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NILPOTENT CONTROL SYSTEMS

Elisabeth REMM and Michel GOZE

Abstract

We study the class of matrix controlled systems associated to
graded filiform nilpotent Lie algebras. This generalizes the non-
linear system corresponding to the control of the trails pulled by
car.

1 Introduction

When we consider the problem of a mobile robot on the plane, then the
front wheels of the driving car are subjected to two controls (driving
and turning speed). If the driving car pulls a chain of n trailers, then a
model for the kinematic behavior of this system is given by :

( o
T1= Ul
L]
To= U2
L]
3= ToU1
(1) .
Ta=— T3U]Q
[
ITpn= Tn-1U1

where w1 and ug are the control functions. This system can be written
in the “canonical form”:

[ ]
X (t) = [u1 () A1 + ua(t) A2)| X (1)
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where A; and Ay are the matrices

o O
[}
—= O
[e)

A = 0 1 0 C Ay = 00 0
o --- 0 1 0 0 0O 0 O
and X (t) is defined by
1
{L‘Q(t) 1
xg(t) xl(t) 1
X(t) = za(t) 323(t) (1)

1(t) :
zi(t) x(t) 1

o= 8

zalt) Grigah (1)

We can see that the matrices A; and Ay generate a n-dimensional
nilpotent linear Lie algebra which is isomorphic to the filiform Lie alge-
bra £, ([G.K]), whose brackets are given by:

(X1, Xi] = Xin1

i =2,...,n— 1, the non-defined brackets being equal to zero or obtained
by antisymmetry. The corresponding matrix representation of L, is :

0 B |
a9 0
a3 ai 0

This matrix is the image of an element > a;X; for the given faithful
representation.
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Remark. The writing of the previous non linear system is possible
because we can use a nilpotent minimal representation of the Lie alge-
bra L,. Note that, for a general nilpotent Lie algebra, there does not
exist a procedure to determine the minimal possible degree of a faithful
representation.

The aim of this work is to generalize to a class of nilpotent Lie
algebras, including £,,, the corresponding control systems.

2  Filiform nilpotent Lie algebras

2.1 Filiform nilpotent Lie algebras

Let G be a n-dimensional (real) Lie algebra. Let C'G be the characteristic
ideal defined by

c'g=¢
C'G=[6,d]
cig=[C""'g,g], i>1

The Lie algebra g is nilpotent if there is an integer k such that

ckg={0}

Definition 1. The n-dimensional nilpotent Lie algebra G is called fili-
form if the smallest k such that C*G={0} is equal to n — 1.

In this case the descending sequence is
GoCGo--- D" 2Go {0} =C" g
and we have

dimC'G=n — 2,
dimCiG=n—i—1, i=1,...,n—1

Examples.
1) The Lie algebra L, is filiform.
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2) The following n-dimensional (n-even) Lie algebra Q,, defined by

(X1, Xo] = X3 , (X2, Xpo1] = 2X,

: , (X3, Xp_o] = —2X,

(X1, Xpo] = Xpn1 :

(X Xa] =Xa . [Xp Xpu] = (-1)P2X,, p=3%.
is filiform.

For this algebra, we have the following linear representation :

0 0 0
as 0 :
as ai 0

0 al
a;

0

an—1 O 4 0 ai 0
an —ap-1 -+ (=D'a; -+ —a3z a;+az O

2.2 Graded filiform Lie algebras

Let G be a filiform Lie algebra. It is naturally filtered by the ideals C'G
of the descending sequence. Then we can associate to the filiform Lie
algebra G a graded Lie algebra, noted grG, which is also filiform. This
algebra is defined by

We denote % by Git+1. Then we have
grG=01®G2®...8G,
with dimG; = 2, dimG; =1 for 2 <7 < n and

Gi,Gj] CGiyj i+j<n

202 REVISTA MATEMATICA COMPLUTENSE
(2002) vol. XV, num. 1, 199-211



ELISABETH REMM, MICHEL GOZE NILPOTENT CONTROL SYSTEMS ...

Lemma 1. There is a homogeneous basis {X1, Xs,..., Xp,} of grG such
that

X1,Xs € G, X,€¢; 1=2,...,m

[XLXA = X’H—l ZZQ,...,TL )
[Xinn—i} = (—1)7'04Xn

with « € R and aa =0 if n is even.

A Lie algebra G is called graded if it is isomorphic to its associated
graded Lie algebra :

G =grg

The classification of graded filiform Lie algebras is described by the
following theorem :

Theorem 1. (V) If n is odd, then there are only, up to isomorphism,
two n-dimensional graded filiform Lie algebras: L, and Q.

If n is even, then L, is , up to isomorphism, the only n -dimensional
graded filiform Lie algebra.

The preceding matricial presentation of £, and Q,, shows that these
algebras admit a faithful representation of degree the dimension of the
algebra.

3 Control system on graded nilpotent Lie groups

3.1 Linear representation of the Lie group @,

From Vergne’s theorem, without loss of generality we can restrict our-
selves to consider the classes of nonlinear systems involving the matrix
Lie groups L, and @, associated to the Lie algebras £,, and Q,. The
case Ly, considered in the introduction (corresponding to a car with
trailers) has been studied in [S.L]. The system has the canonical form
(1).

Let us consider now the linear representation of the Lie algebra Q,,
given in the previous section. Taking the exponential of this matrix, we
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find the linear representation of the connected and simply-connected Lie
group (@),, associated to Q,,

1
T2 1
T3 T 1
24 —(ag)Q 1 1
: 1
n—3
Tp—1 (Eﬁﬁ)_s)x 1 1

where y; are polynomial functions of x1, ..., x;.

3.2 Controlled system associated to Q,

Let us consider the following non linear system

(1= ui ()
.%?2: UQ(t)
x.3: ToUq (t)
(2) T4= z3u (1)

Tp1= Tp—ou1(t)

| 2= 2 (un () + un(t))

Proposition 1. The system (2) can be written as

X (t) = [u1(t) Br + ua(t) B2)| X (1)

where By and Baare the matrices corresponding to the generators of the
Lie algebra Q,,.
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Proof. Let be

0 0 0 0
00 10

B () 10 By 0 0 0
0 R : 0 -0 :
0O -« -~ 0 1 0 o --- -~ 0 1 0

These matrices generate the Lie algebra 9,,. In fact, if we put
B; = [B1,Bi-1] = B1Bi—1 — Bi_1B1
for 1 = 3, ...,n then we also have
[Bi, By—it1] = (=1)'2B,

for i = 2,...,p = n/2. This corresponds to the brackets of Q,,. Then
we can identify Q,, with the Lie algebra of the matrices B; and the Lie
group @, associated to Q,, is the linear group :

1

T2 1

T3 T 1

Ty % T 1
@n = T (milz)l x1

: 1
n—3

Tn—1 (22)_3)1 rp 1

Thus we have
(u1(t)B1 + ua(t)B2)(X (1)) =
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0 0 0
uz(t) 0 0
zou (t) uy(t) 0
r3u1 (t) r1uUl (t) ul (t)
) i—2 ) 1—3
ziuy (t) %m(t) %ul(t)
: 0
n—4
en—sur(t) () ui(t) 0
n—3
U Gl u) #Ut) U@ 0

with U(t) = ui(t) + ua(t). This gives the required system.
Theorem 2. The system (2) is controlable.

Recall that the system is controlable if, given two distincts points
Xo and Xy in Q,, there is a finite time 7" and a function control u(t) =
(u1(t), u2(t)) such that the solution satisfies X (0) = X and X (7T") = X.
From [S.L] , such a system is controlable if and only if the matrices B;
and By generate Q,,. From the definition of these matrices, Bi, By €
Q,, — [On, OQn] and generate the Lie algebra Q,,.

4 The system (2) as a perturbation of (1)
Let ¢ € C and consider the linear isomorphism

fe:Qn— 9y

given by fo(X1) = Xi, fo(X;) = eX; for i = 2,..,n. If we put ¥; =
fe(X;), the bracket of Q,, in the basis {Y7,...,Y,} is defined by

[Y1,Yi] = Yiia,
[Yg, Yn—l] = 2€Yn

i=2,...n—1

[Yp, Ypt1] = (—1)P2eY,,
Observe that if € tends to 0, the brackets of 9,, tend to those of L,:

{ M,Yi] = Yi,
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the other bracket beeing nul. This proves that Q,is a deformation of
L,, or that £, is a contraction of Q,,. In this way we can follow the rep-
resentation of Q,, and see the system (2) as a perturbation of the system
(1). Let us consider the representation of Q,, given by the matrices

0
a9 0
as al . 0

Be “

a;

Ap—1 al 0
an —eap—1 ... (=1)'ea; ... —easz aj+eag 0

If B is the matrix defined by a; = 1,a; = 0 for j # 4, then we have

[Bf,Bf] = Bf,,, i=2,.,n—1
[Bs, Bs_,] = 2¢Bs

n

(B, Byya] = (-1)P2¢B;,

that is, the brackets on the new basis. But

as 0
as aq 0
lim B, = “
e—0
a;
Ap—1 al 0 .
A, 0 ... 0 ... 0 aj 0

These matrices correspond to the linear representation of £,, given be-
fore.
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The nonlinear matrix system

X () = [ur(t) By + ua(t) B3)] X (1)

is written :

1= Ul
[ ]
To2= U9
°
T3= T2U1
°
(3) T4= T3U1

.
Tp—1= Tn-2U1

[ ]
Tp= Tp_1U1 + ETp_1U2

This system is a perturbation of the nonlinear matrix system asso-
ciated to L. In fact, if ¢ — 0, we find again the equations of (1). It is
clear that the systems (2) and (3) are isomorphic, as they are defined
by equivalent representations of Q,,.

We can interprete these equations by saying that the last trailer has
a perturbation given by the term ex,_jus. This is natural, because the
role of the first trailer is not the same as that of the last one.

4.1 Determination of the solutions

Recall that we can give a global solution of a matrix system associated
to a nilpotent Lie algebra by

X(t) = 91 (DAL g2() A2 ogn(t)An

where the matrices A; are the elements of the Lie algebra.
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4.1.1 Solution of (1)

A direct computation of X () = e91(0A4192(0A2 _con()An giyes -

r1= g1

Ta= go

T3= 9592 + g3

2= %90+ 9195 + 9
n—2

Ln= %92 + o+ Gn

The functions g; depends on the control functions u; and wuo. These
relations are defined comparing the derivates of the previous solutions
and the equations of (1). We obtain :

[ ]
g1= u1
[ ]
g2= U2
[ [ ]

g3= —4g1 g2

By quadrature, we obtain the expressions of the g;.

4.1.2 Solutions of the system (2)

The same calculations for the system (2) give:

1= g1
2= g2
r3= 9192 + g3

2
z4= %90+ 9193 + 9

n—2

L In= %92 + .+ 9n
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The relations between the functions g; and the control functions are

given by :

.

[ ]
gi1= w1
[
g2= u2

[ [ ]
93= g1 g2

° 2

9i= (*1)iﬁ 92

-3
o —g{b .
In—1= (n—=3)! g2
° n—2 n—3 n—4

gn= m g2 + g2 ((11_3)!92 + (11_4)193 + ...+ gnfl)

4.1.3 Solutions of the perturbed system (3)

The link between (1) and (2) is given by solving (3). We obtain :

1= g1
€T2= g2
r3= g192 + g3

2
z4= %90+ 9193 + 9

n—2
91

[ Tn= 3792 T - T gn

and find again the same expression as in (2). On the other hand, the
perturbation can be read from the relations between the g; and the
control functions wu; :
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gi1= uj
g2= u2
[ ] [ ]
g3= —43g1 g2

. —_g" 3 e
— 9%
gn—1=— (n—3)! g2
° g;z 2 n—3 n—4

In= (n_2)1 92 +€ g2 ((i1_3)192 + (11_4)!93 + .o+ gn-1)

When ¢ — 0, we find the expressions of the g; of the system (1).
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