NILPOTENT CONTROL SYSTEMS

Elisabeth REMM and Michel GOZE

Abstract

We study the class of matrix controlled systems associated to graded filiform nilpotent Lie algebras. This generalizes the non-linear system corresponding to the control of the trails pulled by car

1 Introduction

When we consider the problem of a mobile robot on the plane, then the front wheels of the driving car are subjected to two controls (driving and turning speed). If the driving car pulls a chain of n trailers, then a model for the kinematic behavior of this system is given by :

(1)
$$\begin{cases} x_1 = u_1 \\ x_2 = u_2 \\ x_3 = x_2 u_1 \\ x_4 = x_3 u_1 \\ \vdots \\ x_n = x_{n-1} u_1 \end{cases}$$

where u_1 and u_2 are the control functions. This system can be written in the "canonical form":

$$\overset{\bullet}{X}(t) = [u_1(t)A_1 + u_2(t)A_2)]X(t)$$

2000 Mathematics Subject Classification: 17B30, 93B25, 22F99, 34K35. Servicio de Publicaciones. Universidad Complutense. Madrid, 2002

where A_1 and A_2 are the matrices

$$A_{1} = \begin{pmatrix} 0 & & & & & \\ 0 & 0 & & & & \\ 0 & 1 & 0 & & & \\ \vdots & \ddots & \ddots & \ddots & \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix}; A_{2} = \begin{pmatrix} 0 & & & & \\ 1 & 0 & & & \\ 0 & 0 & 0 & & \\ \vdots & \ddots & \ddots & \ddots & \\ 0 & \cdots & 0 & 0 & 0 \end{pmatrix}$$

and X(t) is defined by

$$X(t) = \begin{pmatrix} 1 & & & & & & \\ x_2(t) & 1 & & & & & \\ x_3(t) & x_1(t) & & 1 & & & \\ x_4(t) & \frac{1}{2}x_1^2(t) & & x_1(t) & \ddots & & \\ \vdots & \vdots & & \vdots & \ddots & \ddots & \\ \vdots & \vdots & & \vdots & \vdots & x_1(t) & \ddots & \\ x_n(t) & \frac{1}{(n-2)!}x_1^{n-2}(t) & \cdots & \cdots & \frac{1}{2}x_1^2(t) & x_1(t) & 1 \end{pmatrix}$$

We can see that the matrices A_1 and A_2 generate a n-dimensional nilpotent linear Lie algebra which is isomorphic to the filiform Lie algebra \mathcal{L}_n ([G.K]), whose brackets are given by:

$$[X_1, X_i] = X_{i+1}$$

i = 2, ..., n-1, the non-defined brackets being equal to zero or obtained by antisymmetry. The corresponding matrix representation of \mathcal{L}_n is:

$$\begin{pmatrix} 0 & \cdots & \cdots & \cdots & 0 \\ a_2 & 0 & & & \vdots \\ a_3 & a_1 & 0 & & \vdots \\ a_4 & 0 & a_1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & 0 & \vdots \\ a_n & 0 & \cdots & 0 & a_1 & 0 \end{pmatrix}.$$

This matrix is the image of an element $\sum a_i X_i$ for the given faithful representation.

200

Remark. The writing of the previous non linear system is possible because we can use a nilpotent minimal representation of the Lie algebra \mathcal{L}_n . Note that, for a general nilpotent Lie algebra, there does not exist a procedure to determine the minimal possible degree of a faithful representation.

The aim of this work is to generalize to a class of nilpotent Lie algebras, including \mathcal{L}_n , the corresponding control systems.

2 Filiform nilpotent Lie algebras

2.1 Filiform nilpotent Lie algebras

Let \mathcal{G} be a *n*-dimensional (real) Lie algebra. Let $\mathcal{C}^i\mathcal{G}$ be the characteristic ideal defined by

$$\begin{cases}
\mathcal{C}^{0}\mathcal{G} = \mathcal{G} \\
\mathcal{C}^{1}\mathcal{G} = [\mathcal{G}, \mathcal{G}]
\end{cases}$$

$$\vdots$$

$$\mathcal{C}^{i}\mathcal{G} = [C^{i-1}\mathcal{G}, \mathcal{G}], \quad i \ge 1$$

The Lie algebra \mathfrak{g} is *nilpotent* if there is an integer k such that

$$\mathcal{C}^k\mathcal{G} = \{0\}$$

Definition 1. The n-dimensional nilpotent Lie algebra \mathcal{G} is called filiform if the smallest k such that $\mathcal{C}^k\mathcal{G} = \{0\}$ is equal to n-1.

In this case the descending sequence is

$$\mathcal{G}\supset C^1\mathcal{G}\supset\cdots\supset\mathcal{C}^{n-2}\mathcal{G}\supset\{0\}=\mathcal{C}^{n-1}\mathcal{G}$$

and we have

$$\begin{cases} \dim \mathcal{C}^1 \mathcal{G} = n-2, \\ \dim \mathcal{C}^i \mathcal{G} = n-i-1, \quad i = 1, ..., n-1. \end{cases}$$

Examples.

1) The Lie algebra \mathcal{L}_n is filiform.

2) The following n-dimensional (n-even) Lie algebra Q_n defined by

$$\begin{cases} [X_1, X_2] = X_3 &, & [X_2, X_{n-1}] = 2X_n \\ \vdots &, & [X_3, X_{n-2}] = -2X_n \\ [X_1, X_{n-2}] = X_{n-1} &, & \vdots \\ [X_1, X_{n-1}] = X_n &, & [X_p, X_{p+1}] = (-1)^p 2X_n, & p = \frac{n}{2}. \end{cases}$$

is filiform.

For this algebra, we have the following linear representation:

$$\begin{pmatrix} 0 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 \\ a_2 & 0 & \ddots & & & & & \vdots \\ a_3 & a_1 & \ddots & \ddots & & & 0 & \vdots \\ \vdots & 0 & a_1 & \ddots & \ddots & & & \vdots \\ a_i & \vdots & \ddots & \ddots & \ddots & \ddots & & \vdots \\ \vdots & \vdots & 0 & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & 0 & \ddots & \ddots & \ddots & \ddots & \vdots \\ a_{n-1} & 0 & \cdots & \cdots & 0 & a_1 & 0 & \vdots \\ a_n & -a_{n-1} & \cdots & (-1)^i a_i & \cdots & -a_3 & a_1 + a_2 & 0 \end{pmatrix}$$

2.2 Graded filiform Lie algebras

Let \mathcal{G} be a filiform Lie algebra. It is naturally filtered by the ideals $\mathcal{C}^i\mathcal{G}$ of the descending sequence. Then we can associate to the filiform Lie algebra \mathcal{G} a graded Lie algebra, noted $gr\mathcal{G}$, which is also filiform. This algebra is defined by

$$gr\mathcal{G} = \bigoplus_{i=0,\dots,n-1} \frac{\mathcal{C}^i \mathcal{G}}{\mathcal{C}^{i+1} \mathcal{G}}$$

We denote $\frac{\mathcal{C}^{i}\mathcal{G}}{\mathcal{C}^{i+1}\mathcal{G}}$ by \mathcal{G}_{i+1} . Then we have

$$gr\mathcal{G} = \mathcal{G}_1 \oplus \mathcal{G}_2 \oplus ... \oplus \mathcal{G}_n$$

with dim $\mathcal{G}_1 = 2$, dim $\mathcal{G}_i = 1$ for $2 \le i \le n$ and

$$[\mathcal{G}_i, \mathcal{G}_j] \subset \mathcal{G}_{i+j} \quad i+j \leq n$$

Lemma 1. There is a homogeneous basis $\{X_1, X_2, ..., X_n\}$ of $gr\mathcal{G}$ such that

$$\begin{array}{rcl} X_1, X_2 & \in & \mathcal{G}_1, & X_i \in \mathcal{G}_i & i = 2, ..., n \\ [X_1, X_i] & = & X_{i+1} & i = 2, ..., n \\ [X_i, X_j] & = & 0 & 2 \le i < j & i+j \ne n, \\ [X_i, X_{n-i}] & = & (-1)^i \alpha X_n \end{array}$$

with $\alpha \in \mathbb{R}$ and $\alpha = 0$ if n is even.

A Lie algebra \mathcal{G} is called graded if it is isomorphic to its associated graded Lie algebra :

$$G = grG$$

The classification of graded filiform Lie algebras is described by the following theorem :

Theorem 1. (V) If n is odd, then there are only, up to isomorphism, two n-dimensional graded filiform Lie algebras: \mathcal{L}_n and \mathcal{Q}_n .

If n is even, then \mathcal{L}_n is, up to isomorphism, the only n -dimensional graded filiform Lie algebra.

The preceding matricial presentation of \mathcal{L}_n and \mathcal{Q}_n shows that these algebras admit a faithful representation of degree the dimension of the algebra.

3 Control system on graded nilpotent Lie groups

3.1 Linear representation of the Lie group Q_n

From Vergne's theorem, without loss of generality we can restrict ourselves to consider the classes of nonlinear systems involving the matrix Lie groups L_n and Q_n associated to the Lie algebras \mathcal{L}_n and Q_n . The case L_n , considered in the introduction (corresponding to a car with trailers) has been studied in [S.L]. The system has the canonical form (1).

Let us consider now the linear representation of the Lie algebra Q_n given in the previous section. Taking the exponential of this matrix, we

find the linear representation of the connected and simply-connected Lie group Q_n associated to Q_n

$$\begin{pmatrix} 1 & & & & & & & & & & & & \\ x_2 & 1 & & & & & & & & & \\ x_3 & x_1 & 1 & & & & & & & \\ x_4 & \frac{(x_1)^2}{2} & x_1 & 1 & & & & & \\ \vdots & \vdots & & \ddots & \ddots & & & & & \\ x_i & \vdots & \frac{(x_1)^i}{i!} & \cdots & x_1 & \ddots & & & & \\ \vdots & \vdots & & & \ddots & \ddots & & & \\ \vdots & \vdots & & & & \ddots & \ddots & & \\ \vdots & \vdots & & & & \ddots & \ddots & & \\ \vdots & \vdots & & & & \ddots & \ddots & & \\ \vdots & \vdots & & & & \ddots & \ddots & & \\ x_{n-1} & \frac{(x_1)^{n-3}}{(n-3)!} & \cdots & \cdots & \cdots & \cdots & x_1 & 1 \\ x_n & y_{n-1} & \cdots & \cdots & \cdots & \cdots & y_3 & x_1 + x_2 & 1 \end{pmatrix}$$

where y_i are polynomial functions of $x_1, ..., x_i$.

3.2 Controlled system associated to Q_n

Let us consider the following non linear system

(2)
$$\begin{cases} x_1 = u_1(t) \\ x_2 = u_2(t) \\ x_3 = x_2 u_1(t) \\ x_4 = x_3 u_1(t) \\ \vdots \\ x_{n-1} = x_{n-2} u_1(t) \\ x_n = x_{n-1}(u_1(t) + u_2(t)) \end{cases}$$

Proposition 1. The system (2) can be written as

$$\overset{\bullet}{X}(t) = [u_1(t)B_1 + u_2(t)B_2)]X(t)$$

where B_1 and B_2 are the matrices corresponding to the generators of the Lie algebra Q_n .

Proof. Let be

$$B_1: \begin{pmatrix} 0 & \cdots & \cdots & \cdots & 0 \\ 0 & 0 & & & & \vdots \\ 0 & 1 & 0 & & & \vdots \\ \vdots & \ddots & \ddots & \ddots & & \vdots \\ \vdots & 0 & \ddots & \ddots & 0 & \vdots \\ 0 & \cdots & \cdots & 0 & 1 & 0 \end{pmatrix}, B_2: \begin{pmatrix} 0 & \cdots & \cdots & \cdots & 0 \\ 1 & 0 & & & \ddots & \cdots & 0 \\ \vdots & 0 & 0 & 0 & & \vdots \\ \vdots & 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & 0 & \ddots & 0 & 0 & \vdots \\ 0 & \cdots & \cdots & 0 & 1 & 0 \end{pmatrix}$$

These matrices generate the Lie algebra Q_n . In fact, if we put

$$B_i = [B_1, B_{i-1}] = B_1 B_{i-1} - B_{i-1} B_1$$

for i = 3, ..., n then we also have

$$[B_i, B_{n-i+1}] = (-1)^i 2B_n$$

for i = 2, ..., p = n/2. This corresponds to the brackets of \mathcal{Q}_n . Then we can identify \mathcal{Q}_n with the Lie algebra of the matrices B_i and the Lie group \mathcal{Q}_n associated to \mathcal{Q}_n is the linear group:

$$Q_{n} = \begin{pmatrix} 1 & & & & & & & & & & & & \\ x_{2} & 1 & & & & & & & & & \\ x_{3} & x_{1} & 1 & & & & & & & \\ x_{4} & \frac{(x_{1})^{2}}{2} & x_{1} & 1 & & & & & & \\ \vdots & \vdots & & \ddots & \ddots & & & & & \\ x_{i} & \vdots & \frac{(x_{1})^{i}}{i!} & \cdots & x_{1} & \ddots & & & \\ \vdots & \vdots & & & \ddots & \ddots & & & \\ \vdots & \vdots & & & & \ddots & \ddots & & \\ \vdots & \vdots & & & & \ddots & \ddots & & \\ \vdots & \vdots & & & & \ddots & \ddots & & \\ \vdots & \vdots & & & & \ddots & \ddots & & \\ \vdots & \vdots & & & & \ddots & \ddots & & \\ x_{n-1} & \frac{(x_{1})^{n-3}}{(n-3)!} & \cdots & \cdots & \cdots & \cdots & x_{1} & 1 \\ x_{n} & y_{n-1} & \cdots & \cdots & \cdots & \cdots & y_{3} & x_{1} + x_{2} & 1 \end{pmatrix}$$

Thus we have

$$(u_1(t)B_1 + u_2(t)B_2)(X(t)) =$$

$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ u_2(t) & 0 & 0 & 0 \\ x_2u_1(t) & u_1(t) & 0 & 0 \\ x_3u_1(t) & x_1u_1(t) & u_1(t) & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ x_iu_1(t) & \frac{(x_1)^{i-2}}{(i-2)!}u_1(t) & \frac{(x_1)^{i-3}}{(i-3)!}u_1(t) & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ x_{n-2}u_1(t) & \frac{(x_1)^{n-4}}{(n-4)!}u_1(t) & u_1(t) & 0 & 0 \\ x_{n-1}U(t) & \frac{(x_1)^{n-3}}{(n-3)!}U(t) & \cdots & x_1U(t) & U(t) & 0 \end{pmatrix}$$

with $U(t) = u_1(t) + u_2(t)$. This gives the required system.

Theorem 2. The system (2) is controlable.

Recall that the system is controlable if, given two distincts points X_0 and X_f in \mathcal{Q}_n , there is a finite time T and a function control $u(t) = (u_1(t), u_2(t))$ such that the solution satisfies $X(0) = X_0$ and $X(T) = X_f$. From [S.L], such a system is controlable if and only if the matrices B_1 and B_2 generate \mathcal{Q}_n . From the definition of these matrices, $B_1, B_2 \in \mathcal{Q}_n - [\mathcal{Q}_n, \mathcal{Q}_n]$ and generate the Lie algebra \mathcal{Q}_n .

4 The system (2) as a perturbation of (1)

Let $\varepsilon \in \mathbb{C}$ and consider the linear isomorphism

$$f_{\varepsilon}:\mathcal{Q}_n\to\mathcal{Q}_n$$

given by $f_{\varepsilon}(X_1) = X_1$, $f_{\varepsilon}(X_i) = \varepsilon X_i$ for i = 2, ..., n. If we put $Y_i = f_{\varepsilon}(X_i)$, the bracket of \mathcal{Q}_n in the basis $\{Y_1, ..., Y_n\}$ is defined by

$$\begin{cases} [Y_1, Y_i] = Y_{i+1}, & i = 2, ..., n-1 \\ [Y_2, Y_{n-1}] = 2\varepsilon Y_n \\ \vdots \\ [Y_p, Y_{p+1}] = (-1)^p 2\varepsilon Y_n \end{cases}$$

Observe that if ε tends to 0, the brackets of Q_n tend to those of \mathcal{L}_n :

$$\{ [Y_1, Y_i] = Y_{i+1}, i = 2, ..., n-1. \}$$

the other bracket beeing nul. This proves that \mathcal{Q}_n is a deformation of \mathcal{L}_n , or that \mathcal{L}_n is a contraction of \mathcal{Q}_n . In this way we can follow the representation of \mathcal{Q}_n and see the system (2) as a perturbation of the system (1). Let us consider the representation of \mathcal{Q}_n given by the matrices

$$B^{\varepsilon} = \begin{pmatrix} 0 & & & & & & & & & & \\ a_{2} & 0 & & & & & & & & \\ a_{3} & a_{1} & \ddots & & & & & & \\ \vdots & & & a_{1} & \ddots & & & & & \\ a_{i} & & \ddots & \ddots & & & & & \\ \vdots & & & \ddots & \ddots & & & & \\ \vdots & & & & \ddots & \ddots & & & \\ \vdots & & & & & \ddots & \ddots & & \\ a_{n-1} & & & & & a_{1} & 0 & \\ a_{n} & -\varepsilon a_{n-1} & \dots & (-1)^{i} \varepsilon a_{i} & \dots & -\varepsilon a_{3} & a_{1} + \varepsilon a_{2} & 0 \end{pmatrix}$$

If B_i^{ε} is the matrix defined by $a_i = 1, a_j = 0$ for $j \neq i$, then we have

$$\begin{cases} [B_1^{\varepsilon}, B_i^{\varepsilon}] = B_{i+1}^{\varepsilon}, & i = 2, ..., n-1 \\ [B_2^{\varepsilon}, B_{n-1}^{\varepsilon}] = 2\varepsilon B_n^{\varepsilon} \\ \vdots \\ [B_p^{\varepsilon}, B_{p+1}^{\varepsilon}] = (-1)^p 2\varepsilon B_n^{\varepsilon} \end{cases}$$

that is, the brackets on the new basis. But

$$\lim_{\varepsilon \to 0} B_{\varepsilon} = \begin{pmatrix} 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & 0 \\ a_{2} & 0 & & & & & \vdots \\ a_{3} & a_{1} & \ddots & & & 0 & & \vdots \\ \vdots & & a_{1} & \ddots & & & \vdots \\ a_{i} & & \ddots & \ddots & & & \vdots \\ \vdots & & & \ddots & \ddots & & \vdots \\ a_{n-1} & & & & a_{1} & 0 & \vdots \\ a_{n} & 0 & \dots & 0 & \dots & 0 & a_{1} & 0 \end{pmatrix}.$$

These matrices correspond to the linear representation of \mathcal{L}_n given before.

The nonlinear matrix system

$$\overset{\bullet}{X}(t) = [u_1(t)B_1^{\varepsilon} + u_2(t)B_2^{\varepsilon})]X(t)$$

is written:

(3)
$$\begin{cases} x_1 = u_1 \\ x_2 = u_2 \\ x_3 = x_2 u_1 \\ x_4 = x_3 u_1 \\ \vdots \\ x_{n-1} = x_{n-2} u_1 \\ x_n = x_{n-1} u_1 + \varepsilon x_{n-1} u_2 \end{cases}$$

This system is a perturbation of the nonlinear matrix system associated to \mathcal{L}_n . In fact, if $\varepsilon \to 0$, we find again the equations of (1). It is clear that the systems (2) and (3) are isomorphic, as they are defined by equivalent representations of \mathcal{Q}_n .

We can interprete these equations by saying that the last trailer has a perturbation given by the term $\varepsilon x_{n-1}u_2$. This is natural, because the role of the first trailer is not the same as that of the last one.

4.1 Determination of the solutions

Recall that we can give a global solution of a matrix system associated to a nilpotent Lie algebra by

$$X(t) = e^{g_1(t)A_1}e^{g_2(t)A_2}...e^{g_n(t)A_n}$$

where the matrices A_i are the elements of the Lie algebra.

4.1.1 Solution of (1)

A direct computation of $X(t) = e^{g_1(t)A_1}e^{g_2(t)A_2}...e^{g_n(t)A_n}$ gives :

$$\begin{cases} x_1 = g_1 \\ x_2 = g_2 \\ x_3 = g_1 g_2 + g_3 \\ x_4 = \frac{g_1^2}{2!} g_2 + g_1 g_3 + g_4 \\ \vdots \\ x_n = \frac{g_1^{n-2}}{(n-2)!} g_2 + \dots + g_n \end{cases}$$

The functions g_i depends on the control functions u_1 and u_2 . These relations are defined comparing the derivates of the previous solutions and the equations of (1). We obtain:

By quadrature, we obtain the expressions of the q_i .

4.1.2 Solutions of the system (2)

The same calculations for the system (2) give:

$$\begin{cases} x_1 = g_1 \\ x_2 = g_2 \\ x_3 = g_1 g_2 + g_3 \\ x_4 = \frac{g_1^2}{2!} g_2 + g_1 g_3 + g_4 \\ \vdots \\ x_n = \frac{g_1^{n-2}}{(n-2)!} g_2 + \dots + g_n \end{cases}$$

The relations between the functions g_i and the control functions are given by :

$$\begin{cases} g_1 = u_1 \\ g_2 = u_2 \\ g_3 = g_1 g_2 \\ \vdots \\ g_i = (-1)^i \frac{g_1^{i-2}}{(i-2)!} g_2 \\ \vdots \\ g_{n-1} = \frac{-g_1^{n-3}}{(n-3)!} g_2 \\ g_n = \frac{g_1^{n-2}}{(n-2)!} g_2 + g_2 \left(\frac{g_1^{n-3}}{(n-3)!} g_2 + \frac{g_1^{n-4}}{(n-4)!} g_3 + \dots + g_{n-1} \right) \end{cases}$$

4.1.3 Solutions of the perturbed system (3)

The link between (1) and (2) is given by solving (3). We obtain:

$$\begin{cases} x_1 = g_1 \\ x_2 = g_2 \\ x_3 = g_1 g_2 + g_3 \\ x_4 = \frac{g_1^2}{2!} g_2 + g_1 g_3 + g_4 \\ \vdots \\ x_n = \frac{g_1^{n-2}}{(n-2)!} g_2 + \dots + g_n \end{cases}$$

and find again the same expression as in (2). On the other hand, the perturbation can be read from the relations between the g_i and the control functions u_i :

When $\varepsilon \to 0$, we find the expressions of the g_i of the system (1).

References

- [A] Ancochea Bermúdez J.M., On the rigidity of solvable Lie algebras. In Deformation Theory of Algebras and Structures and Applications. Hazewinkel Ed. Kluwer Acad. Publis. 403-445, 1988.
- [A.C] Ancochea Bermúdez J.M.,; Campoamor Strusberg O., On certain families of naturally graded Lie algebras, to appear in J. Pure Appl. Algebra.
- [G.K] Goze M; Khakimdjanov Y., Nilpotent Lie Algebras. Kluwer Academic Publishers, MIA 361, 336p, 1996.
- [R] Remm E., Systèmes controlables sur les groupes de Lie. mémoire DEA. Université de Haute Alsace. Mulhouse, 1997.
- [S.L] Silva Leite F., Control Systems on matrix Lie groups, Actas/Proceedings EAMA-97. 295-306, 1997
- [V] Vergne M., Cohomologie des algèbres de Lie nilpotentes. Bull. Soc. Math. France, 98, 81-116, 1970.

Laboratoire de Mathématiques

4, rue des Frères Lumière Recibido: 22 de Enero de 2001 F. 68093 Mulhouse Cedex Revisado: 22 de Marzo de 2001