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Abstract

We describe main models and results of a new branch of the
queueing theory, theory of retrial queues, which is characterized by
the following basic assumption: a customer who cannot get service
(due to finite capacity of the system, balking, impatience, etc.)
leaves the service area, but after some random delay returns to
the system again. Emphasis is done on comparison with standard
queues with waiting line and queues with losses. We give a survey
of main results for both single server M/G/1 type and multiserver
M/M/c type retrial queues and discuss similarities and differences
between the retrial queues and their standard counterparts. We
demonstrate that although retrial queues are closely connected
with these standard queueing models they, however, possess unique
distinguished features. We also mention some open problems.

1 Introduction

1.1 Motivating examples

In classical queueing theory it is usually assumed that a customer who
cannot get service immediately after arrival either joins the waiting line
(and then is served according to some queueing discipline) or leaves the
system forever. Sometimes impatient customers leave the queue, but it
is also assumed that they are leaving the system forever. However as a
matter of fact the assumption about loss of customers which elected to
leave the system is just a first order approximation to a real situation.
Usually such a customer after some random period of time returns to
the system and tries to get service again.

The following are just a few examples which explain this general
remark in more detail.
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A) Telephone systems

Everybody knows from his/her own experience that a telephone sub-
scriber who obtains a busy signal repeats the call until the required
connection is made. As a result, the flow of calls circulating in a tele-
phone network consists of two parts: the flow of primary calls, which
reflects the real wishes of the telephone subscribers, and the flow of re-
peated calls, which is the consequence of the lack of success of previous
attempts.

B) Retail shopping queue

In a shop a customer who finds that a queue is too long may wish
to do something else and return later on with the hope that the queue
dissolves. Similar behavior may demonstrate some impatient customers
who entered the waiting line but then discovered that the residual wait-
ing time is too long.

C) Random access protocols in digital communication networks

Consider a communication line with slotted time which is shared
by several stations. The duration of the slot equals the transmission
time of a single packet of data. If two or more stations are transmitting
packets simultaneously then a collision takes places, i.e. all packets are
destroyed and must be retransmitted. If the stations involved in the
conflict would try to retransmit destroyed packets in the nearest slot,
then a collision occurs with certainty. To avoid this, each station inde-
pendently of other stations, transmits the packet with probability p and
delays actions until the next slot with probability 1− p, or equivalently,
each station introduces a random delay before next attempt to transmit
the packet.

1.2 General structure of retrial queues

The standard queueing models do not take into account the phenomenon
of retrials and therefore cannot be applied in solving a number of prac-
tically important problems. L. Kosten [33, p.33] notes that “any theo-
retical result that does not take into consideration this repetition effect
should be considered suspect”. Retrial queues (or queues with return-
ing customers, repeated orders, etc.) have been introduced to solve this
deficiency. The general structure of a retrial queue is shown in Figure 1.
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Figure 1. General structure of a retrial queue

It is clear from this picture that retrial queues can also be regarded
as a special type of queueing networks. In the most general form these
networks contain two nodes: the main node where blocking is possible
and a delay node for repeated trials. To describe specific retrial queues
with a certain structure and queueing discipline more nodes have to be
introduced.

1.3 Bibliographical remarks

The early work of Kosten [32], Wilkinson [48] and Cohen [15] shows
that retrial queues are suitable mathematical models for the modelling
of subscribers’ behavior in telephone networks. Since the pioneering
works published in the 50’s about 400 papers have been published in
mathematical and statistical journals such as Journal of Applied Proba-
bility, Advances in Applied Probability, Journal of the Royal Statistical
Society, etc., operations research journals such as Queueing Systems,
European Journal of Operational Research, Operations Research, etc.,
telecommunication journals such as The Bell System Technical Jour-
nal, IEEE Journal on Selected Areas in Communications, etc. Several
textbooks [34, 42, 44, 49] include sections or chapters devoted to retrial
queues and a specific monograph was recently published by Falin and
Templeton [26]. For a comprehensive review of the main results and
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literature the reader is referred to the papers [5, 7, 23, 35, 50]. Some
journals devoted special issues to the theory of retrial queues [4, 6, 46].
International Teletraffic Congresses and Seminars had sections devoted
to retrial queues and recently a series of international workshops on re-
trial queues started in Madrid (September 1998) and continued in Minsk
(June 1999) and Amsterdam (March 2000). The next one will be held
in Cochin (December 2002).

2 The mathematical formalism

We consider a multiserver queueing system in which primary customers
arrive according to a Poisson flow of rate λ. The service facility consists
of c identical servers, and service times are exponentially distributed
with parameter ν. If a primary customer finds some server free he au-
tomatically occupies a server and leaves the system after service. On
the other hand, any customer who finds all servers busy upon arrival
is obliged to leave the service area but he repeats his demand after an
exponential time with parameter μ, i.e. we are assuming that the re-
peated attempts follow the classical retrial policy described later on in
Subsection 3.2. We also assume that the interarrival periods, service
times and retrial times are mutually independent.

The system state at time t can be described by means of a bivariate
process X = {(C(t), N(t)) ; t ≥ 0}, where C(t) is the number of busy
servers and N(t) is the number of customers in orbit. Under the above
assumptions the process X is a regular continuous time Markov chain
with the lattice semi-strip S = {0, ..., c} × Z+ as the state space.

By ordering the states as S = {(0, 0), ..., (c, 0), (0, 1), ..., (c, 1), .....}
we can express the infinitesimal generator Q of the process X in the
following matrix-block form:

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

A
(0)
0 A

(+1)
0 0 0 ...

A
(−1)
1 A

(0)
1 A

(+1)
1 0 ...

0 A
(−1)
2 A

(0)
2 A

(+1)
2 ...

0 0 A
(−1)
3 A

(0)
3 ...

... ... ... ... ...

... ... ... ... ...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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where A
(−1)
j , A

(0)
j and A

(+1)
j are the following (c + 1)× (c + 1) matrices:

A
(−1)
j =

⎛⎜⎜⎜⎜⎝
0 jμ 0 ... 0
0 0 jμ ... 0
.. .. .. ... ..
0 .. .. ... jμ
0 .. .. ... 0

⎞⎟⎟⎟⎟⎠ , A
(+1)
j =

⎛⎜⎜⎜⎜⎝
0 ... ... 0 0
0 ... ... 0 0
... ... ... .. ..
0 ... ... 0 0
0 ... ... 0 λ

⎞⎟⎟⎟⎟⎠ ,

A
(0)
j =

⎛⎜⎜⎜⎜⎝
−(λ + jμ) λ 0 0 ... 0

ν −(λ + ν + jμ) λ 0 ... 0
0 2ν −(λ + 2ν + jμ) λ ... 0
... ... ... ... ... ...
0 ... ... ... cν −(λ + cν)

⎞⎟⎟⎟⎟⎠ .

Geometrically stochastic behavior of the process X can be repre-
sented with the help of the transition diagram shown in Figure 2, for
the case c = 3.

•
0

0 �λ �ν •
1

�λ�
��

�2ν •
2

�λ�
��

�3ν •
3

λ

�
�� �

•1
�

���

�λ �ν •
�

���

�
��

�λ �2ν •
�

���

�
��

�λ �3ν •�
�� �

λ

•2 �λ
�

���

�ν • �λ
�

���

�
��

�2ν • �λ
�

���

�
��

�3ν •�
�� �

λ

•3 �λ
�

���

�ν • �λ
�

���

�2ν • �λ
�

���

�3ν •

μ

2μ

3μ

μ

2μ

3μ

μ

2μ

3μ

. . . . . . . . . .

Figure 2. State space and transitions

The above mathematical description corresponds to the main retrial
queue of type M/M/c. Many variants differ only in details but not
in essential ideas. For instance, the consideration of a system with c
servers and a waiting room with finite capacity d arises naturally in
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modern telephone systems. This model can be obtained by considering
service rates depending on the system state in the way νij = min(i, c)ν,
for 0 ≤ i ≤ c + d. In Section 3, we describe other interesting variants.

It should be noted that random walks on the product of a finite set
and the set of non-negative integers (i.e. on a lattice semi-strip) arise in
many applications. The best-know family of such walks was introduced
by Neuts [38] and Malyshev [37]. The main assumption of their theories
is the following condition of limited spacial homogeneity

A
(k)
j ≡ A(k), if j ≥ j∗,

for all k and some positive integer j∗.
This assumption allows extensive mathematical analysis of both sta-

tionary and transient behavior of the process. In contrast to this, retrial
models operating under the classical retrial policy have transitions from
states (i, j) which depend on the second coordinate. The main ana-
lytical difficulties and the most interesting properties of retrial queues
are connected with this fact. To show the nature of the difficulties in
more detail, we now consider the simplest problem: the calculation of
the stationary distribution p = (pij)(i,j)∈S of the process X. This is
usually done with the help of Kolmogorov equations pQ = 0. Parti-
tioning the stationary probability vector p as p = (p0,p1, ...), where
pj = (p0j , ..., pcj), we can write Kolmogorov equations in the following
matrix form

pj−1A
(+1)
j−1 + pjA

(0)
j + pj+1A

(−1)
j+1 = 0, j = 0, 1, .. (2.1)

where p−1 and A
(+1)
−1 are defined to be zero.

Alternatively, we may introduce partial generating functions

pi(z) =
∞∑

j=0

zjpij , 0 ≤ i ≤ c,

and transform the Kolmogorov equations into the following set of differ-
ential equations

μp′(z)A(z) = p(z)B(z), (2.2)

where p(z) = (p0(z), ...,pc(z)), p′(z) = (p′
0(z), ...,p′

c(z)), and A(z) and
B(z) are the following (c + 1) × (c + 1) matrices:
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A(z) =

⎛⎜⎜⎜⎜⎝
z −1 0 ... 0 0
0 z −1 ... 0 0
.. .. .. ... .. ..
0 0 0 ... z −1
0 0 0 ... 0 0

⎞⎟⎟⎟⎟⎠ ,

B(z) =

⎛⎜⎜⎜⎜⎜⎜⎝

−λ λ 0 ... 0 0
ν −(λ + ν) λ ... 0 0
0 2ν −(λ + 2ν) ... 0 0
.. .. .. ... .. ..
0 0 0 ... −(λ + (c − 1)ν) λ
0 0 0 ... cν −(λ(1 − z) + cν)

⎞⎟⎟⎟⎟⎟⎟⎠ .

In the case c > 2 both infinite set of linear equations (2.1) and set of
differential equations (2.2) do not have a closed form solution. Based on
these equations some theoretical approaches provide solutions in terms
of contour integrals [15] or as limit of extended continued fractions [41].
However, from a practical point of view, the stationary probabilities pij

cannot be expressed in a tractable form and do not lend to a direct
recursive computation. For c ≤ 2, the probabilities pij satisfy a set of
equations of birth-and-death type so explicit solutions in terms of special
functions are available. Some information about explicit expressions
(case c ≤ 2) and approximations and numerical methods (case c > 2)
is given in Subsection 4.1. Equation (2.2) is also the key to get the
following stationary mean values [26, Section 2.3.3]:

E [C] =
λ

ν
, (2.3)

E [N ] =
(ν + μ)(λ − νV ar(C))

μ(cν − λ)
, (2.4)

where E [C] , E [N ] and V ar(C) are defined as the mean values and
variance of C(t) and N(t) as t → ∞.

Formula (2.3) can be thought as a variant of Little’s formula. On
the other hand, the use of formula (2.4) reduces the calculation of the
mean number of customers in orbit to the variance of the number of
busy servers, which is a simpler problem.
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For understanding the physical behavior of the M/M/c retrial queue,
it is convenient to analyze the system state at service completion epochs.
It should be noted that a server in a standard queueing system is render-
ing service in a continuous manner until the queue becomes empty. In
contrast, in a retrial queue a server remains unavailable for the system
over some interval of time after each service completion. For ease of no-
tation, let us describe this situation for the single server case c = 1. At
epoch ηi−1, the (i − 1)th customer completes his service and the server
becomes free. The next customer enters service after some random time
Ri, during which the server is free although there may be customers
in the orbit. If the number of customers in orbit at time ηi−1, Ni−1, is
equal to j, then Ri is exponentially distributed with rate λ+jμ. Observe
that the type (i.e. primary or orbiting customer) of the ith service time
is determined by a competition between two exponential laws of rates
λ and jμ, respectively. Note also that repeated attempts that occur
during the service time Si that starts at epoch ξi = ηi−1 + Ri do not
modify the state of the system. At epoch ηi = ξi+Si the server becomes
idle again. Thus, the evolution of a retrial queue is described in terms
of an alternating sequence {(Ri, Si); i ≥ 0} of idle and busy periods
for the server (see Figure 3). This alternating structure is a root of the
stochastic decomposition property described in Subsection 4.2.

� �Si−1 � �Ri � �Si

ξi−1
ηi−1 ξi

ηi

Figure 3. Description of the system behavior

Based on the above figure, the following equation which describes
the dynamic of the orbit can be derived:

Ni = Ni−1 − Bi + Vi,

where Vi is the number of customers arriving during the ith service time
and Bi = 1 if the ith customer in service proceeds from the orbit and
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Bi = 0 otherwise. The random vector (Ri, Bi) depends on the history
of the system prior to time ηi−1 only through Ni−1 and

P (Ri > t,Bi = 1 | Ni−1 = j) =
jμ

λ + jμ
e−(λ+jμ)t.

On the other hand, the pair (Vi, Si) does not depend on the history
of the system before ξi and

P (Si ∈ (t, t + dt), Vi = n) = e−λt (λt)n

n!
νe−νtdt.

3 Other queueing systems with retrials

In complex models of computer and communication systems the re-
peated attempts are combined with a variety of queueing phenomena
leading to a large number of variants and generalizations of the main
retrial queue described in Section 2. In investigating variants, it should
be distinguished between basic structural properties which are extended
analogues of the derivations for the main models of type M/M/c and
M/G/1, and in particular significant properties of each specific model.
For purposes of illustration, we now briefly describe a few of such vari-
ants.

3.1 The single server model of type M/G/1

The consideration of the single server case has intrinsic interest for the
stochastic modelling of communication protocols arising from local area
networks [30]. If c = 1, the service distribution can be generalized to fol-
low a general law with probability distribution function B(x) (B(0) = 0),
Laplace-Stieltjes transform β(s) and first moments βk. Now the math-
ematical model can be viewed as a Markov regenerative process. The
main M/G/1 retrial queue and many of its variants can be studied
by using a variety of methodologies including Markov renewal theory,
supplementary variable analysis, embedded Markov chains, etc. For a
systematic account of the fundamental methods and results, we refer to
the reader to the monograph by Falin and Templeton [26, Chapter 1].

109 REVISTA MATEMÁTICA COMPLUTENSE
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3.2 Generalized retrial policies

In many applications to telephony a call receiving a busy signal is not
allowed to await for the termination of the busy condition. In this
context, each blocked call generates a source of repeated requests for
service independently of the rest of calls in the orbit. Thus, the clas-
sical retrial policy assumes that the probability of a repeated attempt
during the interval (t, t + dt), given that j calls are in orbit at time t,
is jμdt + o(dt). In contrast to this, some applications to computer and
communication networks are based on the feature that the time between
two successive repeated attempts is controlled by an electronic device
and, consequently, is independent of the number of units applying for
service, so the probability of a repeated attempt during (t, t+ dt), given
that the orbit is no empty, is αdt + o(dt). This second type of discipline
is called constant retrial policy. Artalejo and Gomez-Corral [3] treat
both models in a unified way by defining the linear retrial policy.

3.3 Retrials due to balking and impatience

Most queueing systems with retrials are motivated by computer and
telecommunication applications where a repeated attempt appears due
to blocking in a system with limited service capacity. However, the ex-
istence of retrials can be due to another reason. For instance, Fayolle
and Brun [27] study a single server system with retrials where the re-
peated attempts are due to impatience of the queueing customers. A
second possibility is provided by the consideration of mixed models with
waiting line and orbit [25], where a customer finding a long queue upon
arrival may decide to attend another secondary job and come back later
hoping to find a shorter queue.

3.4 Models with nonpersistent subscribers

Suppose that a calling subscriber after some unsuccessful retrials decides
to abandon the system. This practical variant can be modelled with
the help of the so-called persistence function {Hj ; j ≥ 0}, where Hj

represents the probability that after the jth attempt fails, a subscriber
will make the (j + 1) th one [23, Section 13].
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3.5 Multiclass retrial queues

In the main model it is assumed that the input process is homogeneous
from the point of view of such characteristics as the service time and the
interretrial time distributions. In practice, however, these characteris-
tics may differ widely for different subscriber groups. This leads us to
multiclass retrial queues [23, Section 12]. Multiclass models are far more
difficult for mathematical analysis than single class models because now
the joint queue length process is a random walk on the multidimensional
integer lattice Z

n
+ rather than on Z+.

3.6 Batch arrival retrial queues

It is very common the consideration of communication systems at which
units arrive in batches. In batch arrival retrial queues it is assumed that
at every arrival epoch a batch of k primary units arrives with probability
ck. If c = 1 and the channel is busy at the arrival epoch, then the whole
group joins the orbit, whereas if the channel is free, then one of the
arriving units starts its service and the rest form sources of repeated
calls. The consideration of multiserver retrial queues with batch arrivals
leads to an infinitesimal generator Q of M/G/1 type. Although the
methods required to investigate this type of multiserver models seem
standard, we do not know any work dealing with the algorithmic analysis
of these systems.

3.7 Retrial queues with a finite number of sources

It is usually assumed that the flow of primary arrivals is Poisson. Usually
this means that primary arrivals are generated by a very large number
of sources and each of them generates primary calls very seldom. From
this point of view a model with Poisson input flow is a model with an
infinite number of sources. However, in many practical situations it is
important to take into account the fact that the rate of generation of
new primary calls decreases as the number of customers in the system
increases. Examples of this behavior arise from the performance analysis
of hybrid fiber-coax, cellular networks and star-like local area networks
with collision avoidance circuits [29, 30, 47]. This can be done with the
help of finite source models where each individual source generates its
own flow of primary demands.
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3.8 Other advanced retrial queues

The retrial literature is vast and rich so it is possible to find a great num-
ber of variants and generalizations including systems with priorities [12],
models with negative arrivals and disasters [8], polling systems [36], over-
loading systems [1], etc. The interested reader may find useful material
about the above variants and many other retrial models in the mono-
graph [26], the papers [5, 7] and the references therein. At this moment,
it should be pointed out the impossibility of getting analytical solutions
for retrial systems in the case of non-exponentially distributed intervals
between primary arrivals and interretrial periods. It means a significant
difference with standard queues which admit closed form expressions for
the model G/M/c and its variants [31]. As an alternative, many efforts
have addressed during the last decade to the numerical investigation of
complex retrial queues. In this sense, we especially mention the use of
matrix-analytical methods [13, 17, 18] for the investigation of versatile
retrial models with interarrival and interrepetition distributions of type
PH, MAP, etc.

4 Comparing standard and retrial queueing sys-
tems

It is now clear that there exists a rich variety of different single server
and multiserver queueing systems with retrials. Although the study of
some of them implies a special insight of their peculiarities, in many
other cases an extended investigation based on the methods developed
for the M/M/c and the M/G/1 retrial queue may be carried out for
structural complex retrial models too. Therefore, in this section, we
concentrate on the main models of type M/M/c and M/G/1 and estab-
lish a comparative analysis of the standard models versus their retrial
counterparts.

4.1 The main M/M/c model

In addition to process X = {(C(t), N(t)); t ≥ 0} which describes the
system state for the retrial queue, we now consider a second process Y =
{Q(t); t ≥ 0} which indicates the number of customers in the system
for the standard M/M/c queue without repeated attempts. In fact, the
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process Y is a simple birth-and-death process with birth (arrival) rates
λi = λ, i ≥ 0, and death (service) rates νi = min(i, c)ν, i ≥ 1.

As usual, the first question to be investigated is the positive recur-
rence of X and Y. It can be shown that both processes are positive
recurrent if and only if

ρ =
λ

cν
< 1. (4.1)

In the case of process Y , the proof follows from the classical results
for the classification of states in birth-and-death processes [31]. The
proof for the retrial process X uses Foster’s criterion based on mean
drifts [26, Section 2.2]. Essentially more interesting is the fact that ρ = 1
provides a necessary and sufficient condition for the null recurrence of
Y, whereas the behavior of X in the case ρ = 1 depends on the retrial
rate. For instance, if c = 1 and ρ = 1, then X is null recurrent if and
only if μ ≥ ν [26, Section 1.3.1].

It is interesting to observe that the positive recurrence condition of
process X is independent of the retrial rate μ. An intuitive explanation
follows by assuming a very congested orbit, then the idle time Ri con-
verges to zero and the system performs like the standard queue with
random order discipline.

If ρ < 1, the steady state exists. In the case of the standard M/M/c
queue [31] the stationary distribution of the number of customers in the
system is given by

pj =

{
p0

(
λ
ν

)j 1
j! , if 0 ≤ j ≤ c,

p0ρ
j cc

c! , if j > c,

where

p0 =

⎛⎝ ccρc+1

c!(1 − ρ)
+

c∑
j=0

(
λ

ν

)j 1
j!

⎞⎠−1

.

In particular, in the single server case we have a geometric distribu-
tion with parameter ρ:

pj = (1 − ρ)ρj , j ≥ 0.
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The stationary distribution of the system state for the M/M/1 retrial
queue is as follows [26, Section 1.2]:

p0j =
ρj

j!μj
(1 − ρ)1+ λ

μ

j−1∏
k=0

(λ + kμ), j ≥ 0,

p1j =
ρj+1

j!μj
(1 − ρ)1+ λ

μ

j∏
k=1

(λ + kμ), j ≥ 0.

Thus, we also have the following expression for the stationary distri-
bution of the total number of customers in the system

pj =
ρj

j!μj
(1 − ρ)1+ λ

μ

j∏
k=1

(λ + kμ), j ≥ 0,

which can be identified as negative binomial distribution.
The model with c = 2 can be reduced to hypergeometric expressions

[26, Section 2.3]. However, the consideration of more than two servers
complicates the transitions among states and, as consequence, the under-
lying structure of birth-and-death type is not preserved. As we mention
earlier, indeed the recursive computation of pij cannot be performed.
Thus, the analysis of numerical methods of calculation of pij has been
the subject matter of many papers [21, 40, 43, 48]. Among them, the
so-called generalized truncated models propose to approximate an infi-
nite system (which cannot be solved directly) with the help of another
infinite calculable system. The fact that we approximate the original
infinite system by another infinite system implies better accuracy than
direct methods [48] based on finite truncation of the state space. We
next describe briefly two of such generalized truncation methods.

Falin [21] introduces a simple model which may be described as fol-
lows. Assume that the retrial rate becomes equal to infinite when the
number of customers in orbit exceeds a level M. It means that, from
the level M up, the system performs as an ordinary M/M/1 queue with
arrival rate λ and service rate cν. Let X̃ = {(C̃(t), Ñ(t)); t ≥ 0} be
the process denoting the system state in the approximate model. If we
denote by μj the retrial rate given that there are j customers in orbit,
then the generalized truncated model X̃ corresponds to the case
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μj =
{

jμ, if 0 ≤ j ≤ M,
∞, if j ≥ M + 1.

It is easy to see that X̃ is a Markov chain with state space S̃ =
{0, ..., c− 1}× {0, ...,M}∪ {c}×Z+. The condition (4.1) is again neces-
sary and sufficient for the positive recurrence. Although the stationary
probabilities p̃ij for 0 ≤ i ≤ c, 0 ≤ j ≤ M, coincide up to a normaliz-
ing constant with the corresponding stationary probabilities of the finite
truncated model obtained by placing a fictitious limit in the orbit ca-
pacity [48], the numerical results show that a significant reduction in the
value of M is obtained when we use the formulation X̃.

Neuts and Rao [40] investigate a second possibility to get a numer-
ically tractable approximation. They consider that the number of cus-
tomers in orbit who are allowed to conduct retrials is restricted to an
appropriate number N, so the retrial rate is μj = min(j, N)μ, j ≥ 0.

It yields an approximate process X̂ = {(Ĉ(t), N̂(t)); t ≥ 0} which can
be reformulated as a quasi-birth-and-death (QBD) process with a large
number of boundary states. QBD processes have been dealt widely in
the queueing literature [39], so the methods for determining the ergodic-
ity condition and for computing the stationary distribution p̂ij are well
investigated. Note that the state space is Ŝ = {0, ..., c} × Z+, so it
agrees with the initial state space S. However the condition (4.1) does
not hold for X̂ because the retrial rate is constant from the level N up.
Following the general theory for QBD processes, it can be proved that
the process X̂ is positive recurrent if and only if

λ + Nμ

c!

(
λ + Nμ

ν

)c

< Nμ

c∑
k=0

1
k!

(
λ + Nμ

ν

)k

.

We now turn our attention to other important performance charac-
teristics such as the busy period and the waiting time. We now assume
that a busy period is defined as the period starting with the arrival of
a customer who finds the system empty and ends at the first comple-
tion epoch at which the system becomes empty again. The busy period
analysis is important from the server’s point of view and is also helpful
in the efficient planning of the system resources. We first analyze the
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standard M/M/c queue and denote its busy period as L∞. The existing
studies (see [10, 31] and their references) mainly deal with the existence
of closed form solutions for the case c ≤ 2. The solution is given in terms
of the Bessel function of the first kind of order r, Ir(x), defined as

Ir(x) =
∞∑

n=0

(x/2)r+2n

(n + r)!n!
.

In the case c = 1, the probability density function, g(x), of L∞ is

g(x) =
e−(λ+ν)x

xρ1/2
I1

(
2x

√
λν

)
, x > 0.

The first moments of L∞ can be obtained as a particular case of
the corresponding formulas given in Subsection 4.2 for the standard
M/G/1 queue.

If c = 2, the density function, h(x), of a busy period is given by

h(x) =
e−(λ+2ν)x

x

∞∑
r=0

(r + 1)
( ν

2λ

)(r+1)/2
Ir+1(2x

√
2λν), x > 0.

The first moments of L∞ are

E[L∞] =
1

ν(1 − ρ)
, E[L2

∞] =
2 − ρ

ν2(1 − ρ)3
.

In the case c > 2, we do not have explicit expressions. However,
from the theory of regenerative processes we know that the stationary
probability of an empty system, p0, is equal to (1 + λE[L∞])−1. In
[10] the investigation of the Laplace-Stieltjes transform of L∞ and the
computation of its moments are reduced to the recursive solution of some
simple systems of linear equations.

In comparison with the above results, the study of the busy period,
Lμ, of the M/M/c retrial queue can be considered as an open problem.
Both explicit results for the density function and transform solutions
are unknown. In the case c = 1, the moments of Lμ can be recursively
computed following the method described in [14].

We now consider the virtual waiting time, W (t), of a customer who
arrives to the system at time t. According to this definition, W (t) means
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the time that the customer spends waiting at the queue (standard model)
or at the orbit (retrial model) excluding the service time. We deal with
the system at steady state so we simply denote W (t) by W. Clearly,
the distribution of W depends on the service discipline. Retrial queues
arising from teletraffic applications operate under a random order access
discipline. This means that all calls waiting in the orbit have an equal
chance of being allocated to free servers when these become available.
The case in which customers are served in order of arrivals is of minor
interest and its solution is simpler. Thus, in what follows, we assume
the random access discipline. Random servicing is complicate due to
the overtaking phenomena, i.e. it is necessary to consider not only the
number of customers present in the system at the time of arrival of
a customer whose delay is to be investigated, but also the possibility
that customers arriving at later time will compete for free servers. In
what follows we denote the waiting time for standard and retrial queues
respectively as W∞ and Wμ.

The complementary distribution function of the waiting time in the
standard M/M/c queue can be expressed in the form of an integral
[44, Section 9.1.3] which can be expanded using Lagrange orthogonal
polynomials or Mclaurin-series methods [16, Section 5.15]. The analysis
of Wμ in the M/M/c retrial queue is a work that remains to be done.

To finish this section, we now consider the limit behavior of the
M/M/c retrial queue under high and low rate of retrials. This is an
important feature due to lack of analytical formulas for the main per-
formance characteristics, since limit theorems allow us to understand
the influence of the repeated attempts in some domains of the system
parameters. Besides limit results provide insight into correspondence
between retrial queues and the classical queueing models with waiting
line and losses.

First, we consider the case of high rate of retrials. As μ → ∞ (i.e.
the intervals between two successive retrials tend to zero) the M/M/c
retrial queue can be viewed as the standard one with waiting line. This
general heuristic observation can be transformed into a rigorous math-
ematical result in several ways. In this sense, it is very interesting to
obtain asymptotic expansions for stationary performance characteristics
in a power series in the mean time between successive retrials 1/μ. The
first term of such an expansion is the corresponding performance charac-
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teristic for the standard M/M/c queue, and the second term describes
the influence of retrials and hence is of special interest. To illustrate
this, we consider the stationary blocking probability Bμ of the retrial
queue, i.e. the probability that all servers are busy. Then, we have [26,
Section 2.7.1]

Bμ = B∞ +
(c − 1)ν − λ + νB∞

μ
ln(1 − ρ)B∞ + o

(
1
μ

)
,

where B∞ is the blocking probability in the standard M/M/c given by

B∞ =

(
λ
ν

)c 1
(c−1)!(

λ
ν

)c 1
(c−1)! +

(
c − λ

ν

) c−1∑
i=0

(
λ
ν

)i 1
i!

.

On the other hand, the limit behavior of retrial queues as μ → 0 is of
interest on account of the weak dependence of the stationary distribution
{pi.(μ); 0 ≤ i ≤ c} of the number of busy servers upon μ. This fact is
numerically illustrated in [26, section 2.6.4]. Because for complex retrial
queues limμ→0 pi.(μ) can be found more simply than limμ→∞ pi.(μ), it is
reasonable to use this limit as an approximation of pi.(μ) for all μ > 0.
For the M/M/c retrial queue in steady state, as μ → 0, the distribution
of the number of busy servers converges to the corresponding distribution
for the standard Erlang loss system M/M/c/0 (which is a truncated
Poisson distribution), but with increased arrival rate Λ = λ+ r, where r
is the unique positive root of the polynomial equation [26, Section 2.7.2]

r

c−1∑
i=0

(
λ + r

ν

)i 1
i!

= λ

(
λ + r

ν

)c 1
c!

.

The additional arrival rate r = limμ→0 μE [N ] and can be thought
of as a load formed by sources of repeated calls. This result shows that
it is important to distinguish between the cases μ = 0 and μ → 0. If
μ = 0, then the blocked customers do not send repeated attempts at all.
Thus, the retrial queue becomes the standard Erlang loss system with
the same arrival rate λ with stationary distribution

pi.(0) =

(
λ
ν

)i 1
i!

c∑
i=0

(
λ
ν

)i 1
i!

, 0 ≤ i ≤ c.

118 REVISTA MATEMÁTICA COMPLUTENSE
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Obviously, N(t) converges to ∞, as t → ∞. In contrast, if μ → 0,
then the retrial queue in steady state can be viewed as the standard
Erlang loss system but with the increased arrival rate Λ = λ + r.

4.2 The main M/G/1 model

We now consider the single server case so the service time distribution
can be extended to follow a general law. The subsequent necessary
notation was introduced in Subsection 3.1. We assume that ρ = λβ1 < 1
so our queueing models are stable and the limiting probabilities

pj = lim
t→∞P{Q(t) = j}, j ∈ Z+,

pij = lim
t→∞P{C(t) = i, N(t) = j}, (i, j) ∈ {0, 1} × Z+,

exist and are positive.
Both sequences {pj} and {pij} can be computed recursively with the

help of the following equations [26, 34]:

p0 = 1 − ρ, p1 =
1 − a0

a0
p0, p2 =

1 − a0 − a1

a0
(p0 + p1),

pj+1 =
1 −

j∑
i=0

ai

a0

j∑
i=0

pi +
j∑

i=2

pi

j∑
k=j−i+2

ak

a0
, j ≥ 2,

p0j =
λ

λ + jμ
πj , p1j =

(j + 1)μ
λ

p0,j+1, j ≥ 0,

πj =
j∑

i=0

πi
λ

λ + iμ
aj−i +

j+1∑
i=1

πi
iμ

λ + iμ
aj−i+1, j ≥ 0,

π0 = (1 − ρ) exp
{
−λ

μ

∫ 1

0

1 − β(λ − λu)
β(λ − λu) − u

du

}
,
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where

aj =
∫ ∞

0
e−λt (λt)j

j!
dB(t), j ≥ 0,

is the probability that exactly j customers arrive during the service time.
In fact, the sequence {πj ; j ≥ 0} corresponds to the distribution of

the embedded Markov chain at service completion epochs.
An alternative solution [26, 31, 34] in terms of the generating func-

tions

p(z) =
∞∑

j=0

zjpj , pi(z) =
∞∑

j=0

zjpij , i ∈ {0, 1},

is given by

p(z) =
(1 − ρ)(1 − z)β(λ − λz)

β(λ − λz) − z
, (4.2)

p0(z) = (1 − ρ) exp
{
−λ

μ

∫ 1

z

1 − β(λ − λu)
β(λ − λu) − u

du

}
, (4.3)

p1(z) =
1 − β(λ − λz)
β(λ − λz) − z

p0(z). (4.4)

Note that the solution for both standard and retrial queues are given
in terms of the Laplace-Stieltjes transform of the service times but the
retrial model exhibits a more complex expression mainly due to the
integral arising in the right-hand side of (4.3).

In particular, the corresponding expectations are given by

E [Q] = ρ +
λ2β2

2(1 − ρ)
,

E [C] = ρ, E [N ] =
λ2

1 − ρ

(
β1

μ
+

β2

2

)
.

In Section 2, we remarked the existence of a sequence of idle periods
in which the server is unavailable for the system. Due to this fact, a
retrial queue can be considered as a special type of vacation model in
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which the vacation begins at the end of each service time [2]. To exploit
this fact, we now denote the process (C,N) as (Cμ, Nμ) to remark the
dependence on the retrial rate μ. Let (C∞, N∞) be the corresponding
formulation for the standard M/G/1. This vector represents the server
state and the number of customers in queue at steady state, so that
Q = C∞ + N∞.

From equations (4.2)-(4.4) we observe that the vector (Cμ, Nμ) can
be represented as a sum of two independent random vectors as follows

(Cμ, Nμ) = (C∞, N∞) + (0, Rμ),

where Rμ represents the number of customers in orbit given that the
server is free so its generating function is Rμ(z) = p0(z)/(1 − ρ).

An application of the stochastic decomposition property yields ex-
plicit relationships among the factorial moments of the number of cus-
tomers in orbit in the M/G/1 retrial queue and the factorial moments in
the standard M/G/1 queue [2, Section 4.1]. Moreover, we can estimate
the following measure of proximity between the stationary distributions
of the M/G/1 queues with and without retrials

D =
1∑

i=0

∞∑
j=0

|pij(μ) − pij(∞)| ,

as follows

2(1 − ρ − π0) < D < 2
(

1 − π0

1 − ρ

)
.

Several methodologies can be used to analyze the busy period of the
standard M/G/1 queue. In particular, the length of L∞ is independent
of the queueing discipline so we choose to permute the order in which
customers are served and create a last-come-first-served discipline. In
this way, the analysis of L∞ is connected with a branching process in
which each customer arriving during the first service time generates a
sub-busy period distributed as the initial busy period under study [31].
This yields the following equation for the Laplace-Stieltjes transform of
L∞:

L∗
∞(s) = β(s + λ − λL∗

∞(s)). (4.5)
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This result gives the Laplace-Stieltjes transform for the busy period
expressed as a functional equation which can be easily differentiated to
find the first moments of L∞. In particular, we have

E[L∞] =
β1

1 − ρ
, E[L2

∞] =
β2

(1 − ρ)3
.

On the other hand, the structure of the busy period, Lμ, of the
M/G/1 retrial queue and its analysis in terms of Laplace transforms
have been investigated by several methods [19, 26]. Thus, we have

L∗
μ(s) =

∫ L∗∞(s)
0

β(s+λ−λu)
e(s,u)(β(s+λ−λu)−u)du∫ L∗∞(s)

0
du

e(s,u)(β(s+λ−λu)−u)

, s > 0,

where L∗∞(s) is the Laplace-Stieltjes transform for the busy period in
the standard queue without retrials given in (4.5) and e(s, u) is

e(s, u) = exp
{

1
μ

∫ u

0

s + λ − λβ(s + λ − λv)
β(s + λ − λv) − v

dv

}
, 0 ≤ u < L∗

∞(s).

The above expression provides a theoretical solution but it has se-
rious limitations in practice. For instance, we cannot compute the
first moments of Lμ by direct differentiation. The expectation fol-
lows easily from the theory of regenerative processes and is equal to
E[Lμ] = λ−1

(
p−1
00 − 1

)
. A direct method of calculation for the second

moment [9] yields

E[L2
μ] =

1
π0

(
1

(1 − ρ)2

(
2ρβ1

μ
+ β2

)
−

∫ 1

0

2
λμ(β(λ − λt) − t)

×
(

1 − λ(1 − t)β′(λ − λt)
β(λ − λt) − t

− 1
1 − ρ

exp
{

λ

μ

∫ 1

t

1 − β(λ − λu)
β(λ − λu) − u

du

})
dt

)
.

By assuming exponential service times, the above expression reduces
to a simpler form. As an alternative, it can be numerically evaluated.
The busy period of the single server retrial queue can also be connected
with branching processes but with more complex structure [28].

The analysis for the waiting time of the standard M/G/1 queue
with random order of service [45] leads to the following expression for
the Laplace-Stieltjes transform of W∞:
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W ∗
∞(s) = 1 − ρ +

λ(1 − ρ)
s

∫ 1

L∗∞(s)

(1 − u)(β(λ − λu) − β(s + λ − λu))
(β(λ − λu) − u)(u − β(s + λ − λu))

× exp
{
−

∫ 1

u

dv

v − β(s + λ − λv)

}
du.

The mean and second moments are given by

E[W∞] =
λβ2

2(1 − ρ)
,

E[W 2
∞] =

2λβ3

3(1 − ρ)(2 − ρ)
+

λ2β2
2

(1 − ρ)2(2 − ρ)
.

The formula for the Laplace-Stieltjes transform of Wμ in the M/G/1
retrial queue [24] is still more formidable:

W ∗
μ(s) = 1 − ρ +

λ(1 − ρ)
s

∫ 1

L∗∞(s)

(1 − u)(β(λ − λu) − β(s + λ − λu))
(β(λ − λu) − u)(u − β(s + λ − λu))

× exp
{∫ 1

u

s + μ + λ − λv

μ(β(s + λ − λv) − v)
dv

}
exp

{∫ u

1

λ − λv

μ(β(λ − λv) − v)
dv

}
du.

The mean waiting time can be easily obtained with the help of Lit-
tle’s formula:

E[Wμ] =
λβ2

2(1 − ρ)
+

ρ

μ(1 − ρ)
.

Recently, Artalejo et al. [11] have obtained the following formula for
the second moment of Wμ

E[W 2
μ ] =

2λβ3

3(1 − ρ)(2 − ρ)
+

λ2β2
2

(1 − ρ)2(2 − ρ)

+
λβ2

μ

(
2

(1 − ρ)2(2 − ρ)
+

ρ

(1 − ρ)2

)
+

2ρ

μ2(1 − ρ)2
.

Of course, if μ → ∞, the above formulas for the retrial queue agree
with the corresponding results for the standard M/G/1 queue. Before
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dealing in more detail with limit theorems for the M/G/1 retrial queue,
we mention the possibility of studying discrete processes closely related
to Lμ and Wμ. In the case of Lμ the study can be extended to the number
of customers arriving to the system during the length of a busy period
[26]. It is also natural to measure the waiting time by the number of
retrials Zμ(t) make by a primary customer entering the system at time
t, before he starts service [22].

Even for the standard M/G/1 queue the type of distribution of the
queue length in steady state is an unknown; the Pollaczek-Khinchin
equation (4.2) gives only the generating function of the distribution in
terms of β(s). However, under the heavy traffic analysis (which is of
special practical interest), the queue length distribution can be approx-
imated by an exponential law. To be more exact, as λ varies in such
a way that ρ → 1−, then the distribution of the scaled queue length,
(1− ρ)Q(t), weakly converges to an exponential distribution with mean
β2/2β2

1. A similar result holds for the M/G/1 retrial queue, but now
the limiting distribution of the scaled number of customers in orbit [26,
Section 1.4.1] is Gamma with mean

β2

2β2
1

+
1

μβ1

,

and variance

β2
2

4β4
1

+
β2

2μβ3
1

.

Since a retrial queueing model involves one additional parameter, μ,
another interesting limit situations are μ → ∞ (short intervals between
retrials) and μ → 0 (long intervals between retrials). Of course, the
corresponding counterparts for the standard queue do not exist.

In the case μ → ∞, it follows easily from (4.2)-(4.4) that the steady
state distribution of the number of customers in orbit converges to the
steady state distribution of the number of customers in the standard
queue M/G/1.

As μ → 0, the number of customers in orbit [26, Section 1.4.2] is
asymptotically Gaussian with mean

λρ

μ(1 − ρ)
,
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and variance

2λρ(1 − ρ) + λ3β2

2μ(1 − ρ)2
.

Finally, we consider the departure process [19] which is defined as
the sequence of times {ηi; i ≥ 0} at which customers complete service
and leave the system. Equivalently, we consider the sequence of inter-
departure times Ti = ηi − ηi−1. Taking into account that the departure
process from one queueing system can be the input process for another
queueing system, it is important to find conditions under which the de-
parture process is Poisson, or, at least, it is a renewal process. For the
standard M/G/1 queue in steady state the departure process is a re-
newal one if and only if the service time distribution is exponential, in
which case the process in fact is Poisson. The departure process for the
M/G/1 retrial queue is never a renewal process, except in the trivial
case of instantaneous service times.

The first two moments of the departure process in the standard queue
[45] are

E[Ti] =
1
λ

,

V ar(Ti) =
1
λ2 + β2 − 2β2

1.

In the case of the M/G/1 retrial queue [20], we have

E[Ti] =
1
λ

,

V ar(Ti) =
1
λ2 + β2 − 2β2

1 −
2(1 − ρ)

λ2

+
2(1 − ρ)

λμ

∫ 1

0
u

λ
μ
−1 exp

{
λ

μ

∫ u

1

1 − β(λ − λv)
β(λ − λv) − v

dv

}
du.

Note that E[Ti] does not depend on μ. It is consequence of the fact
that in steady state the rate of the departure flow must be equal to the
rate of the input flow.
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