .799B')'\l'm, = ( 1  + .011B - .989B')am" Vm = .43 * 10-4 

Cycle: 

( 1 - 1.777B + .799B')c, = ( 1  + .011 B  - .989B')a,,, v., = .0685; 
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2 Industrial Production Index (series IPI) 

Model for series: 

vv,x, = (1 - .299B)(1 - .721B')a,. 

AMB decomposition into trend-cycle, seasonal, and irregular components 

'Irend-cycle: 

V'p, = (1 + .078B - .922B')ap, = (1 - .922B)(1 + B)ap" Vp = .0975 

Seasonal: 

Irregular: 

SA series: 

SSt = (1 - .029B - .502B' - .527 B3)a" , V, = .0083 

u, = w.n(O, Vu) ,  V. = .3098; 

V'n, = (1 - 1.222B + .277B')an, = (1 - .301B)(I - .921B)an .. Vn = .7932. 

HP Decomposition of the trend-cycle into trend plus cycle. 

'Irend: 

(1 - 1.777B + .799B')V'm, = (1 + .078B - .922B')am .. Vm = .49 * lQ-' 

Cycle: 

( 1 - 1 .777B + .799B')c, = ( 1  + .078B - .922B')a, . . V; = .0779; 
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3 Car Registration (series CR) 

Model for series: 

V'V',x, = {I - .387 B)(I - .760B')a,. 

AMB decomposition into trend-cycle, seasonal, and irregular components 

Trend-cycle: 

V" p, = {I + .066B - .934B')ap, = {I - .934B){1 + B)ap" Vp = .0773 

Seasonal: 

Irregular: 

SA series: 

Ss, = (I - .038B - .497 B' - .465B3)a" , II, = .0069 

u, = w.n{O, Vo), V. = .369; 

V" n, = {I - 1 .322B + .362B')an, = { I  - .388B){1 - .934B)an" Vn = .82 1 .  

HP Decomposition of the trend-cycle into trend plus cycle. 

Trend: 

{ 1 - 1 .777B + .799B')V" m, = {I + .066B - .934B')am" Vm = .39 * 10-' 

Cycle: 

{I - 1.777B + .799B')c, = {I + .066B - .934B')a", V, = .0618; 
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4 Airline Passengers (series AP) 

Model for series: 

\7\74X, = ( 1  - .392B)(1 - .762B4)a,. 

AMB decomposition into trend-cycle, seasonal, and irregula.r components 

Trend-cycle: 

\7'p, = ( 1  + .065B - .935B')ap, = ( 1  - .935B)(1 + B)ap" Vp = .0763 

Seasonal: 

Irregular: 

SA series: 

Ss, = ( 1  - .041B - .496B' - .463B3)a,., V, = .0067 

u, = w.n(O, V.),  V. = .3730; 

\7'"" = (1 - 1.327 B + .367 B2)a., = ( 1  - .393B)(1 - .934B)a.t, V. = .823. 

HP Decomposition of the trend-cycle into trend plus cycle. 

Trend: 

( 1  - 1.777 B + .799B')\7'm, = (1 + .065B - .935B')am., Vm = .38 * 10-' 

Cycle: 

(1 - 1.777B + .799B')", = (1 + .065B - .935B')a,., V, = .0610; 
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The results can be summarized as follows. All four models for the series are 
relatively close, in particular for the series CR and AP. 

The trend-cycle component is always an IMA(2,2) model, where the MA poly­
nomial can be factorized as 

Op(B) = ( 1  - OB)(1 + B), 

with 0 close to .95. The model is thus very close to a non invertible IMA(I , l )  
model with mean, and with MA root B=-1 which implies a monotonically 
decreasing spectrum with a zero for the frequency w = 7r rads. (This model is 
a particular case of the tangent family of Butterworth filters.) 

The seasonal component always follows an ARMA(3,3) model, with the non­
stationary AR polynomial S = 1 + B + B' + Ba The seasonal innovation 
variance of the series CC indicates a highly stable seasonal component, while 
the series IPI contains the most unstable one. All MA polynomials for the 
seasonal component contain the root B=l and hence the component spectrum 
will present a zero for the zero frequency. 

The irregular component is always white noise. Between 30% and 50% of the 
series uncertainty (as measured by the variance of the one-step-ahead forecast 
error) is caused by the presence of noise. The remaining uncertainty is associ­
ated with the stochastic features of the trend-cycle and seasonal components. 

The seasonally adjusted series is always an IMA(2,2) model, and the factor­
ization of the MA shows that one of the roots is very close to B=.95. As was 
the case with the trend-cycle, the model is,. thus, very close to an IMA(I ,I )  
model with mean. Since the other MA root is  moderately small, the model for 
the SA series is, in the 4 cases, not far from the popular "random walk plus 
drift" model. 

The models for the previous components are fully derived from the ARIMA 
model for the observed series. To split the trend-cycle into trend plus cycle 
we need the value of >. (or, equivalently, as was seen in Section 4.3.3, the main 
period of the cycle. )  

The models for the trend and for the cycle both preserve the MA polynomial 
Op(B) of the trend-cycle model, and hence will display a spectral zero for the 7r 

frequency. The model for the cycle is always a stationary ARMA(2,2) model 
with the AR polynomial determined by >. (>. therefore determines the period 
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of the spectral peak of the cycle) .  It is also seen that most of the variance of 
the trend-cycle innovation is absorbed by the cycle itself. Finally, the model 
for the trend is an ARIMA(2,2,2) process, with the stationary AR polynomial 
equal to that of the cycle, and its innovation variance strongly reduced (this 
reduction is also determined by A . )  
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