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ON THE UNIQUENESS OF MAXIMAL

OPERATORS FOR ERGODIC FLOWS

Lasha EPHREMIDZE

Abstract

The uniqueness theorem for the ergodic maximal operator is
proved in the continuous case.

Let (X, S, μ) be a finite measure space,

μ(X) < ∞, (1)

and let (Tt)t≥0 be an ergodic semigroup of measure-preserving transfor-
mations of (X, S, μ). As usual the map (x, t) → Ttx is assumed to be
jointly measurable. For an integrable function f , f ∈ L(X), the ergodic
maximal function f∗ is defined by equation

f∗(x) = sup
t>0

1
t

∫ t

0
f(Tτx)dτ, x ∈ X.

We claim that the following uniqueness theorem is valid for the max-
imal operator f → f∗:

Theorem. Let f, g ∈ L(X) and

f∗ = g∗ (2)

almost everywhere. Then
f(x) = g(x)

for a.a. x ∈ X (with respect to measure μ).

A slightly weaker version of the theorem is formulated without proof
in [3]. The analogous theorem in the discrete case is proved in [4].
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Remark. Condition (1) is necessary for the validity of the theorem. If
μ(X) = ∞, then f∗ = 0 a.e. for every negative integrable f , since

lim
t→∞

1
t

∫ t

0
f(Tτx)dτ = 0

for a.a. x ∈ X because of the Ergodic Theorem (see [1]).

First we need several lemmas.

Lemma 1. Let f ∈ L(X). Then

ess inf f∗ =
1

μ(X)

∫
X

fdμ ≡ λ0.

Proof. That f∗ ≥ λ0 a.e. follows from the Ergodic Theorem:

lim
t→∞

1
t

∫ t

0
f(Tτx)dτ = λ0 for a.a. x ∈ X (3)

(see [1], [6]). The Maximal Ergodic Equality asserts that

μ(f∗ > λ) =
1
λ

∫
(f∗>λ)

fdμ, λ ≥ λ0 (4)

(see [6], [2]), and if μ(f∗ > λ) = μ(X) for some λ > λ0, we would
get from (4) that μ(X) = λ−1

∫
X fdμ. This implies λ = λ0, which is

a contradiction.

Lemma 2. Let (Tt)t≥0 be an ergodic semigroup of measure-preserving
transformations on a finite measure space (X, S, μ) and let f ∈ L(X).
Then

f(x) = λ0 for a.a. x ∈ (f∗ = λ0). (5)

Proof. The Local Ergodic Theorem,

lim
t→0+

1
t

∫ t

0
f(Tτx)dτ = f(x)

(see [6]), implies that

f ≤ λ0 a.e. on (f∗ = λ0). (6)
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On the other hand we have

λ0μ(X) = λ0(μ(f∗ > λ0) + μ(f∗ = λ0)) =
∫

(f∗>λ0)
fdμ +

∫
(f∗=λ0)

fdμ.

Thus
λ0μ(f∗ = λ0) =

∫
(f∗=λ0)

fdμ (7)

because of Maximal Ergodic Equality (see (4)). It follows from (6) and
(7) that (5) holds.

For a locally integrable function ξ on R
+
0 = {t ∈ R : t ≥ 0}, ξ ∈

Lloc(R
+
0 ), the maximal operator M is defined by

Mξ(t) = sup
τ>t

1
τ − t

∫ τ

t
ξdm

(m is the Lebesgue measure on R). Hence, if ξ(t) = f(Ttx), then

Mξ(t) = f∗(Ttx). (8)

Obviously, for each λ the set (Mξ > λ) = {t ∈ R
+
0 : Mξ(t) > λ}

is open (in R
+
0 ). We shall use the following well-known facts about the

connected components of this set (see [5], p.58):

If 〈a, b), 0 ≤ a < b < ∞, (the sign 〈 before a indicates that a belongs
or does not belong to the interval, i.e. 〈a, b) = (a, b) or 〈a, b) = [a, b)) is
a finite connected component of (Mξ > λ), then

1
b − t

∫ b

t
ξdm > λ (9)

for each t ∈ 〈a, b). If, in addition, a /∈ (Mξ > λ) i.e. 〈a, b) = (a, b), then

1
b − a

∫ b

a
ξdm = λ. (10)

Lemma 3. If ξ, η ∈ Lloc(R
+
0 ) and Mξ = Mη almost everywhere, then

Mξ(t) = Mη(t) for all t ≥ 0.

Proof. Let us show that for each ξ ∈ Lloc(R
+
0 ) we have

Mξ(t) = lim
δ→0+

ess inf
τ∈(t,t+δ)

Mξ(τ), t ≥ 0,
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which obviously implies the validity of the lemma.
If Mξ(t) > λ, then there exists δ > 0 such that Mξ(τ) > λ for each

τ ∈ (t, t + δ). Thus

Mξ(t) ≤ lim
δ→0+

ess inf
τ∈(t,t+δ)

Mξ(τ).

Conversely, if Mξ > λ a.e. on (t, t + δ), then let us show that

Mξ(t) ≥ λ, (11)

which finishes the proof.
Indeed, if (t, t + δ) ⊂ (Mξ > λ), then for each τ ∈ (t, t + δ) we have

sup{τ ′ > τ : 1
τ ′−τ

∫ τ ′
τ ξdm ≥ λ} ≥ t + δ (see [5], p.58). Consequently,

there exists τ ′ ≥ t + δ such that

1
τ ′ − τ

∫ τ ′

τ
ξdm ≥ λ.

Set τn ↘ t and let
τ ′
n > t + δ (12)

be such that
1

τ ′
n − τn

∫ τ ′
n

τn

ξdm ≥ λ,

n = 1, 2, . . .. Then

Mξ(t) ≥ 1
τ ′
n − t

∫ τ ′
n

t
ξdm ≥

(
1

τ ′
n − τn

∫ τ ′
n

τn

ξdm − 1
τ ′
n − τ

|
∫ τn

t
ξdm|

)
τ ′
n − τn

τ ′
n − t

and taking into account that τn → t, τ ′
n − τ �→ 0 (because of (12)) and

(τ ′
n − τn)/(τ ′

n − t) → 1 as n → ∞, we shall get (11).
If τ /∈ (Mξ > λ) for some τ ∈ (t, t + δ), then (t, τ) is covered up

to a set of measure 0 with the connected components of (Mξ > λ). In
other words, there exist connected components Δi, i = 1, 2, . . . such
that Δi ⊂ (t, τ) and m((t, τ) \ (∪i=1Δi)) = 0. Since

1
m(Δi)

∫
Δi

ξdm = λ
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for each i (see (10)), we have
∫ τ

t
ξdm = λ(τ − t)

and (11) holds.
The lemma below is actually proved in [3]. It is given here for the

sake of completeness.

Lemma 4. Let ξ ∈ Lloc(R
+
0 ), and let 〈a, b) be a finite connected com-

ponent of (Mξ > λ) for some λ. Then the values Mξ(t), t ∈ 〈a, b),
uniquely define the values ξ(t) for a.a. t ∈ 〈a, b).

Hence, if another function η ∈ Lloc(R
+
0 ) is given such that Mξ(t) =

Mη(t), t ≥ 0, then ξ(t) = η(t) for a.a. t ∈ 〈a, b).

Proof. We shall show that the values Mξ(t), t ∈ 〈a, b), uniquely define
the function

h(t) =
∫ b

t
ξdm, t ∈ 〈a, b). (13)

Assume t fixed and let λt = Mξ(t). For each γ ∈ [λ, λt) suppose 〈aγ , bγ)
to be the connected component of (Mξ > λ) which contains t and sup-
pose bγ = t whenever γ = λt (note that bλ = b, by hypothesis). Obvi-
ously, 〈aγ , bγ) ⊂ 〈aγ′ , bγ′), λt > γ > γ′ ≥ λ, and

∪γ′>γ〈aγ′ , bγ′) = 〈aγ , bγ), λt > γ ≥ λ.

It is easy to show that Ψ : γ → bγ is a non-increasing function on
[λ, λt] continuous from the right. Observe also that Ψ is uniquely defined
by the values Mξ(t), t ≥ 0.

Let D be the set of points of discontinuity of this function, set

b′γ = lim
γ′→γ−

bγ′ (14)

for γ ∈ D, and let

C = {γ ∈ [λ, λt] : bγ′ = bγ for some γ′ > γ}.
Then the interval [t, b], as a range of the non-increasing continuous from
the right function Ψ, can be divided into pairwise disjoint parts:

[t, b] = E1 ∪ E2 ∪ E3, (15)
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where

E1 = {bγ = Ψ(γ) : γ ∈ [λ, λt] \ (D ∪ C)}, (16)
E2 = ∪γ∈D[bγ , b′γ ] (17)

and E3 = {bγ = Ψ(γ) : γ ∈ C)}. Note that E3 is a countable set and
the intervals (bγ , b′γ)γ∈D are disjoint.

Observe also that for each e ∈ E1 there exists unique γ ∈ [λ, λt] such
that e = bγ = Ψ(γ). Hence, Ψ−1 exists on E1.

If γ ∈ [λ, λt) \ (D ∪ C) and bγ ∈ E1 is a Lebesgue point of ξ then

ξ(bγ) ≤ γ (18)

(since Mξ(bγ) ≤ γ). On the other hand, for each γ′ ∈ (γ, λt) we have

1
bγ − bγ′

∫ bγ

bγ′
ξdm > γ

since 〈aγ , bγ) is a connected component of (Mξ > γ) and bγ′ ∈ 〈aγ , bγ)
(see (9)). Hence, taking into account that bγ′ → bγ when γ′ → γ, we
can conclude that ξ(bγ) ≥ γ, which together with (18) implies that

ξ(bγ) = γ.

Thus ξ = Ψ−1 a.e. on E1 (see (16)) and consequently∫
E1

ξdm =
∫

E1

Ψ−1dm. (19)

If γ ∈ D, then
1

b′γ − bγ

∫ b′γ

bγ

ξdm ≤ γ (20)

(since Mξ(bγ) ≤ γ) and for each γ′ ∈ (λ, γ) we have

1
bγ′ − bγ

∫ bγ′

bγ

ξdm > γ′

since 〈aγ′ , bγ′) is a connected component of (Mξ > γ′) and bγ ∈ 〈aγ′ , bγ′)
(see (9)). Hence, letting γ′ converge to γ from the left and taking into
account (14), we get

1
b′γ − bγ

∫ b′γ

bγ

ξdm ≥ γ.
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This together with (20) implies that

∫ b′γ

bγ

ξdm = γ(b′γ − bγ).

Hence ∫
E2

ξdm =
∑
γ∈D

γ(b′γ − bγ) (21)

(see (17)). It follows from (13), (15), (19) and (21) that

h(t) =
∫

E1

Ψ−1dm +
∑
γ∈D

γ(b′γ − bγ).

Thus h(t) is uniquely defined by the function Ψ.

Corollary. Let ξ, η ∈ Lloc(R
+
0 ) be such that

Mξ(t) = Mη(t), t ≥ 0.

If 0 ≤ t < t′ and

Mξ(t) = Mη(t) > Mξ(t′) = Mη(t′),

then
ξ(τ) = η(τ) (22)

for a.a. τ from some neighbourhood of t.

Proof. If we take λ ∈ (Mξ(t′),Mξ(t)), then t′ /∈ (Mξ > λ) and some
finite connected component of (Mξ > λ) includes t. For a.a. τ from this
interval (22) holds by virtue of the lemma.

Proof of Theorem. Equality (2) implies that

ess inf f∗ = ess inf g∗ ≡ λ0.

Consequently,

μ(f∗ < λ) = μ(g∗ < λ) > 0 for all λ > λ0 (23)

and
μ(f∗ < λ0) = μ(g∗ < λ0) = 0. (24)
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Define

ξx(t) = f(Ttx) and ηx(t) = g(Ttx), x ∈ X, t ≥ 0.

We shall prove that for a.a. x ∈ X

m{t ≥ 0 : ξx(t) �= ηx(t)} = 0. (25)

Obviously, this implies that

μ(f �= g) = 0.

(If X1 ⊂ X and μ(X1) > 0 then, by the Ergodic Theorem, see (3),

m{t ≥ 0 : Ttx ∈ X1} = lim
t→∞

∫ t

0
1IX1(Tτx)dτ = ∞ (26)

for a.a. x ∈ X, while

{t ≥ 0 : ξx(t) �= ηx(t)} = {t ≥ 0 : Ttx ∈ (f �= g)}, x ∈ X. )

If X0 ⊂ X and μ(X0) = 0, then by standard application of Fubini’s
theorem we have

m{t ≥ 0 : Ttx ∈ X0} = 0 (27)

for a.a. x ∈ X. Hence

m{t ≥ 0 : Mξx(t) �= Mηx(t)} = m{t ≥ 0 : Ttx ∈ (f∗ �= g∗)} = 0

for a.a. x ∈ X (see (2), (8)) and Lemma 3 implies that

Mξx(t) = Mηx(t), t ≥ 0, (28)

for a.a. x ∈ X. We also have

m{t ≥ 0 : Mξx(t) = Mηx(t) < λ0} = 0 (29)

(see (24)) and

m{t ≥ 0 : Mξx(t) = Mηx(t) = λ0, ξx(t) �= λ0 or ηx(t) �= λ0} = 0
(30)

for a.a. x ∈ X (see (5)).
We consider two cases:
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(i) μ(f∗ = λ0) = μ(g∗ = λ0) > 0. Then

m{t ≥ 0 : Mξx(t) = Mηx(t) = λ0} = ∞ (31)

for a.a. x ∈ X (see (26)). Take x ∈ X for which (28), (29), (30) and
(31) hold (note that almost all x have this property). Let E = {t ≥ 0 :
Mξx(t) = Mηx(t) > λ0}. Then for each t ∈ E there exists t′ > t such
that Mξx(t′) = Mηx(t′) = λ0, because of (31). Thus the corollary of
Lemma 4 implies that

ξx(t) = ηx(t) (32)

for a.a. t ∈ E.
It follows from (29) and (30) that ξx(t) = ηx(t) = λ0 for a.a. t ∈

R
+
0 \ E. Thus (32) holds for a.a. t ≥ 0 and (25) is valid.

(ii) μ(f∗ = λ0) = μ(g∗ = λ0) = 0. Then

m{t ≥ 0 : Mξx(t) = Mηx(t) ≤ λ0} = 0 (33)

for a.a. x ∈ X (see (8), (24) and (27))
If λi is any decreasing sequence convergent to λ0, λi ↘ λ0, then

μ(f∗ < λi) = μ(g∗ < λi) > 0, i = 1, 2, . . .

(see (23)) and consequently for a.a. x ∈ X we have

m{t ≥ 0 : Mξx(t) = Mηx(t) < λi} = (34)
m{t ≥ 0 : f∗(Ttx) = g∗(Ttx) < λi} = ∞, i = 1, 2, . . . ,

(see (26)). Take x ∈ X for which (28), (33) and (34) hold (note that
almost all x have this property). It follows from (33) and (34) that for
a.a. t ≥ 0 there exists t′ > t such that

Mξx(t) = Mηx(t) > Mξx(t′) = Mηx(t′).

Thus, by virtue of the corollary of Lemma 4, (32) holds for a.a. t ≥ 0
and (25) is valid.
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