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Abstract

In [6] and [7] the author introduces the notion of filiform Lie
superalgebras, generalizing the filiform Lie algebras studied by
Vergne in the sixties. In these appers, the superalgebras whose
even part is isomorphic to the model filiform Lie algebra L, are
studied and classified in low dimensions. Here we consider a class
of superalgebras whose even part is the filiform, naturally graded
Lie algebra @Q,,, which only exists in even dimension as a conse-
quence of the centralizer property. Certain central extensions of
(), which preserve both the nilindex and the cited property are
also generalized to obtain nonfiliform Lie superalgebras.

1 Introduction

Nilpotent Lie superalgebras are a relatively recent research field within
the Lie superalgebras. The interest on solvable superalgebras increased
in the 80’s, when Bakhturin and Drenski [1] studied identities on solvable
colored Lie superalgebras. Its representation have also been analyzed by
various authors [11]. But there are very few works entirely devoted to
nilpotent superlagebras. Up to dimension 5, they have been classified by
Hegazi ([8],[9]). Recently, the deformations of the standard filiform Lie
superalgebra Ly, ,, were determined [6], by estimating the dimensions of
the cohomology groups H3 (Lym, Lin.m)-

In this work we are mainly interested in studying the equivalent struc-
ture, for the Lie superalgebras, of the nilpotent Lie algebra @, deter-
mined by Vergne in 1966 [13]. It is well known that this algebra is
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characterized by its natural graduation and its nonexistence in odd di-
mension. This last property, which is a consequence of the structure of
the ideals in the descending central sequence of Q,,, can be formulated in
terms of centralizers, and has therefore been called the centralizer prop-
erty. This can be used to extend Vergne’s theorem [13] to wide classes
of naturally graded Lie algebras. Now, for a nilpotent Lie superalgebra
G = GyP G, this condition can be formulated also for the odd elements,
and extended to a similar condition on the Gy-module G. This is done
by starting from the associated Lie algebra to G, where Gy = @,, for
n > 6.

1.1 Generalities

Definition 1. A Lie superalgebra is a Zso-graded vector space G =

Go @ Gy with a bilinear mapping [.,.] : G X G «— G satisfying
[GQ,GQ] C Ga+5
(X, Y] = —(-peteEty X]
(X, V. 2] = [[X,Y],Z]+ (-1)*=" =V [y (X, Z]]

forall X € Go,Y € Gg,z € G and o, 3 € Zs

It follows from this definition that G is an usual Lie algebra, that
(1 is an Go-module and that there exists a Gp-invariant symmetric map
p: \/2 Gl — Go.

For an arbitrary Lie superlagebra we can also define a descending
central sequence as follows :

@G = @
Cck (@) = [G, o1 (G)} k> 1
Definition 2. A Lie superalgebra is called nilpotent if there exists a

positive integer n such that C™ (G) = 0.

This definition can be modified to isolate the aportation of the Lie
algebra of even elements and the module to the nilpotence of the struc-
ture. This can be reformulated as done in [6,7] :

C°Gy = Go, CFGy = [Go,ck—lc:o] k>
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which is nothing than the usual central descending sequence for G, and

G, =Gy, CF = [Go,Ck‘lGl] — adaG (ck—lal) E>1

Lemma 1. The Lie superalgebra G = Gy & Gy is nilpotent if and only
if there exist positive integers p,q such that

CPGy = UGy = {0}

The proof is a reformulation of Engel’s theorem.

Definition 3. The nilindex of the nilpotent Lie superlagebra G = Gy ®
G is the minimal pair of integers (p,q) that satisfy CPGy = C1G =
{0} }

Recall that a nilpotent Lie algebra g is called filiform if its nilindex
is p =dimg — 1. Thus a Lie superalgebra G = Go ® G1 will be called
filiform if (p,q) = (dim Gy — 1,dim G;). As done for the Lie algebras,
the filiform Lie superalgebras also define a variety whose properties are
similar to those of usual Lie algebras. In [7], the author concentrates
on the study of the filiform Lie superalgebra L., ., and its cohomology
spaces, starting from the classical results known for the filiform model
Lie algebra L,. Here we focus on the algebra @, and search for its
equivalent in the variety of Lie superalgebras.

Recall that Vergne proved the following result :

Lemma 2. A naturally graded nilpotent Lie algebra is filiform if and
only if it is isomorphic to one of the following algebras :

1. L, (n>3):
(X1, X5 =Xit1,2<i<n

over the basis {X1, .., Xn+1}-
2. sz (m Z 3) .

(X1, Xi] = X541, 2<i<2m — 1
(X, Xomy1—j] = (=1) Xom, 2< 5 <m

over the basis {X1, .., Xom}-
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1.2 The centralizer property

In this paragraph we recall the centralizer property for Lie algebras [4],
which will be later be generalized for Lie superalgebras :

Definition 4. A naturally graded nilpotent Lie algebra g is said to
satisfy the centralizer property if

Cy(CPg) 2 CPg,p> [n;ﬂ (1.1)
C(cn) 2 cap< |

where n (g) is the nilpotence class ( or nilindex ) of g.

Remark 1. For the algebra @Q,, the property gives an estimation of
how far the algebra @), is from having an abelian commutator algebra,
as happens for L,,.

Let G = Go & G be a Lie superalgebra. Then the associated Lie
algebra is defined as follows : if [.,.] denotes the superalgebra product,
we define the Lie algebra law u as

1. p(X,Y)=[X,Y] for any X,Y € Gy
2. IU(X,Y):[X,Y] for X € Go,Y € &
3. p(X,Y)=0for any X,Y € Gy

This is nothing as considering the odd part as an abelian ideal. It is
obvious that the associated Lie algebra, which is usually denoted by G,
is an invariant of the superalgebra.

Let Gy be a nilpotent Lie algebra of nilindex p and G = Gy & G a
nilpotent Lie superalgebra. For 1 < r < dim(G we define the annihilator
Assq, (C"Gy) of C"Gy in G as :

ASSG1 (CTG1> = {X S G1 ‘ [X, CrGl] = O}

It can be immediately verified that it carries a structure of Gg-submodule
of G 1-
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Definition 5. The Lie superalgebra G is said to satisfy the centralizer-
annihilator property, shortened C-A, if

1. Gy satisfies the centralizer property as Lie algebra.

2. For1<q <dimG;
q q b
Assg, (C1Gy) 2 CIGy for q > b}
Assg, (CUGy) 2 CIGy for q < [g}

where p is the nilindex of Gjy.

3. The associated Lie algebra G is naturally graded.

Although the third requirement is not indispensable, it is rather
convenient to consider the naturally graded Lie algebras, as deformation
theory provides then the non graded models. On the other hand, the
centralzer property for Lie algebras was originaly restricted to graded
Lie algebras [4].

In particular this definition that the Lie algebra of even elements is
naturally graded and that the dimension of G is at least [%]

2 The Lie superalgebra Q (2m,2m)

In this section we construct a Lie superalgebra that constitutes, for the
variety of Lie superalgebra laws, the natural generalization of the filiform
Lie algebra @,,.

For m > 4 let Q (2m,2m) be the 4m-dimensional Lie algebra whose
brackets over the basis { X7, .., Xom, Y1, .., Yo, } are given by

[Xl,Xi] = XZ'+1, 2§z§2m—1
(X, Xomy1-5) (—1) Xom, 2<j<m
[X17}/i] = Yi+17 1§/L§2m_1
[X27}/i] = }/’£+17 1§/L§2m_]—

In fact, the brackets [ X2, Y;] = Yi+1 could be ommited by an elemen-
tary change of basis.
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Lemma 3. For m > 4 the Lie algebra Q (2m,2m) is naturally graded
and nilpotent of nilindex 2m. Moreover

1. the subspace Vy generated by X1, .., Xopm is a subalgebra isomorphic
to Q2m

2. the subspace Vi generated by the Y1, .., Yoy, is an abelian ideal.
3. forq>m—1

C@(2m,2m)

CQ (2m, 2m) O CI1Q (2m, 2m)

_ The proof is elementary. Observe however that by 3), the algebra
Q@ (2m, 2m) does not satisfy the centralizer property. The next step is to
find a filiform Z-graded Lie superalgebra whose associated Lie algebra
is isomorphic to Q (2m,2m).

Definition 6. Let G = Gy @ G be a Lie superalgebra, G its associated

Lie algebra and gr <é) = @izléi the graded algebra related to é, where

G; = C;éé for i > 1. Then G is called é—compatible if the symmetric
map p: G1\/ G1 — Gy satisfies

p (@Z,@}) C Giyjy i,5 > 1

Theorem 1. There exists a unique Z-graded @(Qm, 2m)-compatible
filiform Lie superalgebra G = Go & G1 whose even part is isomorphic to
Qam and for which p is nontrivial. Over a basis {X1, .., Xom, Y1, .., Yo }
its law is given by

(X1, Xi)] = Xip1,2<i<2m—1
[Xj, Xomyr—j] = (1) Xom, 2<j<m
(X1,Y)] = Yip, 1<i<2m—1
[(X2,Y]] = Yipq, 1<i<2m—1
Vi, Yom—14s] = 2(=1)" "Xy, 1<i<m-—1
Vi, Yom—ogs] = ()™ " @2m—2i—1)Xop 1, 1<i<m—1
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Proof. From the associated Lie algebra Q (2m,2m) we deduce the ex-
istence of a basis {Xi, .., Xom, Y1, .., Yo, } of G such that {Xy,.., Xon}
is a basis of Gy, {Y1,.., Yo} is a basis of G; and the brackets relative
to the X; and the module action are

(X1, Xi] Xip1, 2<i<2m—1
[Xj, Xomar—j] = (1) Xom, 2<j <m

[(X1,Y]] = Y, 1<i<2m -1

[(X2,Y;] = Yiq, 1<i<2m—1

Thus G is @ (2m, 2m)-compatible by taking the Z-graduation defined
by
(X1, Xo, Y1) if i =1
Gy = ¢ (Xirn,Yi) if 2<i<2m—1
(Yo) if i =2m

As adgX; (G1) =0 if j > 3, it follows that the multiplication on G, is
given by
Y, V)] = ;i Xitj

Now the product [Xo, [Y;, Y]] on G is zero unless i 4+ j = 2m — 1, which
combined with the application of the Jacobi superidentity to the triples
{X1,Y;,Y;} shows that o;; = 0 for i + j < 2m — 3. This implies in
particular that adgY; (Go) € CXap—1+CXyyy, for any j, so that Jacobi is
satisfied automatically for all triples {Y;, Y}, Y} } and {Y;, X;, X} }, where
as1 = 1 when applied to j = 1,k = 2. As we have

v ] apXom, =12, (j,k)=(m—km+k) fork>1
[X“[YJ’Y’“”_{ 0 i>3,j=1,.,2m

we obtain succesively the relations
L. am—1m—1 = 20y —1,m for the triple {X1,Y,—1,Ym-1}

2. Om—1—km—1+k = Om—1—km+k T QCm—km—1+k for the triples
(X1, Y1k, Yipo1qnfand 1 <k <m — 2

3.0 = m_i—km—14k T Qm—km—2—k for the triples
X1, Y1k Y2k} and 0 <k <m — 2
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Thus all nonzero structure constants c;; are a multiple of a,—1 .

It follows
Qigm-o—i = 2(=1)""ap_1m, 1<i<m—1
Qi 2m—1—i = (_1)m—1+z (2m —2i—1) Um—1,m, 1 <1 <m—1

A change of basis Y{ = Y1 with ﬁQam_Lm = 1 allows to suppose
Qm—1,m = 1, from which the Lie superalgebra law follows.

[

We will denote this superalgebra by @ (2m, 2m) = Q2,®Q1 (2m, 2m)

Corollary 1. The Lie superlagebra Q (2m,2m) satisfies the centralizer-
annihilator property.

Proof. For the subalgebra of even elements the situation is obvious.
Now

Cle (2m7 2m) = <Y;7‘+17 "7Y2’m>7 ,7 2 1

As Y, 1 € C™72Q4 (2m,2m) — C™ 1Q (2m, 2m), we obtain clearly the
annihilator property. |

Remark 2. Observe that the C-A property for @ (2m,2m) is a conse-
quence of the nonnullity of p.

The space of even derivations of @ (2m,2m) is denoted by
Derg (Q (2m,2m)), as usual [12]. If f is such a derivation, then we
write

f(X) = fIX;,1<i<2m
fY) = gY;, 1<i<2m

As flgy(2m,2m) is a derivation of Qap, it is well known that

o= 0ix15<i ff=f-f; f5=0
fio= (i—2)fl+f3for 3<i<2m—1; f3m = (2m—2) fl +2f3;

iR = it fori >3, 1<k <2m—i—1;

o= fEmA g (—1) PR for i < 2m
138 REVISTA MATEMATICA COMPLUTENSE
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From the conditions [f (X1), Y]+ [X1, f (Yi)] = f (Yit1), 1 <i <2m—1
we obtain then

g = (k—=1)f3+gl
g, = g k+1<j<2m
g, = Oforj<k

Now, for 1 <1i < m — 2 we have [Y;,Y;] = 0, thus we obtain

2[f (¥),Yi) =0 = (=1)" 7 g2 2 X 1+ (=1 g2 Xy,

K3 K3

and therefore g{ =0 for 3 < j < 2m — 3. Finally, from the nontriv-
ial brackets [f (Yl) ,ng_3] + [Yl, f (Y'Qm_g)] =2 (_1)m f (Xgm_l) we
deduce

291 = (@m—=3)fl —(2m—-5)f3
g = fi-f

The remaining possibilities give no more additional conditions, thus we
resume

Proposition 1. For m > 4 the following holds

dim Derg (Q (2m,2m)) =4m — 1

3 The superalgebras g, (2m)

In this section we construct, for m > 4, m—2 nilpotent Lie superalgebras
whose even part is a central extension of (), by C. The interest of this
construction is that both the dimension of the odd part and its structure
is the same as for the superalgebra @ (2m,2m).

Recall that, for a Lie algebra g, the space H? (g, C) can be interpreted
as the space of classes of 1-dimensional central extensions of the Lie
algebra g. It is well known that the space of 2-cocycles Z2(g,C) is
identified with the space of linear forms over A?g which are zero over
the subspace (0 :

Q= (o (z,y) N2+ po (Y, 2) Nz + po (2,2) ANy)e

139 REVISTA MATEMATICA COMPLUTENSE
(2002) vol. XV, num. 1, 131-146



J.M. ANCOCHEA BERM[’IDEZ7 O.R. CAMPOAMOR ON A NILPOTENT LIE ...

The extension classes are defined modulus the coboundaries B? (g, C).

This allows to identify the cohomology space H? (g, C) with the dual of

the space K?{ A where A € Hom (/\2 g,g) is defined as

AMxAy)=po(x,y) v,y €g

In fact we have Hy(g,C) = % for the 2-homology space, and as
H? (g,C) = Homc (H (g,C), C) the assertion follows.

Notation 1. Let t;; € C?(g,C) the cocycles defined by
Yij (X, X7) = 005

Thus any cocycle can be expressed as a linear combination of the
preceding cochains.

Notation 2. For k > 2 let

H' (9.C) = {ij € H*(3,C) | 0ij (9> 80) C Sirjug2tkr1} »

1<t< [”T_S], where g =3~ g and g = Cé;? for k > 1.

Let m > 4 and g(y (1 <t<m—2) be the Lie algebra whose
Cartan-Maurer equations over the basis {w, ..,wom+1} are :

dwl = dwg =0
dw]' = w1 Awj-1, 3<3<2m—1
g
dwom = w1 N\ wom—1 + Z (—1)J Wi N Wam+1—j
=2
t+1 '
dwgmi1 =Y (=1 wj Aws jio

=2

Proposition 2. Form > 4 the Lie algebra g, ;) is a central extension
of Qam by C that preserves the natural graduation, the nilindex and the
centralizer property.

Proof. A central extension of Q2,, by C which satisfies the required con-
ditions is easily seen to be determined by the cocycles ¢;; € H22 " (Qam, C)
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for 1 <t < m — 2. Now these cocycles must satisfy the relation
i+ 7 = 2t + 3. It is immediate to verify that this space is generated
by the cocycles

©2,2t+15 P3,2t5 -y Pt+1,t+2

subjected to the relations
Pooei1 + (=17 Vo j=0,5=3,.,t+1
If {X1,.., Xo,,} is the dual base of {w1, ..,wam }, we have
X22t4+1, X322t ooy Xi1,042 € Ker A

and ‘
Xoper1 + (=1 Xjores 5 €Q, j=3,.,t+1

Thus there is, for any ¢, only one extension, which is isomorphic to g, ;)-
For the remaining values of ¢ it is easy to see that (o, does not admit
naturally graded extensions with the prescribed properties. |

Remark 3. The preceding family are the only extensions of @), that
satisfy the centralizer property and preserve both the nilindex and the
natural graduation. In [4] the (2m + 1)-dimensional naturally graded
Lie algebras of nilindex 2m — 1 which satisfy the property are classified.

Let G = Gy & G, where Gy = I(m,t) for1<t<m-—2and Gy =
@12;”1 CY;. Define a Gg-module structure on G by

[X17Y]] :}/"j-i-la Z‘:1727 1§]§2m_17

and the symmetric map p: G1 V Gy — Gy

p (Vi Yom—o—i) =2(=1)"" Xop 1, 1<i <m—1
p(Vi,Yom-1-3) = (2m = 2j = 1) (=)™ Xpp, 1 <i<m—1
This map is a cocycle and can also be deduced from [6].

Theorem 2. Form > 4 and 1 <t < m—2 the sum Go®G1 is a nilpotent
Lie superalgebra that satisfies the centralizer-annihilator property.
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Proof. Observe that ad (Y;) (G1) € CXgp—1 + CXyyy, for any i, so
that the Jacobi superidentity is satisfied for all triples {Y;, Y}, Y;}. As
X1, X2 € C'Gy and [X;,G1] = 0 for i > 3, the triples {X;, X, Y;} also
are satisfied. Finally, for the triples {X;, Y}, Yy} for ¢ = 1,2 we recover
the coefficient relations expressed by p. |

Remark 4. The preceding Lie superalgebras will be denoted by
9(m,1) (2m). Observe that the odd elements are the same as for the
superalgebra @ (2m,2m), and the adjoined vector does not alter the
product of G1. This occurs whenever the nilindex of the even part is
not altered. In particular, its even derivations will be similar to those
of @ (2m,2m), as the intervention of Xa,,11 is void.

3.1 The superalgebras gb’g " (2m)

If the procedure of the preceding section is generalized, we obtain also
Lie superalgebras whose even part is obtained by extending centrally,
under certain conditions, the filiform algebra Qoy,.

Form24,1Stgm—Qandogqg2m—2t—3letgz;gt) be

the Lie algebra whose Cartan-Maurer equations over the basis
{Wi, ., W15 -y Wam 24 ¢} AT

dw1 = de =0
dw]‘ = w1 ANwj-1, 3<5<2m—1
[2m+1]
2 .
dwoy = Wi N wom—_1 + Z (—1)] Wi N\ Wom+1—j
Jj=2
t+1 A
dwamy1 = Z (—1) wj Aws—jya
Jj=2
t+1 )
dw2m+2 = w1 N wWam41 + Z (—1)] (t +2— j) Wi A Wa—j+2¢
Jj=2
t+1 )
dwom+2+r = W1 A Womt14r + Z (=1) Sjwj Awa—jrapr, 1 <17 <q
Jj=2
149 REVISTA MATEMATICA COMPLUTENSE
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where

t+1
Si=) (t+2-k),2<j<t+1
k=j
t+1
SE=> 81 2<k<gq
k=j

Proposition 3. For any m > 4 the Lie algebra g%’q " s a central
extension of 9im La )1 by C which satisfies the centralizer property.
Proof. We first prove that g( 0 is an extension of g(,, ;). For this, the
cocycles which define an extension with the required property are
o 2t+1 9 9,241 5
Pja—j+2t € H ’ (g(m,t)7(c> » P1ami1 € Hyp %y (g(m,t)7 C)
satisfying

“1,2m+1 t+ Prr1,3+¢ =0
P24t + (1) (t+2—7) pjajru=0,3<j<t+1

For the general case recall that for g%m " the last differential form is
given by

t+1

dwam 2 = w1 A womy1 + Z (t+2—7) wj Aws—jyo
j=2

A central extension of g/ (m.t) by C which satisfies the centralizer property
will be determined by the adJunctlon of a differential form dway,+3, whose
structure is
t+1 '
dwom13 = w1 Awami2 + Z (=1) @j5—jtorwj Aws—_jtor,
j=2

where the cocycles

Pj5—j+2t € H2 o (g(mﬂf)a C)
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satisfy

t+1
pogror+ (1Y (t+2—k)pjs 4o =0, 3<j<t+1
k=j

We thus obtain a unique extension class which is isomorphic to gl;i B
This shows the assertion for ¢ = 1. Let it be true for gg > 1. Then the

Cartan-Maurer equations of g%r’g?t) are
dwl == dWQ =0
dwj = w1 ANwj—1, 3< 7 <2m —1
(25 ]
dwam = w1 N\ wom—1 + Z (—1)] Wi N\ Wom+1—j
=2
t+1 A
dwom+1 = Z (—1) wj Aws—jya
i=2
t+1 ‘
dwomt2 = w1 N\ wam+1 + Z (—1)] (t +2— j) Wi A\ Wa—j+2¢
Jj=2
t+1 '
dwomyo4r = W1 AN Womy14r + Z (=1) S} wj Awajratrr, 1< < qo
i=2

Now we extend this algebra by C. Supposing that the extension sat-
isfies the centralizer property and is naturally graded of the prescribed
characteristic sequence, the determining cocycles are

2 24241
’ 2
Pia—j+otra+t € Hy <

gb’z?t), C) if r =1 (mod 2)

244541 :
Qja—j+2ttq+l € Hy 2 (gé;ﬁ?t),c) if r =0 (mod 2)

We have the relations

t+1

Pia-jraerart + (—1)7 Z SPwj Aws—jyatrg =0, 3<j < t+1
=2
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and by an elementary change of basis, the adjoined differential form
dw2m+3+q0 is of type

t+1
dwam131+g9 = W1 A Wamt244 + Z (=1) Swj A ws—j+at+g
j=2
Both the nilindex, graduation and centralizer property are obviously
satisfied. -

We denote by ga’g " (2m) the Lie superalgebra whose even part is

isomorphic to g%;z " and odd part G; = @ffl CY; with the module
structure
(X, Y] =Y i=1,2,1<i<2m—1,

and the symmetric map p: G1 V Gy — Go

p(Yi,Yom o) =2(=1)"""" 1 Xy, 1, 1<i<m-—1
p (Vi Yom-1-4) = (2m —2j = 1) (=) Xgp, 1 <i<m—1

1,9
(m,t)

(2m — 1,2m) and satisfies the centralizer-annihilator property.

Theorem 3. The Lie superalgebra g (2m) is nilpotent of superindex

Remark 5. Observe that these algebras, as well as g, ) (2m), are
not filiform any more. Thus the construction provides, starting from
a filiform Lie superalgebra, family of nonfiliform Lie superalgbras in
arbitrary dimension.
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