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ASYMPTOTIC BEHAVIOUR FOR A PHASE
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Abstract

In this paper we analyze the long time behavior of a phase–
field model by showing the existence of global compact attractors
in the strong norm of high order Sobolev spaces.

1 Introduction

In this paper we will study the asymptotic behavior of a coupled sys-
tems of evolutionary PDE’s known as phase–field equations. The system
includes two unknown functions, u(t, x) and ϕ(t, x), which respectively
represent the temperature at the point x at time t of a substance which
may appear in two different phases (liquid-solid, for example) and ϕ(t, x)
is the phase–field function, or order parameter, which represents a local
phase average and so describes the current phase at the site x. Phase–
field equations have been introduced to describe and analyze phase tran-
sitions and in particular, the motion of interfaces; see [8, 9, 10, 11] for
some explanations on the physical relevance of such models. In this di-
rection, the formation of layered patterns that evolve in time has been
established. Moreover, metastability, that is solutions that evolve very
slowly in time, apparently sitting on an equilibrium have also been con-
structed; see [11, 13, 14].

On the other hand, phase–field equations have been used as a general
device to obtain several other well known models of phase transitions
and/or motion of interfaces as singular limits, such as Stefan, Hele–Shaw
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and Cahn–Hilliard models; see for example [9, 10, 12, 19, 20, 22]. Finally
other more sophisticated models have been also introduced and analyzed
in [18, 23].

Here we will consider the following semilinear system

{
τϕt = ξ2Δϕ − g(ϕ) + 2u in Ω × R

+

ut + l
2ϕt = kΔu in Ω × R

+ (1.1)

where, as indicated above, u(t, x) represents the local temperature of the
melt while ϕ(t, x) represents a local phase average, Ω is an open, smooth
bounded set in R

N , N ≥ 1, with smooth boundary Γ. The nonlinear
function g(ϕ) is costumarily taken to be 1

2(ϕ3 − ϕ) but we consider a
more general and sufficiently regular function; see [8].

We consider (1.1) under either one of the following boundary condi-
tions

• (D) Dirichlet boundary conditions

u = ϕ = 0 on Γ × R
+. (1.2)

which have been considered in [4, 5, 6] and [8], among others.

• (Ne) Neumann boundary conditions, as can be found, for example,
in [4, 5, 6] and [23]

∂u

∂n
=

∂ϕ

∂n
= 0 on Γ × R

+ (1.3)

where n is the outward unit normal vector on Γ.

• (P) Periodic boundary conditions in Ω =
N∏

i=1

(0, Li), with Li > 0,

which have been considered among others in [5] and [6],

ϕ|xi=0 = ϕ|xi=Li ,
∂ϕ

∂xi
|xi=0 =

∂ϕ

∂xi
|xi=Li , i = 1, . . . , N (1.4)

u|xi=0 = u|xi=Li ,
∂u

∂xi
|xi=0 =

∂u

∂xi
|xi=Li , i = 1, . . . , N (1.5)

214 REVISTA MATEMÁTICA COMPLUTENSE
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i.e. u, ϕ and their derivatives are equal in opposite faces of Γ.
Finally, we consider an initial condition at t = 0,

ϕ(x, 0) = ϕ0(x), u(x, 0) = u0(x), x ∈ Ω. (1.6)

The system above can be rewritten in an evolution form by means
of the enthalpy function v = u + l

2ϕ, and the resulting system reads

{
ϕt = k1Δϕ − h(ϕ) − bϕ + av, ϕ(0) = ϕ0

vt = k2Δv − cΔϕ, v(0) = v0 = u0 + l
2ϕ0

, (1.7)

supplemented with one of the boundary conditions above, (1.2), (1.3),
or (1.4)–(1.5) for ϕ and v and with

k1 =
ξ2

τ
> 0, k2 = k > 0,

a =
2
τ

> 0, b =
l

τ
> 0, c =

kl

2
> 0, h(ϕ) =

1
τ
g(ϕ). (1.8)

Several results are available on the asymptotic behavior in time of the
phase field equations above; see [4, 5, 6, 7] for example. All these results
use in an essential way the fact that there is a natural energy functional
that plays the role of a Lyapunov functional for the solutions of (1.1),
which gives enough information to control the L2 norm of the gradient
of the order parameter and the L2 norm of the enthalpy function. With
this information a global compact attractor, or some finite dimensional
exponentially attracting attractor or even inertial sets and manifolds
have been constructed; see the references above. Due to the gradient–
like structure of the system, the global attractor is described as the
unstable set of the equilibria and moreover, in a generic situation, it
is given by the union of the unstable set of each equilibria, [15]. This
in particular implies that the omega–limit set of each single solution is
made up of equilibria and in a generic situation, each solution converges
to a single equilibria.

Hence we address here the question of the asymptotic behavior of so-
lutions for smoother initial data which are taken in higher order Sobolev
spaces. In this case the energy estimate mentioned before gives no fur-
ther information on the stronger norm of the function space in which
the initial data lives. However one would like to have some control of
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the solution in this stronger norm. This problem can be also brought
up as the regularity of the global attractor. For example one may ask
about estimates of the size of the attractor in stronger norms and, more
important, if the attractors attracts solutions in stronger norms; in par-
ticular this contains the question about if the equilibria attract solutions
strongly.

When approaching this problem, one observes that the phase field
model above lacks of maximum or comparison principles so one looses
one of the strongest tools in analyzing nonlinear pde’s. On the other
hand energy estimates on the solutions rapidly become intractable, and
therefore they become quite useless in controlling higher order deriva-
tives of solutions. Therefore our approach consists in exploiting the
smoothing effect of the solutions combined with the natural energy es-
timate obtained through the Lyapunov functional to prove global ex-
istence in higher order Sobolev spaces and to analyze the asymptotic
behavior for large times.

The paper is organized as follows. First, in Section 2 we prove the
local existence and regularity of solutions of system (1.1) when the initial
data belongs to higher order Sobolev spaces. For this we will rely on the
results in [2] from where regularity will be also obtained. In Section 3 we
prove the local solution is globally defined in these spaces by suitably
using the natural energy estimates and the regularity obtained in the
previous section. Finally in Section 4 we study the dynamics in these
spaces obtaining regularity results on the attractor and the attraction
in stronger norms.

2 Local existence and regularity of solutions

In this section we show local existence, uniqueness and regularity of
solutions of (1.7) for suitable classes of initial data. In what follows we
introduce some notations that will be used throughout the paper. We
denote by −ΔD the Laplacian operator in Lp(Ω), 1 < p < ∞, with
Dirichlet boundary conditions (1.2), i.e. with domain W 2,p

D = W 2,p(Ω)∩
W 1,p

0 (Ω). In the same way, −ΔNe represents the Laplacian in Lp(Ω),
1 < p < ∞, with Neumann boundary conditions (1.3), i.e. with domain
W 2,p

Ne
= {u ∈ W 2,p(Ω), ∂u

∂n = 0}. Finally, −ΔP represents the Laplacian
with periodic boundary conditions (1.4)–(1.5), in Lp

per(Ω), 1 < p < ∞,
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with domain W 2,p
P = W 2,p

per(Ω), and Ω =
N∏

i=1

(0, Li), Li > 0, where the

subscript “per” refers to periodicity i.e. to functions in R
n such that

u(x + Liei) = u(x), a.e. x ∈ R
N , and for i = 1, . . . , N , where {ei}N

i=1

represents the canonical basis of R
N .

To shorten the notation, we will consider the letter B to represent
either D or Ne or P and then we will use the notation Lp

B, W 2,p
B and

−ΔB, so that the three types of boundary conditions can be considered
simultaneously.

Also we will denote by W 1,p
B , 1 < p < ∞, the spaces W 1,p

D = W 1,p
0 (Ω),

W 1,p
Ne

= {v ∈ W 1,p(Ω), ∂u
∂n = 0}, W 1,p

P = W 1,p
per(Ω). Since −ΔB is a

sectorial operator in Lp
B, with domain W 2,p

B and compact resolvent, we
have an associated scale of interpolation spaces, as constructed in [1, 2,
16], that will be denoted Xα

B, for α ≥ 0, and satisfy Xα
B ↪→ W 2α,p(Ω)

where the latter space is the usual Sobolev space. In particular W 1,p
B , as

defined above, coincides with X
1
2
B . In general we will denote by W 2α,p

B

the space Xα
B. When p = 2 we will also denote Wα,2

B by Hα
B.

Moreover, the spaces

W−2α,p
B = (W 2α,p′

B )′

with p′ = p
p−1 and α > 0, are well defined thanks to interpolation and

extrapolation, see [1, 2]. In particular W−1,p
B

.= (W 1,p′
B )′.

With these notations, we can write (1.7), with one of the boundary
conditions above (1.2), (1.3) or (1.4)–(1.5), as

Ut + ABU = G(U)

where U = (ϕ, v), and

AB =
( −k1ΔB −aI

cΔB −k2ΔB

)
and G(U) =

( −h(ϕ) − bϕ
0

)
. (2.1)

First, we prove that AB is a sectorial operator on suitable spaces
and thus −AB generates an analytic semigroup. The next result is
based on elementary arguments of perturbation and regularity for linear
equations, so we just sketch the proof. For this, we consider AB as a
perturbation of its diagonal part which is a sectorial operator, and then
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apply Theorem 1.3.2 page 19 in [16]; see also [1, 2]. The main difficulty
is due to the therm cΔBϕ, which is of the same order than the diagonal
part of AB. Therefore, we consider the realization of AB in the space
YB = W 2α,p

B × W 2β,p
B with different exponents α and β, so the different

norms in the two components help to compensate the large size of the
perturbation. Thus we get

Proposition 2.1.
For 1 < p < ∞ and α, β such that 0 < α − β < 1, the operator

AB =
( −k1ΔB −aI

cΔB −k2ΔB

)

with domain D(AB) = W
2(α+1),p
B × W

2(β+1),p
B (2.2)

is a sectorial operator in YB = W 2α,p
B × W 2β,p

B with compact resolvent.
Thus, −AB generates a compact analytic semigroup in W 2α,p

B × W 2β,p
B ,

denoted by {e−ABt}t≥0, and the associated scale of spaces is given by

Y ε
B = W

2(α+ε),p
B × W

2(β+ε),p
B

for 0 ≤ ε ≤ 1.
In particular, if (ϕ0, v0) ∈ W 2α,p

B × W 2β,p
B , there exists a unique so-

lution of
{

ϕt − k1ΔBϕ − av = 0 in Ω × R
+

vt + cΔBϕ − k2ΔBv = 0 in Ω × R
+ (2.3)

which is given by (ϕ(t), v(t)) = e−ABt(ϕ0, v0), satisfies (2.3) as an equal-
ity in W 2α,p

B ×W 2β,p
B and (ϕ, v) ∈ Cω((0,∞),W 2(α+γ),p

B ×W
2(β+γ),p
B ) for

every γ ∈ R. Moreover, ϕ, v ∈ C∞((0,∞) × Ω).

Now we turn to the local existence of solutions of (1.7).

Theorem 2.2. For 1 < p < ∞, α and β satisfying 0 < α − β < 1,
assume ε ∈ [0, 1) is such that the mapping

h : ϕ ∈ W
2(α+ε),p
B → h(ϕ) ∈ W 2α,p

B (2.4)

is locally Lipschitz.
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Then, for every (ϕ0, v0) ∈ W
2(α+ε),p
B ×W

2(β+ε),p
B , there exists a unique

solution of (1.7) in [0, T ), with T = T (ϕ0, v0) > 0. Moreover, the
solution satisfies

(ϕ, v) ∈ C([0, T ),W 2(α+ε),p
B ×W

2(β+ε),p
B )∩C((0, T ),W 2(α+1),p

B ×W
2(β+1),p
B )

(ϕt, vt) ∈ C((0, T ),W 2(α+θ),p
B × W

2(β+θ),p
B )

for every 0 ≤ θ < 1 and (ϕ, v) satisfies (1.7) as an equality in W 2α,p
B ×

W 2β,p
B .
If h maps bounded sets into bounded sets and we assume the solution

(ϕ, v) has been extended to a maximal interval of time [0, Tmax), we have
that either Tmax = +∞, or the solution blows–up in the W

2(α+ε),p
B ×

W
2(β+ε),p
B norm as t → Tmax.

Proof. From Proposition 2.1, we have that AB is a sectorial operator
in YB = W 2α,p

B × W 2β,p
B , and from (2.4) we get that the mapping G,

defined in (2.1), is locally Lipschitz from Y ε
B = W

2(α+ε),p
B × W

2(β+ε),p
B

into YB = W 2α,p
B × W 2β,p

B . From [1, 2, 16] we get the result.

Next, we prove the existence of solutions of (1.7) with initial data
in Wn,p

B × Wn−1,p
B for some n ∈ N. These solutions will satisfy the

equations as an equality in the space Wn−1,p
B × Wn−2,p

B . We start with
n = 1, which, with the notations on Theorem 2.2, corresponds to α = 0,
β = −1

2 and ε = 1
2 , and we must show that, under some growth and

regularity conditions on h, that h : W 1,p
B → Lp

B is locally Lipschitz on
bounded set.

Proposition 2.3. For 1 < p < ∞ assume that h satisfies one the
following conditions
i) h ∈ C1(R), if N < p.
ii) h ∈ C1(R) satisfies

|h(s)| ≤ C(1 + |s|r) and |h′(s)| ≤ C(1 + |s|r−1), s ∈ R (2.5)

if N ≥ p, with r such that

1 ≤ r

{
< ∞ if N = p
≤ N

N−p if N > p . (2.6)
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Then, given an initial condition (ϕ0, v0) ∈ W 1,p
B × Lp

B there exists a
unique local solution (ϕ, v) ∈ C([0, T ),W 1,p

B ×Lp
B) of (1.7) satisfying the

system as an equality in Lp
B ×W−1,p

B . Moreover, for every 0 < θ ≤ 1 we
have that

(ϕ, v) ∈ C((0, T ),W 2,p
B × W 1,p

B ) and

(ϕt, vt) ∈ C((0, T ),W 2−θ,p
B × W 1−θ,p

B ).

If Tmax is the maximal existence time then either Tmax = ∞ or the
solution blows–up in the W 1,p

B × Lp
B norm as t → Tmax.

Proof. If we prove that h : W 1,p
B → Lp

B is locally Lipschitz and maps
bounded sets into bounded sets, then Theorem 2.2 gives the result with
α = 0, β = −1

2 and ε = 1
2 .

If N < p, from Sobolev embeddings we get W 1,p
B ↪→ C(Ω). From

this and since h is of class C1, we conclude. On the other hand, if
N ≥ p, from (2.5) we have that h : Lpr

B → Lp
B is locally Lipschitz and

maps bounded sets into bounded sets. Hence, if N = p, from Sobolev
embedding, we get W 1,p

B ↪→ Ls
B for every s ∈ (1,∞), while if N > p,

then W 1,p
B ↪→ Ls

B for s ≤ Np
N−p . Thus taking s = pr we obtain the result.

Next, we show that if h is of class C2, we have local existence for (1.7),
with initial data (ϕ0, v0) ∈ W 2,p

B × W 1,p
B . For this, we apply Theorem

2.2 in the space W 1,p
B × Lp

B. Note that W 2,p
B × W 1,p

B corresponds in
Theorem 2.2 to α = ε = 1

2 and β = 0. Hence, we have to prove that
h : W 2,p

B → W 1,p
B is locally Lipschitz.

Proposition 2.4. Let 1 < p < ∞ and assume that h satisfies h(0) = 0
if B = D and one of the following hypotheses:
i) h ∈ C2(R) if N < 2p.
ii) h ∈ C2(R) and satisfies

|h(s)| ≤ C(1 + |s|r), |h′(s)| ≤ C(1 + |s|r−1), |h′′(s)| ≤ C(1 + |s|r−2)
(2.7)

if N/3 ≤ p < N/2, with r such that

2 ≤ r

{
< ∞ if N = 2p
≤ N−p

N−2p if N
3 ≤ p < N

2
. (2.8)
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Then, for every (ϕ0, v0) ∈ W 2,p
B × W 1,p

B there exists a local solution,
(ϕ, v), of (1.7) satisfying the equations as an equality in W 1,p

B ×Lp
B. The

solution also satisfies

(ϕ, v) ∈ C([0, T ),W 2,p
B × W 1,p

B ) ∩ C((0, T ),W 3,p
B × W 2,p

B )

(ϕt, vt) ∈ C((0, T ),W 3−θ,p
B × W 2−θ,p

B )

for every θ ∈ (0, 1]. Moreover, if Tmax is the maximal existence time,
then either Tmax = ∞ or the solution blows–up in the W 2,p

B ×W 1,p
B norm

as t → Tmax.

Proof. The result comes from Theorem 2.2 with α = ε = 1
2 and β =

0 provided h : W 2,p
B → W 1,p

B is locally Lipschitz and maps bounded
sets into bounded sets. Note that for this if B = D, from boundary
conditions in W 1,p

B , we must have h(0) = 0.
Therefore, we consider a bounded set K in W 2,p

B and show that for
some constant M1 > 0

‖h(ϕ1) − h(ϕ2)‖W 1,p
B

≤ M1‖ϕ1 − ϕ2‖W 2,p
B

for all ϕ1, ϕ2 ∈ K. (2.9)

For this it is enough to prove that

h : W 2,p
B → Lp

B (2.10)

is Lipschitz on bounded sets and

‖∇(h(ϕ1) − h(ϕ2))‖Lp
B
≤ M2‖ϕ1 − ϕ2‖W 2,p

B
, (2.11)

for every ϕ1, ϕ2 in K. Also note that

‖∇(h(ϕ1) − h(ϕ2))‖Lp
B
≤

≤ ‖h′(ϕ1)(∇ϕ1 −∇ϕ2)‖Lp
B

+ ‖(h′(ϕ1) − h′(ϕ2))∇ϕ2‖Lp
B
. (2.12)

If N < 2p from Sobolev embeddings W 2,p
B ↪→ C(Ω), and therefore

‖ϕ‖L∞ ≤ c1, for every ϕ ∈ K. Therefore,

‖h(ϕ1) − h(ϕ2)‖Lp
B
≤ c2‖ϕ1 − ϕ2‖Lp

B
≤ c3‖ϕ1 − ϕ2‖W 2,p

B

for some c2, c3 > 0 and we obtain (2.10). Next, observe that
‖h′(ϕ1)(∇ϕ1 −∇ϕ2)‖Lp

B
≤ ‖h′(ϕ1)‖L∞‖(∇ϕ1 −∇ϕ2)‖Lp

B
≤ c4‖ϕ1 − ϕ2‖W 2,p

B
.
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Finally, since ‖(h′(ϕ1)−h′(ϕ2))∇ϕ2‖Lp
B
≤ ‖h′(ϕ1)−h′(ϕ2)‖L∞‖∇ϕ2‖Lp

B
,

again we get, using h ∈ C2(R),

‖h′(ϕ1) − h′(ϕ2)‖L∞ ≤ c5‖ϕ1 − ϕ2‖L∞ ≤ c6‖ϕ1 − ϕ2‖W 2,p
B

.

Thus, using (2.12) we obtain (2.11), (2.10) and so (2.9).
If N ≥ 2p and h(s) satisfies (2.7), then h : Lpr

B → Lp
B, is Lipschitz

and bounded on bounded sets. Then, to prove (2.10) it suffices to show
that W 2,p

B ⊂ Lpr
B . Indeed, if N = 2p, from Sobolev embeddings we have

that W 2,p
B ↪→ Ls

B for every s < ∞ while if N > 2p, then W 2,p
B ⊂ Ls

B for
s ≤ Np

N−2p and we can take s = pr, since in (2.8) we have r ≤ N−p
N−2p ≤

N
N−2p .

To conclude, we prove (2.11). From (2.12), and using Hölder’s in-
equality, we have that

‖∇(h(ϕ1) − h(ϕ2))‖Lp
B
≤

≤ ‖h′(ϕ1)‖Lq
B
‖∇ϕ1 −∇ϕ2‖Lq′

B

+ ‖h′(ϕ1) − h′(ϕ2)‖Lq
B
‖∇ϕ2‖Lq′

B

where 1
q + 1

q′ = 1
p have to be chosen such that h′(ϕi) ∈ Lq

B and ∇ϕi ∈ Lq′
B.

Now observe that this choice is possible since, when ϕ ∈ W 2,p
B , Sobolev

embeddings give ∇ϕ ∈ W 1,p
B ↪→ Lq′

B for 1 − N
p ≥ −N

q′ and then we can

take q′ = Np
N−p and q = N .

Thus, it remains to prove that h′ : W 2,p
B → LN

B , is Lipschitz and
bounded on bounded sets. But from (2.7), h′ : L

N(r−1)
B → LN

B is
Lipschitz on bounded sets, provided r ≥ 2, so it suffices to have that
W 2,p

B ↪→ L
N(r−1)
B and then we conclude. Indeed, Sobolev embeddings,

as in the preceding paragraph, concludes when N = 2p for any r ≥ 2,
while when N > 2p we must have r ≤ N−p

N−2p which is compatible with
r ≥ 2 only if N ≤ 3p.

Observe that Theorem 2.2 may be used also if h is of class Cn,
n ≥ 3, to obtain a local solution of (1.7) with initial data in Wn,p

B ×
Wn−1,p

B . With the notations of Theorem 2.2 this situation corresponds
to α = n−1

2 , β = n
2 − 1 and ε = 1

2 . Therefore, one must show that
h : Wn,p

B → Wn−1,p
B is locally Lipschitz.

Also note that if h : Wn,p(Ω) → Wn−1,p(Ω) is locally Lipschitz, and
since the space Wn−1,p

B may include some boundary conditions, then
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some conditions must be imposed on h, to obtain that h maps Wn,p
B into

Wn−1,p
B .
In particular in the case of periodic boundary conditions, if h :

Wn,p(Ω) → Wn−1,p(Ω) then with no further requirements we will auto-
matically have h(Wn,p

P ) ↪→ Wn−1,p
P .

In the case of Dirichlet boundary conditions, u ∈ Wn,p
D satisfies that,

on Γ, (−Δ)ju = 0, for j = 0, 1, . . . , k, if n = 2k + 1 or n = 2k + 2, so we
need to impose that some derivatives of h are zero at zero. In particular
h(0) = 0 will be always required.

The case of Neumann boundary conditions is the more involved one
since the boundary conditions in Wn,p

Ne
are of the form ∂

∂n((−Δ)ju) = 0,
for j = 0, . . . , k−1 if n = 2k or n = 2k+1 and then one must verify that
∂
∂n((−Δ)j(h(u))) = 0, for j = 0, . . . , k−2 if n = 2k or for j = 0, . . . , k−1
if n = 2k+1. When n is large checking this property becomes nontrivial.
However note that ∂

∂nh(u) = h′(u)∂u
∂n = 0, provided that the normal

derivative of u vanishes on Γ; so the boundary condition for j = 0 will
be always satisfied. Indeed it can be easily verified that for n ≤ 4 no
further assumptions are needed on h.

In fact we have

Lemma 2.5. Assume that h : Wn,p(Ω) → Wn−1,p(Ω) is locally Lipschitz
(respectively Lipschitz on bounded sets) and n ≥ 1.
i) If B = P , then h : Wn,p

P → Wn−1,p
P is also locally Lipschitz (respec-

tively Lipschitz on bounded sets).
ii) If B = D, we also assume that h satisfies h(0) = 0 and

hj)(0) = 0, j = 2, 3, . . . , k, if n = 2k or 2k + 1 with k ≥ 2 (2.13)

then h : Wn,p
D → Wn−1,p

D is locally Lipschitz (respectively Lipschitz on
bounded sets).
iii) If B = Ne, we assume that for n ≥ 5 and for any u ∈ Wn,p

Ne
the

following holds

∂

∂n
[(−Δ)(h(u))] = . . . =

∂

∂n
[(−Δ)k−2(h(u))] = 0, on Γ if n = 2k

(2.14)
∂

∂n
[(−Δ)(h(u))] = . . . =

∂

∂n
[(−Δ)k−1(h(u))] = 0, on Γ if n = 2k + 1.

(2.15)
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Then h : Wn,p
Ne

→ Wn−1,p
Ne

is locally Lipschitz (respectively Lipschitz
on bounded sets).

Remark 2.6. The typical nonlinearity for the phase field model, h(ϕ) =
1
2(ϕ3 −ϕ) satisfies the hypotheses of Lemma 2.5 part ii) only for n ≤ 5,
since h(0) = 0 and h′′(0) = 0 but h′′′(0) �= 0. Also, (2.14)–(2.15) are
satisfied for n ≤ 4

Also note that it is enough to verify conditions (2.14) and (2.15) for
smooth functions satisfying the boundary conditions in Wn,p

Ne
.

We will also make use of the following result

Lemma 2.7. We assume that h is of class Cn+1, n ≥ 1. Then the
function

h : Wn,p(Ω) ∩ W 1,∞(Ω) → Wn,p(Ω) ∩ W 1,∞(Ω)

is Lipschitz on bounded sets, i.e. for every bounded set K ⊂ Wn,p(Ω) ∩
W 1,∞(Ω), there exists a constant C = C(K) such that for all ϕ ∈ K we
have

‖h(ϕ1) − h(ϕ2)‖W n,p + ‖h(ϕ1) − h(ϕ2)‖W 1,∞ ≤
≤ C(‖ϕ1 − ϕ2‖W n,p + ‖ϕ1 − ϕ2‖W 1,∞).

Proof. First, note that if K is bounded in L∞(Ω) and h is of class C1

then there exists c1 > 0 such that

‖h(ϕ1) − h(ϕ2)‖L∞ ≤ c1‖ϕ1 − ϕ2‖L∞ (2.16)

for every ϕ1, ϕ2 ∈ K. Now, assume h is of class C2 and K is bounded
in W 1,∞. Then we show that there exists c2 > 0 such that

‖h(ϕ1) − h(ϕ2)‖W 1,∞ ≤ c2‖ϕ1 − ϕ2‖W 1,∞ (2.17)

for every ϕ1, ϕ2 ∈ K. Since for any i = 1, . . . , N , we have ∂
∂xi

(h(ϕ1) −
h(ϕ2)) = (h′(ϕ1) − h′(ϕ2))∂ϕ1

∂xi
+ h′(ϕ2)(∂ϕ1

∂xi
− ∂ϕ2

∂xi
) then we get

‖ ∂

∂xi
(h(ϕ1) − h(ϕ2))‖L∞ ≤

≤ ‖h′(ϕ2)‖L∞‖∂ϕ1

∂xi
− ∂ϕ2

∂xi
‖L∞ + ‖∂ϕ1

∂xi
‖L∞‖h′(ϕ1) − h′(ϕ2)‖L∞ .
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Now, using (2.16) for h′, we obtain ‖∇(h(ϕ1) − h(ϕ2))‖L∞ ≤ c3‖ϕ1 −
ϕ2‖W 1,∞ and using again (2.16) we get (2.17).

Therefore, to prove the Lemma, it is enough to show there exists
C > 0 such that for every ϕ1, ϕ2 ∈ K

‖h(ϕ1) − h(ϕ2)‖W n,p ≤ C(‖ϕ1 − ϕ2‖W n,p + ‖ϕ1 − ϕ2‖W 1,∞).

Now we proceed by induction in n. First, observe that (2.17) gives the
result for n = 1. Assume the result is true for a function of class Cn, then
given h of class Cn+1 we consider a bounded set K ⊂ Wn,p(Ω)∩W 1,∞(Ω)
and ϕ1, ϕ2 ∈ K. Let α = (α1, . . . , αN ) with |α| = n, and take i such that
αi ≥ 1. Then we can write Dα[h(ϕ1)−h(ϕ2)] = Dβ[ ∂

∂xi
(h(ϕ1)−h(ϕ2))]

with |β| = n − 1. Now, applying Dβ to

∂

∂xi
(h(ϕ1) − h(ϕ2)) =

(
h′(ϕ1) − h′(ϕ2)

) ∂ϕ1

∂xi
+ h′(ϕ2)

(
∂ϕ1

∂xi
− ∂ϕ2

∂xi

)

we get

Dα (h(ϕ1) − h(ϕ2)) =
∑
σ,δ

Dσ
(
h′(ϕ2)

)
Dδ

(
∂ϕ1

∂xi
− ∂ϕ2

∂xi

)
+

+
∑
σ,δ

Dσ
(
h′(ϕ1) − h′(ϕ2)

)
Dδ

(
∂ϕ1

∂xi

)
(2.18)

with σ, δ, such that |β| = |σ| + |δ| = n − 1. For such σ and δ, we
define q(σ) = (n−1)p

|σ| ≥ p and q′(δ) = (n−1)p
|δ| ≥ p and applying Hölder’s

inequality with exponents q and q′ in each term of (2.18), we obtain

‖Dα(h(ϕ1)−h(ϕ2))‖Lp ≤
∑
σ,δ

‖Dσ
(
h′(ϕ2)

) ‖Lq‖Dδ

(
∂ϕ1

∂xi
− ∂ϕ2

∂xi

)
‖Lq′+

+
∑
σ,δ

‖Dσ[h′(ϕ1) − h′(ϕ2)]‖Lq‖Dδ

(
∂ϕ1

∂xi

)
‖Lq′ , (2.19)

since 1
q + 1

q′ = 1
p . Now, we prove that for some constant C1 > 0

‖Dδ

(
∂ϕ1

∂xi
− ∂ϕ2

∂xi

)
‖Lq′ ≤ C1(‖ϕ1 − ϕ2‖W n,p + ‖ϕ1 − ϕ2‖W 1,∞) (2.20)
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for ϕ1, ϕ2 ∈ K. Writing 1
q′ = j

(n−1)(
1
p − 1

r ) + 1
r for r = ∞ and j = |δ|

and applying a Gagliardo-Nirenberg type inequality in [17], we get

‖Dδ

(
∂ϕ1

∂xi
− ∂ϕ2

∂xi

)
‖Lq′ ≤

≤ C2

∑
|δ∗|=n−1

‖Dδ∗
(

∂ϕ1

∂xi
− ∂ϕ2

∂xi

)
‖

p
q′
Lp‖∂ϕ1

∂xi
− ∂ϕ2

∂xi
‖1− p

q′
L∞ .

Then, since ‖Dδ∗
(

∂ϕ1

∂xi
− ∂ϕ2

∂xi

)
‖Lp ≤ ‖ϕ1 − ϕ2‖W n,p and ‖∂ϕ1

∂xi
−

∂ϕ2

∂xi
‖L∞ ≤ ‖ϕ1 − ϕ2‖W 1,∞ and applying Young’s inequality with expo-

nents l = q′
p and l′ = q′

q′−p , we obtain ‖Dδ
(

∂ϕ1

∂xi
− ∂ϕ2

∂xi

)
‖Lq′ ≤ C3‖ϕ1 −

ϕ2‖W n,p + C4‖ϕ1 − ϕ2‖W 1,∞ for some positive constants C3, C4, and we
get (2.20). Analogously,

‖Dδ ∂ϕ1

∂xi
‖Lq′ ≤ C5(‖ϕ1‖W n,p + ‖ϕ1‖W 1,∞) ≤ C6(K). (2.21)

On the other hand, using the interpolation inequality above, we also
have

‖Dσ
(
h′(ϕ1) − h′(ϕ2)

) ‖Lq ≤

≤ C7

∑
|σ∗|=n−1

‖Dσ∗ (
h′(ϕ1) − h′(ϕ2)

) ‖ p
q

Lp‖h′(ϕ1) − h′(ϕ2)‖
1− p

q

L∞ .

Since ‖Dσ∗
(h′(ϕ1) − h′(ϕ2)) ‖Lp ≤ ‖h′(ϕ1)−h′(ϕ2)‖W n−1,p and using

Young’s inequality with exponents l = q
p and l′ = q

q−p , we get

‖Dσ
(
h′(ϕ1) − h′(ϕ2)

) ‖Lq ≤

≤ C8(‖h′(ϕ1) − h′(ϕ2)‖W n−1,p + ‖h′(ϕ1) − h′(ϕ2)‖L∞). (2.22)

In a similar way we get ‖Dσ (h′(ϕ2)) ‖Lq ≤ C9(‖h′(ϕ2)‖W n−1,p +
‖h′(ϕ2)‖L∞). From the induction assumption, since h′ is of class Cn,
then h′ : Wn−1,p(Ω) ∩ W 1,∞(Ω) → Wn−1,p(Ω) ∩ W 1,∞(Ω) is Lipschitz
on bounded sets and therefore we have

‖Dσ[h′(ϕ2)]‖Lq ≤ C10(K) (2.23)

226 REVISTA MATEMÁTICA COMPLUTENSE
(2002) vol. XV, num. 1, 213-248
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and

‖h′(ϕ1) − h′(ϕ2)‖W n−1,p ≤ C11 (‖ϕ1 − ϕ2‖W n−1,p + ‖ϕ1 − ϕ2‖W 1,∞) .

Thus, using this and (2.16) for h′ and replacing (2.20), (2.21), (2.22)
and (2.23) into (2.19), we get

‖Dα (h(ϕ1) − h(ϕ2)) ‖Lp ≤ C12 (‖ϕ1 − ϕ2‖W n,p + ‖ϕ1 − ϕ2‖W 1,∞)

and we conclude.

From the previous lemmas, we get the following result.

Proposition 2.8. Assume that h is of class Cn, n ≥ 2 and N < (n−1)p
and satisfies (2.13) if B = D or (2.14)–(2.15) if B = Ne.

Then, for every (ϕ0, v0) ∈ Wn,p
B ×Wn−1,p

B there exists a unique local
solution, (ϕ, v), in Wn−1,p

B × Wn−2,p
B of (1.7), which satisfies

(ϕ, v) ∈ C([0, T ),Wn,p
B × Wn−1,p

B ) ∩ C((0, T ),Wn+1,p
B × Wn,p

B )

(ϕt, vt) ∈ C((0, T ),Wn+1−θ,p
B × Wn−θ,p

B )

for every θ ∈ (0, 1]. Moreover, if Tmax > 0, is the maximal existence time
then either Tmax = ∞ or the solution blows–up in the Wn,p

B × Wn−1,p
B

norm as t → Tmax.

Proof. Since N < (n − 1)p, from Sobolev embeddings, we have
Wn,p(Ω) ↪→ W 1,∞(Ω) and therefore Wn,p(Ω) ↪→ Wn−1,p(Ω)∩W 1,∞(Ω).
From Lemma 2.7, we get that h : Wn,p(Ω) → Wn−1,p(Ω) is Lipschitz
on bounded sets. Then, from Lemma 2.5, and the embeddings above,
h : Wn,p

B → Wn−1,p
B is Lipschitz on bounded sets. Applying Theorem

2.2 with α = n−1
2 , β = n

2 − 1 and ε = 1
2 we conclude.

Note that the case n = 2 of the proposition complements the result
in Proposition 2.4. Also note that in contrast to Propositions 2.3 and 2.4
no growth assumptions are needed for the previous result; indeed growth
assumptions are replaced by smoothness of h and (2.13) if B = D or
(2.14)–(2.15) if B = Ne.

Next, we prove a regularity result for the solutions of (1.7) with
initial data in W 1,p

B × Lp
B, 1 < p < ∞ given in Proposition 2.3. For this

a key remark is that the growth assumptions in Proposition 2.3, namely
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the upper bound for r in (2.6), increases with p. Therefore if one can
use that proposition in W 1,p

B × Lp
B it can also be used in W 1,s

B × Ls
B for

any larger s.

Proposition 2.9.
i) Assume h is of class C1 and satisfies (2.5) and (2.6) if N ≥ p.
Then, for every (ϕ0, v0) ∈ W 1,p

B × Lp
B, the local solution of (1.7) given

in Proposition 2.3 also satisfies

(ϕ, v) ∈ C((0, T ),W 2,s
B × W 2,s

B )

and
(ϕt, vt) ∈ C((0, T ),W 2−θ,s

B × W 1−θ,s
B )

for every s > 1 and 0 < θ ≤ 1. In particular, (ϕ, v) ∈ C((0, T ), C1(Ω)×
C1(Ω)).

ii) Assume moreover that h is of class Cn, for n ≥ 2, and assume
conditions (2.13) if B = D or (2.14)–(2.15) if B = Ne are satisfied.
Then, for every (ϕ0, v0) ∈ W 1,p

B × Lp
B, the local solution of (1.7) given

in Proposition 2.3 satisfies, besides the regularity in i),

(ϕ, v) ∈ C((0, T ),Wn+1,s
B × Wn+1,s

B )

and
(ϕt, vt) ∈ C((0, T ),Wn+1−θ,s

B × Wn−θ,s
B )

for every θ ∈ (0, 1] and s > 1. In particular, (ϕ, v) ∈ C((0, T ), Cn(Ω) ×
Cn(Ω)).

Proof.
i) First, we prove that for every s > N and θ ∈ (0, 1]

(ϕ, v) ∈ C((0, T ),W 2,s
B × W 1,s

B ) and

(ϕt, vt) ∈ C((0, T ),W 2−θ,s
B × W 1−θ,s

B ).
(2.24)

Assume first p ≥ N . Then the solution of (1.7) with initial data
(ϕ0, v0) ∈ W 1,p

B × Lp
B, given in Proposition 2.3, satisfies (ϕ(t), v(t)) ∈

W 2,p
B × W 1,p

B ↪→ W 1,s
B × Ls

B, for every s ∈ (1,∞). Taking s > N , t1 > 0
and initial data (ϕ(t1), v(t1)) in W 1,s

B ×Ls
B, from Proposition 2.3 part i)

we obtain (2.24).
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Now if p < N , we show that for t1 > 0 and some q ≥ N we have
(ϕ(t1), v(t1)) ∈ W 1,q

B × Lq
B and as before, we get (2.24). First from

Proposition 2.3 and Sobolev embeddings, we have (ϕ(t1), v(t1)) ∈ W 1,q
B ×

Lq
B for q = p∗ = Np

N−p > p. Now note that since h satisfies (2.5) with

r ≤ N
N−p then for every q > p we can apply Proposition 2.3 in W 1,q

B ×Lq
B.

Thus, if q ≥ N we conclude as before. Otherwise we can repeat the
argument above and in a finite number of steps we get (2.24).

Now, from (2.24), we have , vt, Δϕ ∈ C((0, T ), Ls
B) and since

k2ΔBv = vt + cΔBϕ (2.25)

using elliptic regularity results, we obtain that v ∈ C((0, T ),W 2,s
B ). Now

Sobolev embeddings give (ϕ, v) ∈ C((0, T ), C1(Ω) × C1(Ω)).
ii) We now show by induction in 1 ≤ k ≤ n, that if s > N , then we have

(ϕ, v) ∈ C((0, T ),W k+1,s
B × W k,s

B ) and

(ϕt, vt) ∈ C((0, T ),W k+1−θ,s
B × W k−θ,s

B ), (2.26)

for every θ ∈ (0, 1].
From part i) we have that (2.26) is true for k = 1. Now, we as-

sume that (2.26) is true for some k and we prove that (2.26) is also
true for k + 1, whenever k + 1 ≤ n. Given t1 > 0 from the induc-
tion hypothesis, we have that (ϕ(t1), v(t1)) ∈ W k+1,s

B × W k,s
B . Thus,

since s > N , we can apply Proposition 2.8 to get (2.26) for k + 1.
Now, using vt, Δϕ ∈ C((0, T ),Wn−1,s

B ), again from (2.25), we get v ∈
C((0, T ),Wn+1,s

B ). Sobolev embeddings give the rest.

Analogously, for the solutions of (1.7) with initial data in W 2,p
B ×

W 1,p
B , N

3 < p < ∞ given in Proposition 2.4, we have

Proposition 2.10.
i) Assume h is of class C2 and satisfies (2.7) and (2.8) if N/3 ≤ p <
N/2. Then, for every (ϕ0, v0) ∈ W 2,p

B × W 1,p
B , the local solution of (1.7)

given in Proposition 2.4 also satisfies

(ϕ, v) ∈ C((0, T ),W 3,s
B × W 3,s

B ) and

(ϕt, vt) ∈ C((0, T ),W 3−θ,s
B × W 2−θ,s

B )
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a. jiménez-casas, a. rodŕiguez-bernal asymptotic behaviour for a. . .

for every s > 1 and 0 < θ ≤ 1. In particular, (ϕ, v) ∈ C((0, T ), C2(Ω)×
C2(Ω)).
ii) Assume moreover that h is of class Cn, for n ≥ 2, and assume
conditions (2.13) if B = D or (2.14)–(2.15) if B = Ne are satisfied.
Then, for every (ϕ0, v0) ∈ W 2,p

B ×W 1,p
B , the local solution of (1.7) given

in Proposition 2.4 satisfies, besides the regularity in i),

(ϕ, v) ∈ C((0, T ),Wn+1,s
B × Wn+1,s

B ) and

(ϕt, vt) ∈ C((0, T ),Wn+1−θ,s
B × Wn−θ,s

B )

for every θ ∈ (0, 1] and s > 1. In particular, (ϕ, v) ∈ C((0, T ), Cn(Ω) ×
Cn(Ω)).

By using the first part of both propositions above in a row, we get

Corollary 2.11. Assume h is of class C1 and satisfies (2.5) and (2.6)
if N ≥ p. Then, for every (ϕ0, v0) ∈ W 1,p

B × Lp
B, the local solution of

(1.7) given in Proposition 2.3 also satisfies

(ϕ, v) ∈ C((0, T ),W 3,s
B ×W 3,s

B ) and (ϕt, vt) ∈ C((0, T ),W 3−θ,s
B ×W 2−θ,s

B )

for every s > 1 and 0 < θ ≤ 1. In particular, (ϕ, v) ∈ C((0, T ), C2(Ω)×
C2(Ω)).

3 Global existence

In this section we prove that, under suitable growth and sign conditions
on the nonlinear term h, the solutions of (1.7) with initial data in Wn,p

B ×
Wn−1,p

B , n ≥ 1, given by Propositions 2.3, 2.4 or 2.8, are globally defined.
First we show that (1.7) has a natural Lyapunov function in H1

B×L2
B,

see also [4, 5, 6]. So we assume h satisfies the hypothesis in Proposition
2.3, (2.5), (2.6) for p = 2, i.e.

|h(s)| ≤ C(1 + |s|r), |h′(s)| ≤ C(1 + |s|r−1),

1 ≤ r

{
< ∞ if N = 1, 2
≤ N

N−2 if N ≥ 3 . (3.1)

Then we have
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Proposition 3.1. If h satisfies (3.1), then

F(ϕ, v) =
k1

2
‖∇ϕ‖2 +

k2a

2c
‖v‖2 +

b

2
‖ϕ‖2 +

∫
Ω

H(ϕ) − a

∫
Ω

vϕ (3.2)

where H(s) =
∫ s
0 h(z)dz, which can be rewritten as

F(ϕ, v) =
k1

2
‖∇ϕ‖2 +

b

2

∫
Ω
(
a

b
v − ϕ)2 +

∫
Ω

H(ϕ), (3.3)

is a Lyapunov function for (1.7), i.e.
i) F(ϕ, v) is continuous in H1

B × L2
B.

ii) d
dt(F(ϕ(t), v(t))) ≤ 0 for every solution of (1.7).

iii) (ϕ, v) is an equilibrium point of (1.7) if and only if d
dt(F(ϕ(t), v(t))) =

0.

Proof. Property i) is standard and comes from (3.1). To prove ii) note
that from Proposition 2.3 if (ϕ, v) is a solution of (1.7) with initial data
(ϕ0, v0) ∈ H1

B × L2
B, we have (ϕ, v) ∈ C((0, T ),H2

B × H1
B), (ϕt, vt) ∈

C((0, T ),H1
B × L2

B). Therefore, we can multiply the first equation of
(1.7) by ∂ϕ

∂t in L2
B and, integrating by parts, we obtain

‖∂ϕ

∂t
‖2 +

d

dt

(
k1

2
‖∇ϕ‖2 +

∫
Ω
(H(ϕ) +

b

2
ϕ2)

)
= a

∫
Ω

v
∂ϕ

∂t
(3.4)

since
∫
Γ

∂ϕ
∂n

∂ϕ
∂t = 0 with any of the boundary conditions (1.2)–(1.5).

On the other hand,
∫
Ω v ∂ϕ

∂t = d
dt [

∫
Ω vϕ] − ∫

Ω ϕ∂v
∂t . Therefore, from

(3.4) we obtain

‖∂ϕ

∂t
‖2 +

d

dt

(
k1

2
‖∇ϕ‖2 +

∫
Ω
(H(ϕ) +

b

2
ϕ2 − avϕ)

)
= −a

∫
Ω

ϕ
∂v

∂t
.

(3.5)
Now, if B = Ne or P , integrating the equation for v in Ω we get

0 =
∫

Ω
vt + c

∫
Γ

∂ϕ

∂n
− k2

∫
Γ

∂v

∂n
=

∫
Ω

vt =
d

dt
(
∫

Ω
v) = 0. (3.6)

Thus,
∫
Ω v(t) =

∫
Ω v0, i.e. the mass is conserved.

Now, we multiply the second equation in (1.7) by a
c (−ΔB)−1vt in

L2
B. Note that with B = D, (−ΔB)−1 is well defined, but if B = Ne or

B = P , then −ΔB has a one dimensional kernel generated by constant
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functions. However, from (3.6), (−ΔB)−1vt is also well defined as an
element of H2

B with zero average. Thus, we obtain

a

c
‖∂v

∂t
‖2
−1 +

ak2

2c

d

dt
‖v‖2 = a

∫
Ω

ϕ
∂v

∂t
(3.7)

where ‖.‖−1 is the norm in H−1
B . Adding (3.5) and (3.7) we get

‖∂ϕ

∂t
‖2 +

a

c
‖∂v

∂t
‖2
−1 +

d

dt
F(ϕ, v) = 0 (3.8)

and ii) and iii) follow.
Moreover, from (1.8) we have k2

c = a
b , which allows us to write F as

in (3.3) since

b

2

∫
Ω
(
a

b
v − ϕ)2 =

b

2
a2

b2
‖v‖2 +

b

2
‖ϕ‖2 − a

∫
Ω

vϕ.

The rest follows easily.

Next, we show that under a sign assumption on h, the local solution
of (1.7) in H1

B × L2
B is globally defined.

Corollary 3.2. Assume that h satisfies (3.1) and

lim inf
|s|→∞

h(s)
s

> 0. (3.9)

Then the solutions of (1.7) are global and bounded in H1
B × L2

B. In
particular we have a well defined nonlinear semigroup, S(t) for t ≥ 0,
in H1

B × L2
B, given by

S(t)(ϕ0, v0) = (ϕ(t), v(t)). (3.10)

Moreover, if K ⊂ H1
B × L2

B is a bounded set, then its orbit, i.e.
{S(t)K, t ≥ 0}, is also bounded.

Proof. If h satisfies (3.9) then there exists δ > 0 and c(δ) > 0 such that
H(s) ≥ δs2 − c(δ) for every s ∈ R, and hence we have

∫
Ω

H(ϕ) ≥ δ‖ϕ‖2 − c(δ)|Ω|. (3.11)
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On the other hand, we have F(ϕ(t), v(t)) ≤ F(ϕ(0), v(0)) for t > 0.
Thus, (3.3) and (3.11), imply

k1

2
‖∇ϕ‖2 +

b

2

∫
Ω
(
a

b
v − ϕ)2 + δ‖ϕ‖2 ≤ c(δ)|Ω| + F(ϕ0, v0) < ∞. (3.12)

Hence, ‖∇ϕ‖2, ‖ϕ‖2 and ‖a
b v − ϕ‖2 remain bounded on finite time

intervals. Therefore the solution remains bounded in H1
B × L2

B and,
from Proposition 2.3, we get that the solution is global. Moreover, from
(3.12), we also have

‖(ϕ(t), v(t))‖2
H1

B×L2
B
≤ c1+c2

(
‖∇ϕ0‖2 + ‖ϕ0‖2 + ‖v0‖2 +

∫
Ω
|H(ϕ0)|

)
.

But from (3.1) we get
∫
Ω |H(ϕ0)|≤ c3

(
1 +

∫
Ω |ϕ0|r+1

)≤ c4

(
1 + ‖ϕ0‖r+1

H1
B

)
,

since from the hypothesis on r we have H1
B ↪→ Lr+1(Ω). Thus

‖(ϕ(t), v(t))‖H1
B×L2

B
≤ c6

(
1 + ‖(ϕ0, v0)‖H1

B×L2
B

+ ‖ϕ0‖
r+1
2

H1
B

)
(3.13)

and we conclude.

Now we extend this result to p �= 2. Observe that the energy (3.2)
can only give information on the solutions in the norm of H1

B × L2
B;

therefore our goal is to use this information to control different norms
for the case p �= 2. Also note that the growth assumption (3.1) will
be always required for this. This will impose some extra restrictions on
the growth of nonlinear terms than those needed just for local existence
purposes, when we work on stronger norms than that of H1

B × L2
B.

Then we obtain the following global existence result for the solutions
of (1.7) given in Propositions 2.3, 2.4 and 2.8.

Proposition 3.3. Let 1 < p < ∞ and h be of class C1 satisfying (3.9).
i) Assume moreover that h satisfies

|h(s)| ≤ C(1 + |s|r), |h′(s)| ≤ C(1 + |s|r−1)

with r such that

1 ≤ r

⎧⎨
⎩

< ∞ if N = 1
≤ N

N−p if N ≥ 2 and 1 < p < 2
≤ N

N−2 if N ≥ 2 and 2 ≤ p
.
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Then for every (ϕ0, v0) ∈ W 1,p
B ×Lp

B the solution of (1.7) constructed
in Proposition 2.3, (ϕ(t), v(t)), is globally defined. Thus (3.10) also
defines a nonlinear semigroup in W 1,p

B × Lp
B.

ii) Assume that h is of class C2, N ≤ 4, and h satisfies

|h(s)| ≤ C(1 + |s|r), |h′(s)| ≤ C(1 + |s|r−1), |h′′(s)| ≤ C(1 + |s|r−2)

with r such that

2 ≤ r

⎧⎨
⎩

< ∞ if N = 1, 2 and 1 < p < ∞
≤ N−p

N−2p if N = 3, 4 and N
3 ≤ p < 2N

N+2

≤ N
N−2 if N = 3, 4 and 2N

N+2 ≤ p
.

Then, for every (ϕ0, v0) ∈ W 2,p
B × W 1,p

B the solution of (1.7) con-
structed in Proposition 2.4, (ϕ(t), v(t)), is globally defined and (3.10)
also defines a nonlinear semigroup in W 2,p

B × W 1,p
B .

iii) Assume that h is of class Cn, for n ≥ 2, with N < (n− 1)p, is as in
Proposition 2.8 and satisfies (3.1), that is,

|h(s)| ≤ C(1 + |s|r), |h′(s)| ≤ C(1 + |s|r−1)

with r such that
1 ≤ r ≤ N

N − 2
.

Then for every (ϕ0, v0) ∈ Wn,p
B ×Wn−1,p

B the solution of (1.7) constructed
in Proposition 2.8, (ϕ(t), v(t)), is globally defined and (3.10) also defines
a nonlinear semigroup in Wn,p

B × Wn−1,p
B .

Proof. Let X = Wn,p
B × Wn−1,p

B , for n ≥ 1, be the space for the
initial data in each of the cases of the statement. Note that in each of
these cases, h satisfies, respectively, the assumptions of Proposition 2.3 if
n = 1, Proposition 2.4 if n = 2 or Proposition 2.8 if n ≥ 2. Therefore, we
have local existence of solutions of (1.7) with initial data (ϕ0, v0) ∈ X.
At the same time, in all cases, h also satisfies (3.1) which implies local
existence in H1

B × L2
B. Also, since (3.9) is satisfied, then Corollary 3.2

applies in the latter space.
First, we note that, from Sobolev embeddings, if n = 1 and p ≥ 2,

n = 2 and p ≥ 2N
N+2 or n ≥ 2 and N < (n − 1)p, then X ↪→ H1

B × L2
B.

On the other hand if n = 1 and 1 < p < 2, we have H1
B × L2

B ↪→ X.
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Finally, in the case n = 2 and 1 < p < 2N
N+2 , neither space X or H1

B×L2
B

contains the other.
Now, assume that X ↪→ H1

B × L2
B, as above, and let (ϕ0, v0) ∈ X.

Then from Proposition 3.1 the solution of (1.7) with initial data (ϕ0, v0)
is globally defined in H1

B × L2
B. From the regularity result in i) of

Proposition 2.9, for p = 2, the solution in H1
B × L2

B is in X, for every
t > 0, in the cases i) and ii). On the other hand, for case iii), the
regularity result in ii) of Proposition 2.9, for p = 2, the solution in
H1

B × L2
B is in X, for every t > 0. Thus the solution is global in X.

If H1
B × L2

B ↪→ X, again from Proposition 2.9, the local solution
of (1.7) with initial data in X, is in H1

B × L2
B for every t > 0. From

Proposition 3.1 this solution is globally defined in H1
B ×L2

B and thus in
X.

When neither space X or H1
B ×L2

B contains the other, again Propo-
sition 2.9 concludes as before.

4 Asymptotic behavior of solutions

In this section we analyze the asymptotic behavior of solutions of (1.7)
in different function spaces. First, we show, by means of the Lyapunov
function constructed before, that (1.7) has a global attractor in H1

B×L2
B

when h satisfies (3.1) and (3.9). Later, we will consider the case of initial
data in Wn,p

B × Wn−1,p
B , n ≥ 1, as in Propositions 2.3, 2.4 or 2.8 and

prove that the attractor in H1
B×L2

B is still the attractor in these different
phase spaces. To obtain these results a key argument will be to transfer
good uniform in time estimates on the solutions available in the H1

B×L2
B

setting by means of the Lyapunov function, to the stronger norms of the
spaces Wn,p

B × Wn−1,p
B .

4.1 Global attractor in H1
B × L2

B.

Note that if B = Ne or B = P , there is not a global attractor in H1
B×L2

B

in the usual sense, since from (3.6) we have that d
dt(

∫
Ω v) = 0. Therefore

for each m ∈ R the affine hyperplane Z(m) = H1
B ×{v ∈ L2

B,
∫
Ω v = m}

is invariant. However, we will show below that there exists a global
attractor Am in Ym = H1

B × {v ∈ L2
B, | ∫Ω v| ≤ m} for each m ∈ R

+.
Therefore, for every |m0| ≤ m there exists a global attractor in Z(m0)
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given by A(m0) = Am ∩ Z(m0).

Proposition 4.1. Assume that h satisfies (3.1) and (3.9), then we have
i) If B = D there exists a global compact and connected attractor, A, in
Y = H1

0 (Ω) × L2(Ω) for the semigroup S(t), which can be described as
A = W u(E), that is, the unstable set of the equilibrium points, E .

Moreover, if E is a discrete set, then A = ∪(ϕ0,v0)∈EW u((ϕ0, v0)),
and for each solution, (ϕ(t), v(t)), of (1.7), there exists an equilibrium
point (ϕ0, v0) ∈ E, such that

(ϕ(t), v(t)) → (ϕ0, v0) in H1
0 (Ω) × L2(Ω) as t → ∞.

ii) If B = Ne or B = P , for each m ≥ 0, there exists a global compact
and connected attractor, Am, in Ym = H1

B × {v ∈ L2
B, | ∫Ω v| ≤ m} for

the semigroup S(t), which can be described as Am = W u(Em), that is,
the unstable set of the equilibrium points in Ym, Em = E ∩ Ym .

Moreover, for each m0 such that |m0| ≤ m if the set of equilibria,
E(m0) = E∩{(ϕ, v),

∫
Ω v = m0} is discrete in Z(m0), then the attractor

in Z(m0), A(m0) = Am ∩ Z(m0) is given by

A(m0) = ∪(ϕ0,v0)∈E(m0)W
u((ϕ0, v0)),

and for each solution, (ϕ(t), v(t)), of (1.7) with
∫
Ω v0 = m0, there exists

a equilibrium point (ϕ0, v0) ∈ E(m0), such that

(ϕ(t), v(t)) → (ϕ0, v0) in H1
B × L2

B as t → ∞.

Proof. From Proposition 3.1 and Corollary 3.2 the semigroup S(t)
satisfies that orbits of bounded sets are bounded. Since the resolvent
of AB is compact, see Proposition 2.1, then Theorem 4.2.2 in [15] gives
that S(t) is compact for t > 0 and in particular it is an asymptotically
smooth gradient system in H1

B×L2
B; see Corollary 3.2.2 of [15]. Moreover

B = Ne or B = P then Ym is invariant for S(t). Thus, for the case
B = D, if the set of equilibrium points, E, (respectively Em = E ∩ Ym

if B = Ne or B = P ) is bounded, then the semigroup S(t) is point
dissipative and from Theorem 3.4.6 of [15] we get the existence of the
global attractor. Finally, if E (respectively Em0) is a discrete set, from
[15, 16, 21], we conclude.
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Observe that the equilibrium points (ϕ0, v0) ∈ H1
B × L2

B satisfy

{ −k1ΔBϕ0 + h(ϕ0) + bϕ0 − av0 = 0
−k2ΔBv0 + cΔBϕ0 = 0

(4.1)

Thus, when B = D, using the precise relationship between coefficients
given in (1.8), we get

−k1ΔDϕ0 + h(ϕ0) = 0 (4.2)

and bϕ0 = av0. Now, multiplying (4.2) by ϕ0 and integrating by parts,
we obtain

k1

∫
Ω
|∇ϕ0|2 +

∫
Ω

h(ϕ0)ϕ0 = 0.

Using (3.9), there exists δ > 0, c(δ) > 0 such that h(s)s ≥ δs2 − c(δ) for
every s ∈ R and then we have

∫
Ω

h(ϕ0)ϕ0 ≥ δ‖ϕ0‖2 − c(δ)|Ω|. (4.3)

Therefore there exists R > 0 such that ‖ϕ0‖H1
0 (Ω) ≤ R and ‖v0‖H1

0 (Ω) ≤
b
aR and the set of equilibria is bounded in H1

0 (Ω) × H1
0 (Ω) and so in

H1
0 (Ω) × L2(Ω).

On the other hand, if B = Ne or B = P , the equilibria satisfy

{ −k1ΔBϕ0 + h(ϕ0) + λ = 0
bϕ0 − av0 = λ

(4.4)

since λ ∈ R is a free parameter, the set of equilibrium is not bounded in
H1

B × L2
B. Nevertheless, given m if we consider only equilibrium points

(ϕ0, v0) in Zm i.e., with | ∫Ω v0| ≤ m, then from (4.4) we have

b

∫
Ω

ϕ0 = λ|Ω| + a

∫
Ω

v0 ≤ λ|Ω| + am. (4.5)

Thus using (4.5) and proceeding as in i), for B = D, the set Em is
bounded in Ym.
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4.2 Global attractor in W n,p
B × W n−1,p

B , n ≥ 1.

Now we work in the space X = Wn,p
B ×Wn−1,p

B , where h, p and n are as
in cases i), ii) or iii) of Proposition 3.3.

First, we consider the case B = D and we prove that the global
attractor in H1

0 (Ω)×L2(Ω) given in Proposition 4.1, A, is also the global
attractor in X. Note that for this, one must show then that bounded
sets of X are attracted by A in the norm of X and not only in the norm
of H1

0 (Ω)×L2(Ω). Also, as a consequence we will obtain that A attracts
bounded sets of H1

0 (Ω) × L2(Ω) in the stronger norm of the space X.
The idea for this is then to obtain estimates of solutions in the norm of
X, and in fact in stronger norms, from estimates in H1

0 (Ω)×L2(Ω). To
get these estimates, we use similar arguments as in Proposition 2.9 and
the variation of constants formula.

Analogously, for B = Ne or B = P , we will prove that for fixed
m ∈ R

+, the global attractor in Ym ⊂ H1
B × L2

B given by Proposition
4.1, Am, is the global attractor in

Xm = {(ϕ, v) ∈ X, |
∫

Ω
v| ≤ m}.

First we prove the following result for solutions of (1.7) with initial
data in W 1,p

B × Lp
B as in Proposition 2.3.

Proposition 4.2. Let 1 < p < ∞ and assume h satisfies the assump-
tions of point i) in Proposition 3.3. Assume also that the solution of
(1.7) with initial data (ϕ0, v0) ∈ W 1,p

B × Lp
B, satisfies

supt≥0‖(ϕ(t), v(t))‖
W 1,p

B ×Lp
B

< ∞.

i) Then, for every s > 1 and τ > 0 we have that

supt≥τ‖(ϕ(t), v(t))‖
W 2,s

B ×W 1,s
B

≤ C(τ, supt≥0‖(ϕ(t), v(t))‖
W 1,p

B ×Lp
B
).

ii) If moreover h is of class Cn for n ≥ 2 and is as in Proposition 2.8,
then for every s > 1 and τ > 0, we have

supt≥τ‖(ϕ(t), v(t))‖
W n+1,s

B ×W n,s
B

≤ C(τ, supt≥0‖(ϕ(t), v(t))‖
W 1,p

B ×Lp
B
).
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Proof. Note that the solution of (1.7) with initial data (ϕ(τ), v(τ)) is
given for t ≥ τ , by

(ϕ(t), v(t)) = e−AB(t−τ)(ϕ(τ), v(τ)) +
∫ t

τ
e−AB(t−s)G(ϕ(s), v(s))ds

(4.6)
and that by adding a term λI with λ > 0 sufficiently large to AB and
G, in (2.1) we can always assume that Re(σ(AB)) > μ > 0.
i) From Proposition 2.9, (ϕ(t), v(t)) belongs to W 1,q

B ×Lq
B for every q > 1

and t > 0. Considering the scale of interpolation spaces associated to

AB in Yq = Lq
B ×W−1,q

B , then Y
1
2

q = W 1,q
B ×Lq

B, Y 1
q = W 2,q

B ×W 1,q
B and

Y 1−ε
q = W

2(1−ε),q
B × W 1−2ε,q

B , for ε ∈ [0, 1]. Thus from (4.6) we have

‖(ϕ, v)(t)‖Y 1−ε
q

≤ M
e−μ(t−τ)

(t − τ)
1
2
−ε

‖(ϕ(τ), v(τ))‖
Y

1
2

q

+

+supt≥τ‖G(ϕ, v)(t)‖Yq

∫ t

τ
M

e−μ(t−s)

(t − s)1−ε
ds (4.7)

for 0 < ε ≤ 1
2 , and for every t > τ . Moreover, if q ≥ p then, from

the proof of Proposition 2.3, G : Y
1
2

q → Yq is Lipschitz and bounded on
bounded sets. Therefore, if

supt≥τ‖(ϕ, v)(t)‖
Y

1
2

q

≤ c1
q < ∞ (4.8)

we get that supt≥τ‖G(ϕ, v)(t)‖Yq ≤ c2
q < ∞. Consequently, given τ∗ >

τ , using (4.7), we get that (4.8) implies

supt≥τ∗‖(ϕ, v)(t)‖Y 1−ε
q

≤ c3
q < ∞. (4.9)

Now we proceed as in the proof of Theorem 3.5.2 in [16], see also the
proof of Theorem 4.6 in [3], to obtain that (ϕt, vt) is uniformly bounded,
for t ≥ τ∗, in Yq (in fact this is even true in some Y ε

q spaces). Therefore,
from (1.7), using that AB in (2.1) is sectorial in Yq with domain Y 1

q and
that Re(σ(AB)) > μ > 0, we obtain

supt≥τ∗‖(ϕ, v)(t)‖Y 1
q
≤ c4

q < ∞. (4.10)
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Next, we are going to apply this general argument for some choices
of q and τ . First, applying (4.8)–(4.10) for q = p and τ = 0, we have
that, for every t1 > 0

supt≥t1‖(ϕ, v)(t)‖Y 1
p
≤ c1 < ∞. (4.11)

If p > N , then from Sobolev embeddings, we obtain Y 1
p = W 2,p

B ×
W 1,p

B ↪→ Y
1
2

s = W 1,s
B × Ls

B for every s, and thus from (4.11) we get
supt≥t1‖(ϕ, v)(t)‖

Y
1
2

s

≤ c2. Therefore, we can apply again (4.8)–(4.10)

now with q = s and τ = t1 > 0, to obtain

supt≥t2‖(ϕ, v)(t)‖Y 1
s
≤ c3

with t2 > t1 > 0 and Y 1
s = W 2,s

B × W 1,s
B , and we get the result.

If p ≤ N , again from Sobolev embeddings we obtain Y 1
p = W 2,p

B ×
W 1,p

B ↪→ Y
1
2

s = W 1,s
B × Ls

B for every s ≤ p1 = Np
N−p . Thus, we have that

supt≥t1‖(ϕ, v)(t)‖
Y

1
2

p1

< ∞. Since p < p1 repeating this argument a finite

number of steps we obtain that

supt≥t̄‖(ϕ, v)‖
Y

1
2

p̄

≤ C < ∞,

for every t̄ > 0 and some p̄ > N and we conclude as above.
ii) If h is of class Cn, n ≥ 2, we consider s > N and we apply an
induction argument in n, like in Proposition 2.9, to prove: For every
1 ≤ k ≤ n and τ > 0, there exists a constant ck = ck(τ) > 0, such that

supt≥τ‖(ϕ, v)(t)‖
Y

k+1
2

s

≤ ck (4.12)

with Y
k+1
2

s = W k+1,s
B × W k,s

B .
Note that, from i), we have that (4.12) is true for k = 1. Assume

now (4.12) is true for 1 ≤ k ≤ n and then we prove that (4.12) is also
true for k + 1, whenever k + 1 ≤ n. For this, also note that for each
k ≥ 1, since h ∈ Ck+1 and N < ks, from Proposition 2.8, there exists
solution with initial data in W k+1,s

B × W k,s
B .

Therefore, we consider a solution such that

supt≥t1‖(ϕ, v)(t)‖
Y

k+1
2

s

≤ ck < ∞
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for any t1 > 0 and some ck > 0. Consequently, from Lemma 2.7, we
have

supt≥t1‖G(ϕ, v)(t)‖
Y

k
2

s

≤ c∗k

with c∗k a positive constant only depending on ck. Therefore, similarly to
(4.8)–(4.10), working now in the scale of spaces associated to AB in Zs =

Y
k
2

s = W k,s
B × W k−1,s

B , for which we have Z
1
2
s = Y

k+1
2

s = W k+1,s
B × W k,s

B

and Z1
s = Y

k
2
+1

s = W k+2,s
B × W k+1,s

B , we get supt≥t2‖(ϕ, v)(t)‖
Y

k
2 +1

s

≤
ck+1 for t2 > t1 > 0, and we conclude.

Analogously, for the solutions of (1.7) with initial data in W 2,p
B ×

W 1,p
B , N

3 < p < ∞ given in Proposition 2.4, we have

Proposition 4.3. Let 1 < p < ∞ and assume h satisfies the assump-
tions of point ii) in Proposition 3.3. Assume also that the solution of
(1.7) with initial data (ϕ0, v0) ∈ W 2,p

B × W 1,p
B , satisfies

supt≥0‖(ϕ(t), v(t))‖
W 2,p

B ×W 1,p
B

< ∞.

i) Then, for every s > 1 and τ > 0 we have

supt≥τ‖(ϕ(t), v(t))‖
W 3,s

B ×W 2,s
B

≤ C(τ, supt≥0‖(ϕ(t), v(t))‖
W 2,p

B ×W 1,p
B

).

ii) If moreover h is of class Cn for n ≥ 2 and is as in Proposition 2.8,
then for every s > 1 and τ > 0, we have

supt≥τ‖(ϕ(t), v(t))‖
W n+1,s

B ×W n,s
B

≤ C(τ, supt≥0‖(ϕ(t), v(t))‖
W 2,p

B ×W 1,p
B

).

By using the first part of both propositions above in a row, we get

Corollary 4.4. Let 1 < p < ∞ and assume h satisfies the assumptions
of point i) in Proposition 3.3. Assume also that the solution of (1.7)
with initial data (ϕ0, v0) ∈ W 1,p

B × Lp
B, satisfies

supt≥0‖(ϕ(t), v(t))‖
W 1,p

B ×Lp
B

< ∞.

Then, for every s > 1 and τ > 0 we have

supt≥τ‖(ϕ(t), v(t))‖
W 3,s

B ×W 2,s
B

≤ C(τ, supt≥0‖(ϕ(t), v(t))‖
W 2,p

B ×W 1,p
B

).
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As a consequence, we obtain

Corollary 4.5. Assume h is of class Cn, n ≥ 1, satisfies (3.1) and
(3.9). Then we have
i) For every (ϕ0, v0) ∈ H1

B × L2
B, the solution of (1.7), (ϕ(t), v(t)), is

uniformly bounded in W 3,s
B × W 2,s

B for every s > 1 and t ≥ τ > 0.
If moreover h is as in Proposition 2.8, then the solution is uniformly

bounded in Wn+1,s
B × Wn,s

B for every s > 1 and t ≥ τ > 0.
ii) If K ⊂ H1

B × L2
B is a bounded set, then {S(t)K, t ≥ τ > 0} is

bounded in W 3,s
B × W 2,s

B for every s > 1 and τ > 0.
If moreover h is as in Proposition 2.8, then {S(t)K, t ≥ τ > 0} is

uniformly bounded in Wn+1,s
B × Wn,s

B for every s > 1 and τ > 0.

Next, we prove a regularity result for the global attractor for the
semigroup in H1

B ×L2
B given in Proposition 4.1, A for B = D or Am for

B = Ne, P .

Corollary 4.6. Assume that h satisfies (3.1) and (3.9), and consider
the global attractor in H1

B × L2
B, A, if B = D, or Am if B = Ne or P ,

given in Proposition 4.1.
Then, for every s > 1 we have A ⊂ W 2,s

D × W 1,s
0 if B = D and

Am ⊂ W 2,s
B × W 1,s

B if B = Ne or P and is compact, connected and
invariant in this space.

Moreover, if h is of class Cn with n ≥ 2 and is as in Proposition
2.8, we have for every s > 1, A ⊂ Wn,s

D × Wn−1,s
D if B = D and

Am ⊂ Wn,s
B × Wn−1,s

B if B = Ne or P , and is compact, connected and
invariant in this space.

Proof. We prove the case B = D, since the cases B = Ne and B = P
can be proved analogously. We know that A ⊂ H1

0 (Ω)×L2(Ω) is compact
and for every t ≥ 0, S(t)A = A.

Now, from Corollary 4.5, we obtain that A = S(t)A is bounded in
W 3,s

D × W 2,s
D for s > 1. If moreover h is of class Cn with n ≥ 2 and is

as in Proposition 2.8, then again from Corollary 4.5, A is bounded in
Wn+1,s

D × Wn,s
D for s > 1.

Finally, using the compact embeddings of W 3,s
D ×W 2,s

D and Wn+1,s
D ×

Wn,s
D into W 2,s

D (Ω) × W 1,s
0 (Ω) and Wn,s

D × Wn−1,s
D , respectively, we get
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a. jiménez-casas, a. rodŕiguez-bernal asymptotic behaviour for a. . .

that A is a compact and connected set in W 2,s
D (Ω) × W 1,s

0 (Ω) or in
Wn,s

D × Wn−1,s
D .

Now we show that the attractor A, for B = D, or respectively Am,
for B = Ne or P , constructed in Proposition 4.1, attracts in stronger
norms.

Corollary 4.7. Assume that h is of class Cn, n ≥ 1, satisfies (3.1),
(3.9) and consider the global attractor in H1

B ×L2
B, A, if B = D, or Am

if B = Ne or P , given in Proposition 4.1.
Let K be a bounded set in X if B = D, or in Xm = {(ϕ, v) ∈

X, | ∫Ω v| ≤ m} if B = Ne or P , where

X =

⎧⎪⎨
⎪⎩

W 1,p
B × Lp

B, with p ≥ 2 if n = 1
W 2,p

B × W 1,p
B , with p ≥ 2N

N+2 if n = 2
Wn,p

B × Wn−1,p
B , with N < (n − 1)p if n ≥ 2

where, in the latter case, we assume moreover that h is as in Proposition
2.8.

Then, denoting Y = W 2,s
B × W 1,s

B for any s > 1, we get that

distY (S(t)K,A) → 0

as t → ∞, if B = D (respectively distY (S(t)K,Am) → 0 as t → ∞,
if B = Ne or P ), i.e., A (respectively Am), attracts bounded sets of X
(respectively of Xm) in the norm of Y .

If moreover n ≥ 2 and h is as in Proposition 2.8, then we can take
above Y = Wn,s

B × Wn−1,s
B for any s > 1.

Proof. We consider the case B = D, the case B = Ne or P being similar.
Observe that in all cases of the statement h satisfies the assumptions of
Proposition 3.3 and so we have global existence of solutions in X. Also,
in all cases we have X ↪→ H1

0 (Ω) × L2(Ω). Therefore, if K is bounded
in X, from Corollary 4.5, we have that {S(t)K, t ≥ 0} is a bounded set
in W 3,s

D × W 2,s
D for every s > 1.

Therefore, using the compact embedding of this space into Y =
W 2,s

D ×W 1,s
D , we get the existence the omega limit set of K in the latter

space, w(K), [15, 21]. Thus w(K) ⊂ Y ↪→ H1
0 (Ω) × L2(Ω) is compact,

invariant and distY (S(t)K, w(K)) → 0 as t → ∞. From the maximality
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of A we get w(K) ⊂ A. Also, from Corollary 4.6, we get A ⊂ Y .
Consequently, we obtain that distY (S(t)K,A) → 0 as t → ∞.

If moreover n ≥ 2 and h is as in Proposition 2.8 the argument above
can be performed with Y = Wn,s

D × Wn−1,s
D , for every s > 1, since from

Corollary 4.5, {S(t)K, t ≥ τ > 0} is also a bounded set in Wn+1,s
D ×Wn,s

D ,
for s > 1 and we get the result.

By using all previous results we obtain

Theorem 4.8. With the notations and hypotheses of Corollary 4.7,
consider the semigroup S(t) defined by (1.7) in

X =

⎧⎪⎨
⎪⎩

W 1,p
B × Lp

B, with p ≥ 2 if n = 1
W 2,p

B × W 1,p
B , with p ≥ 2N

N+2 if n = 2
Wn,p

B × Wn−1,p
B , with N < (n − 1)p if n ≥ 2

where, in the latter case, we assume moreover that h is as in Proposition
2.8. Also, denote Y = W 2,s

B × W 1,s
B for any s > 1.

Then if B = D, S(t) has a compact and connected global attractor
which attracts bounded sets of X in the norm of Y . Moreover, the global
attractor in X coincides with the global attractor in H1

0 (Ω)×L2(Ω) given
by Proposition 4.1, which can be described as A = W u(E), that is, the
unstable set of the equilibrium points, E. In particular if E is a discrete
set, for every solution of (1.7), (ϕ(t), v(t)), there exists an equilibrium
point (ϕ0, v0) ∈ E, such that

(ϕ(t), v(t)) → (ϕ0, v0) in Y as t → ∞.

If B = Ne or B = P , given m > 0, then S(t) has a compact and
connected global attractor in Xm = {(ϕ, v) ∈ X, | ∫Ω v| ≤ m} which
attracts bounded sets of Xm in the norm of Y . Moreover, this attractor
coincides with the global attractor Am, in H1

B × {v ∈ L2
B, | ∫Ω v| ≤ m}

given Proposition 4.1 which can be described as Am = W u(Em), that is,
the unstable set of the equilibrium points in Xm, Em = E ∩ Xm .

Moreover, for each m0 such that |m0| ≤ m, if the set of equilibria,
E(m0) = E ∩ Z(m0), with Z(m0) = {(ϕ, v),

∫
Ω v = m0} is discrete in

Z(m0), then the attractor in Z(m0), A(m0) = Am ∩ Z(m0) is given by
A(m0) = ∪(ϕ0,v0)∈E(m0)W

u((ϕ0, v0)), and for each solution, (ϕ(t), v(t)),
of (1.7) with

∫
Ω v0 = m0, there exists a equilibrium point (ϕ0, v0) ∈
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E(m0), such that

(ϕ(t), v(t)) → (ϕ0, v0) in Y as t → ∞.

In either case for B above, if moreover n ≥ 2 and h is as in Proposi-
tion 2.8, then we can take above Y = Wn,s

B × Wn−1,s
B , for every s > 1.

Proof. As before we will consider the case B = D. From Corollary 4.6,
A is invariant, compact and connected in X. Moreover, from Corollary
4.7, A attracts bounded sets of X in the norm of Y .

Let K ⊂ X be a compact and invariant set in X, i.e. S(t)K = K.
Since in all cases we have X = Wn,p

D ×Wn−1,p
D ↪→ H1

0 (Ω)×L2(Ω), then K
is also compact and invariant in H1

0 (Ω) × L2(Ω). Consequently K ⊂ A
and A is the attractor of S(t) in X.

On the other hand, from Proposition 4.1, if E is discrete then the
omega limit set of each single trajectory is an element of E. Since this
trajectory is also compact in Y we conclude.

Next, we analyze the behavior of solutions for the cases not included
in the theorem, that is, for initial data in X = Wn,p

B ×Wn−1,p
B , for n = 1

and 1 < p < 2 or n = 2 and 1 < p < 2N
N+2 .

Proposition 4.9. Define X = Wn,p
B × Wn−1,p

B , n = 1, 2 and assume h
is of class Cn and satisfies (3.9). Assume moreover that either one of
the conditions holds:
i) n = 1, 1 < p < 2 and h satisfies the growth assumptions in point i)
of Proposition 3.3.
ii) n = 2, 1 < p < 2N

N+2 and h satisfies the hypotheses of point ii) of
Proposition 3.3.

Then consider a bounded set K in X satisfying one of the following
conditions

a) There exists τ > 0, such that S(τ)K ⊂ H1
B × L2

B, is bounded.
b) There exits τ > 0, such that the set {S(t)K, 0 ≤ t ≤ τ} is bounded

in X.
Then the global attractor in H1

B×L2
B, A, if B = D, or Am if B = Ne

or P , given in Proposition 4.1, attracts K in the topology of Y = W 2,s
B ×

W 1,s
B for any s > 1.
Furthermore, A, if B = D, or Am if B = Ne or P , attracts compact

sets of X (respectively Xm), in the topology of Y and is the maximal
compact, connected and invariant set with this property.
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Proof. As before, we consider only the case B = D and note that,
from the proofs of Proposition 4.2 or 4.3, assumption b) above implies
a). Therefore we prove the result for this case.

Now choose q ≥ p such that the space Z = Wn,q
D × Wn−1,q

D satisfies
the conditions of Corollary 4.7 and Z ↪→ X. For this it suffices to take
q > 2 if n = 1 of q ≥ 2N

N+2 if n = 2.
From assumption a), define K1 = S(τ)K ⊂ H1

0 (Ω) × L2(Ω) and
again, from Corollary 4.5, K2 = S(τ)K1 = S(2τ)K is a bounded set in Y
and in Z. Thus, from Corollary 4.7, we have that distY (S(t)K2,A) → 0
as t → ∞.

Furthermore, now we show that if K ⊂ X is a compact set, then K
satisfies assumption b) of the statement. Indeed if K does not satisfies
b), then for every τ > 0 and n ∈ N, there exist s < τ and u ∈ K, such
that ‖S(s)u‖X ≥ n. Therefore, we can take sn → 0, n → ∞ and un =
un(sn, n) ∈ K, such that ‖S(sn)un‖X ≥ n. Now, since S : R

+ ×X → X
is a continuous semigroup and K is compact there exists u ∈ K, such
that un → u and S(sn)un → S(0)u = u, and then ‖u‖X = ∞, which is
absurd.

References

[1] H. Amann, “Parabolic Evolution Equations and Nonlinear Boundary
Conditions”, J. Diff. Eqns. 72, 201-269 (1988).

[2] H. Amann, “Nonhomogeneous Linear and Quasilinear Elliptic and
Parabolic Boundary Value Problems”, in Function Spaces, Diffe. Op-
erat. and Nonlinear Analysis, H. Schneisser and H. Triebel eds.,
Teubner-Texte Zur Math, 133, 9-126 (1993).
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