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DECOMPOSITION AND MOSER’S LEMMA

David E. EDMUNDS and Miroslav KRBEC

Abstract

Using the idea of the optimal decomposition developed in re-
cent papers [EK2] by the same authors and in [CUK] we study the
boundedness of the operator Tg(x) =

∫ 1

x
g(u) du/u, x ∈ (0, 1), and

its logarithmic variant between Lorentz spaces and exponential
Orlicz and Lorentz-Orlicz spaces. These operators are naturally
linked with Moser’s lemma, O’Neil’s convolution inequality, and
estimates for functions with prescribed rearrangement. We give
sufficient conditions for and very simple proofs of uniform bound-
edness of exponential and double exponential integrals in the spirit
of the celebrated lemma due to Moser [Mo].

1 Introduction

One of the most awkward features of Orlicz spaces is the definition of
the norm. As a rule of thumb this often prevents a straightforward us-
age of the Lp-spaces techniques and approach. The problem sometimes
lies in the very analytic hardware for these spaces because the calculus
with general Young functions is much more difficult than handling pow-
ers. Some of the Orlicz spaces frequently used in applications, such as
logarithmic Lebesgue spaces, exponential spaces and Zygmund spaces,
permit an alternative extrapolation approach. This part of Orlicz space
theory has been developing after the quantitative behaviour of norms of
various operators between function spaces near L1 and L∞ had become
known (this concerns especially classical operators of harmonic analysis).
Let us recall that special extrapolation techniques, making it possible to
extrapolate the Lebesgue spaces towards exponential Orlicz spaces and
logarithmic Lebesgue spaces, are the subject of the well-known paper
Yano [Y], to list at least one of the first basic works in this field. Among
recent papers dealing with extrapolation constructions for special Orlicz
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spaces let us recall e.g. [ET1] (also [ET2]). The abstract extrapolation
theory (Jawerth and Milman [JM], Milman [Mi]) stems from classical
extrapolation theorems and on this abstract level, the identification of
the result of the so-called Σ-method applied to Lp-spaces goes via plug-
ging the K-functional into the considerations and then employing the
fact that the Zygmund spaces can be interpreted also as special Lorentz-
Zygmund spaces (see [BR], [BS], Chapter 4). One usually works with
“global” norms here. In [EK2] and [CUK] we have suggested a decompo-
sition method, making it possible to extrapolate towards Orlicz spaces
of exponential type just using suitable little pieces of the extrapolating
Lebesgue norms. It turns out that this makes things often much easier
as we shall see also later here.

Orlicz spaces of exponential type appear naturally as target spaces
for Sobolev imbeddings in the limiting case. We shall not try to trace
out the history here, starting in the 1960s and connected with works
by Trudinger, Pokhozhaev, and others. One of the basic contributions,
triggering extensive research in this area is Moser’s paper [Mo] with
an elegant reduction of the n-dimensional imbedding problem to a one-
dimensional question (see next section for more details). Moser’s proof
actually uses elementary means but in a very sophisticated way. A less
complicated proof was given later in Adams [A] and Jodeit [J]. Basically,
after the above reduction, the problem can be formulated as follows:
Given f ∈ Lp′(0,∞), ‖f‖Lp′ ≤ 1, we consider the operator

Ff(x) =
∫ x

0
f(τ) dτ, x ∈ (0,∞), (1.1)

and we look for a uniform bound for
∫∞
0 exp[(αnFf(x))p − x] dx with

some αn independent of f . Alternatively, considering

Tg(x) =
∫ 1

x

g(t)
t

dt, x ∈ (0, 1), (1.2)

we pose a similar question for
∫ 1
0 exp[βnTg(x)]p dx. The operator T

naturally arises from the Hardy operator F through the substitution
τ = log(1/t) and the original condition ‖f‖Lp′ ≤ 1 in [Mo] turns into∫ 1
0 (g(t)p′/t) dt ≤ 1. This setting is from [J], where the restriction p ≥ 2

appearing in Moser’s famous lemma [Mo] was removed. Let us recall
the main result from [J]:
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Theorem 1.1. Given a non-negative measurable function g on (0, 1)
we put Tg(t) =

∫ 1
t g(u) du/u. Let 1 < p < ∞. Then there is cp > 0 such

that ∫ 1

0
exp(Tg(t))p dt ≤ cp

for all g such that
∫ 1
0 g(u)p′ du/u ≤ 1.

Here we shall tackle the operator T from (1.2) under more general
assumptions on g in terms of Lorentz spaces. We give extremely simple
proofs of the existence of uniform constants for exponential norms of
Tg, using decomposition theorems from [EK2] and [CUK]. We shall
not pursue the problem of the best constant βn, although this would be
possible.

2 The decomposition technique

Let Ω ⊂ R
n be measurable and denote its Lebesgue n-measure by |Ω|.

For 1 ≤ p ≤ ∞, Lp = Lp(Ω) is the usual Lebesgue space with norm
denoted by ‖ · ‖p or ‖ · ‖p,Ω, depending on whether we need to emphasize
the domain. The non-increasing rearrangement of a measurable function
on Ω is defined as

f∗(t) = inf{s > 0 : |{x : |f(x)| > s}| ≤ t}, t > 0.

For 1 ≤ p, q ≤ ∞, the Lorentz space Lp,q = Lp,q(Ω) is defined as the
linear set of all functions f for which ‖f‖p,q,Ω < ∞. Here the norm
‖f‖p,q,Ω is given by

‖f‖p,q,Ω =
(

q

p

∫ |Ω|

0
tq/pf∗(t)q dt

t

)1/q

if 1 ≤ p, q < ∞, by

‖f‖p,∞,Ω = sup
t∈(0,|Ω|)

t1/pf∗(t)

if 1 ≤ p < ∞ and q = ∞, and finally we put

‖f‖∞,∞,Ω = ‖f‖∞,Ω.
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If Φ is a Young function, that is, an even, convex function on R
1,

increasing on (0,∞) and such that Φ(0) = 0, we define the Orlicz class
L̃Φ(Ω) as the set of all functions f for which m(f, Φ,Ω) =

∫
Ω Φ(f(x)) dx <

∞. The Orlicz space LΦ(Ω) is the linear hull of L̃Φ(Ω) endowed with the
(Luxemburg) norm ‖f‖Φ,Ω = ‖f‖LΦ(Ω)

= inf{λ > 0 : m(f/λ, Φ,Ω) ≤
1)} (i.e. Minkowski’s functional of the mapping f �→ m(f, Φ,Ω)). The
symbol Ω can be omitted if no confusion arises. For the special case in
which Φ(t) = exp tα − 1 for some α > 0, we shall use the brief notation
Lexp tα .

In the sequel we shall largely work with real measurable functions
defined and/or supported on the interval (0, 1). This is merely a tech-
nical assumption corresponding to |Ω| = 1; any bounded interval can
be considered. If I ⊂ (0, 1), then we define the localized Lorentz norm
‖f‖p,q,I similarly as above, where the integration and/or taking the sup
is restricted to the interval I.

As all the function spaces in the following are rearrangement-inva-
riant, we shall assume without loss of generality that all functions are
non-negative.

Let α > 0. It is well known that the condition∫ 1

0
exp

(|λf(x)|α) dx < ∞

for some λ > 0 is equivalent to the condition

sup
k∈N

k−1/α‖f‖k,(0,1) < ∞. (2.1)

This follows by the ratio test for the convergence of the correspond-
ing Taylor series for the exponential function and it is one of the most
prominent examples of extrapolation of norms. In [EK2] we have proved
that a condition much weaker at first sight is necessary and sufficient;
this results from replacing the norms ‖f‖k,(0,1) by ‖f‖k,Ik

in the extrap-
olation condition (2.1). Here and in the following we use the notation
from [EK2] and [CUK]: We decompose the interval (0, 1) (up to a set of
measure zero) into the sequence of intervals

Ik = (e−k, e−k+1), k = 1, 2, . . . .

This characterization has been extended in [CUK] to include the ex-
trapolation of ‖f‖k,∞,Ik

and the scales of Lorentz spaces have been em-
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ployed to obtain an “optimal” decomposition of functions in the Orlicz-
Lorentz spaces. Let us also observe that the decomposition idea from
[EK2] has been used in the context of more general logarithmic Lorentz-
Zygmund spaces by Neves [N].

For the reader’s convenience we recall the characterizations of Lexp ta

from [EK2] and [CUK].

Theorem 2.1. ([CUK], [EK2]). Given a function f and a > 0, the
following are equivalent:

(i) f ∈ Lexp ta ;

(ii) sup
k

‖f‖k,(0,1)

k1/a
< ∞;

(iii) sup
k

‖f‖k,Ik

k1/a
< ∞.

(iv) sup
k

‖f‖k,∞,(0,1)

k1/a
< ∞;

(v) sup
k

‖f‖k,∞,Ik

k1/a
< ∞.

Remark 2.2. The conditions (ii) and (iii) were considered in [EK2]
and their weak versions (iv) and (v) in [CUK]. For the equivalence of
(iv) and (i) in the last theorem see also the abstract framework of the
Σ-method ([Mi]).

Given a function f on Ω ⊂ R
n we shall also use its non-increasing

radially symmetric rearrangement f# (symmetric rearrangement in the
sequel) defined by

f#(x) = f∗(ωn|x|n), x ∈ R
n,

where ωn is the volume of the unit ball in R
n. Note that ‖f#‖Lq(Rn) =

‖f∗‖Lq(0,∞) for all q, 1 ≤ q ≤ ∞. Plainly

f∗(t) = f#

((
t

ωn

)1/n

e1

)
,

where e1 denotes the unit vector in the direction of the x1-axis.
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Recall the (non-trivial) fact that if f is smooth (Lipschitz, for in-
stance), then f# has partial derivatives and if Φ is a convex increasing
function on [0,∞), Φ(0) = 0, then∫

Rn

Φ(|∇f#(x)|) dx ≤
∫

Rn

Φ(|∇f(x)|) dx. (2.2)

The inequality (2.2) has found many applications in analysis and has
been treated in numerous papers; we refer to a comprehensive survey
paper of Talenti in [T] with detailed proofs, references, exposition of the
history etc.

Now suppose that |Ω| = 1 and consider the change of variables
t = e−y. We get the function

w(y) = f∗(e−y) = f#

((
e−y

ωn

)1/n

e1

)
, y ∈ (0,∞).

We have

w′(y) = − e−y/n

nω
1/n
n

∂f#

∂x1

((
e−y

ωn

)1/n

e1

)
and

‖w′‖q
Lq(0,∞) =

1
nqωn

∫
Rn

∥∥∇f#(x)
∥∥q|x|q−n dx.

Observe that if q = n, then the power weight on the right hand side
equals 1; this is the core of Moser’s reduction of the original imbedding
problem to an R

1-problem.
Later we shall need a formula for the Lorentz norm after the sub-

stitution t = log(1/σ). This is just a plain computation: Given a non-
increasing, non-negative f on (0,∞) supported in [0, 1], and α, β > 0,
then ∫ ∞

0
[t1/βf(t)]α

dt

t
=

∫ 1

0
[g(σ)(log(1/σ)1/β ]α

dσ

σ log(1/σ)
,

where
g(σ) = f(log(1/σ)), σ ∈ (0, 1). (2.3)

All positive constants whose exact value is not important for our
purposes will be denoted by c.

We refer to [KR], and [RR] for the theory of Orlicz spaces and integral
operators acting on them.
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3 Moser’s lemma in Lebesgue spaces via de-
composition

Theorem 3.1. Let 1 < p < ∞, p′ = p/(p − 1). Then there exists c > 0
such that

sup
k∈N

‖Tg‖k,∞,Ik

k1/p
≤ c

for every non-negative measurable function g such that

J(g) =
∫ 1

0

g(s)p′

s
ds ≤ 1. (3.1)

Proof. Since Tg is non-increasing on (0, 1) we have, by Hölder’s in-
equality,

‖Tg‖k,∞,Ik
= sup

t∈Ik

t1/k(Tg)∗(t) ≤ (e−k+1)1/k

∫ 1

e−k

g(s)
s

ds

≤ c

(∫ 1

e−k

g(s)p′

s
ds

)1/p′ (
log ek

)1/p ≤ const. k1/p.

Remark 3.2. The condition (3.1) is actually the original assumption
from Moser’s lemma—after the substitution mentioned following the
introduction of the operators T and F in (1.2) and (1.1), respectively.
According to the condition (v) of Theorem 2.1 the claim in the preceding
theorem is equivalent to Tg ∈ Lexp tp . Hence the above proof (together
with the proof of (v) in Theorem 2.1, which is straightforward and uses
the same decomposition of (0, 1)) (see [CUK]), gives an extremely sim-
plified proof of the exponential integrability of Tg established in [J].

Remark 3.3. Theorem 3.1 can be alternatively proved by invoking
the extrapolation theorem from [EK2]. The proof is then just two lines
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longer. We have, by Minkowski’s and Hölder’s inequalities,

k−1/p‖Tg‖k,Ik
= k−1/p

(∫
Ik

(∫ 1

x
g(t)

dt

t

)k

dx

)1/k

≤ k−1/p

(∫
Ik

(∫ 1

e−k

g(t)
dt

t

)k

dx

)1/k

≤ k−1/p

∫ 1

e−k

(∫
Ik

(
g(t)
t

)k

dx

)1/k

dt

≤ k−1/p

∫ 1

e−k

g(t)
t

[
e−k(e − 1)

]1/k
dt

≤ (e − 1)1/kk−1/p

e

∫ 1

e−k

g(t)
t(1/p)+(1/p′) dt

≤ k−1/p

(∫ 1

0

g(t)p′

t
dt

)1/p′(∫ 1

e−k

dt

t

)1/p

≤ 1.

Let us now consider alternative sufficient conditions for the same
claim as in the preceding theorem, passing to endpoints of the Lebesgue
spaces scale.

Theorem 3.4. Let 1 < p < ∞. Then there exists c > 0 such that

sup
k

‖Tg‖k,∞,Ik

k1/p
≤ c. (3.2)

for all non-negative functions g such that

L(g) =
∫ 1

0

g(s)

(log(1/s))1/p

ds

s
≤ 1. (3.3)

Proof. Since the function t �→ Tg(t) is non-increasing on (0, 1) it coin-
cides with its non-increasing rearrangement. Hence

‖Tg‖k,∞,Ik

k1/p
≤ 1

k1/p
sup
t∈Ik

t1/k(Tg)∗(t) =
1

k1/p
sup
t∈Ik

t1/k

∫ 1

t

g(s)
s

ds

≤ 1
k1/p

∫ 1

e−k

g(s)
s

ds ≤ c

∫ 1

e−k

g(s)

s (log(1/s))1/p
ds.
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Now we have a third sufficient condition for the exponential bound-
edness of T .

Theorem 3.5. Let 1 < p < ∞. Then there exists c > 0 such that

sup
k∈N

‖Tg‖k,∞,Ik

k1/p
≤ c.

for all non-negative functions g such that

S(g) = sup
0<t<1

g(t)
(

log
1
t

)1/p′

≤ 1. (3.4)

Proof. In Remark 3.3 we saw that

k−1/p‖Tg‖k,Ik
≤ k−1/p

∫ 1

e−k

g(t)
t

dt.

Hence

k−1/p‖Tg‖k,Ik
≤ k−1/p

∫ 1

e−k

g(t)(log(1/t))1/p′

t(log(1/t))1/p′ dt

≤ k−1/p sup
0<t<1

g(t)(log(1/t))1/p′
∫ 1

e−k

dt

t(log(1/t))1/p′

= k−1/p sup
0<t<1

g(t)(log(1/t))1/p′
[

(log(1/t))1/p

1/p

]e−k

1

≤ k−1/p sup
0<t<1

g(t)(log(1/t))1/p′ · p · k1/p

≤ p sup
0<t<1

g(t)(log(1/t))1/p′ .

Remark 3.6. Let us compare the conditions (3.1), (3.3), and (3.4).
1. First we show that (3.1) does not generally imply (3.3). Put u(s) =
g(s)/s1/p′ . Then (3.1) turns into∫ 1

0
u(s)p′ ds < ∞, (3.5)
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and (3.3) into ∫ 1

0

u(s) ds

s1/p (log(1/s))1/p
< ∞. (3.6)

Take
u(s) =

1

s1/p′ (log(1/s))1/p′ (log log(1/s))(1+δ)/p′ ,

where 0 < δ ≤ p′ − 1. Plainly (3.5) holds and at the same time (3.6)
does not.
2. Any function g supported in a sufficiently small left neighbourhood
of 1 and integrable there satisfies (3.3). But choosing g in order that its
p′-th power is not integrable, we see that the integral in (3.1) diverges.
In other words, (3.3) is not stronger than (3.1) and together with the
previous example this shows that these conditions are incomparable.
3. Put g(s) = (log(1/s))−1/p′ , s ∈ (0, 1). Then (3.4) is trivially satis-
fied, whereas the integral in (3.3) diverges. On the other hand there are
plainly functions unbounded in a neighbourhood of 1 integrable with the
p′-th power with respect to ds/s. Hence (3.1) and (3.4) are incompara-
ble.
4. The same function g as in the previous item inserted into (3.3) gives
the integral

∫ 1
0 s−1 (log(1/s))−1 ds, which is independent of p and di-

verges. Furthermore, an argument analogous to that given before shows
that (3.3) does not generally imply (3.4) (any unbounded integrable
function in a neighbourhood of 1 will do).

Remark 3.7. The claim in Theorem 3.1 is known to hold for g ∈
Lp′,∞(0, 1; dt/t); see [JM], p. 61. Let us give an example of a g satisfying
(3.4), but outside of Lp′,∞(0, 1; dt/t). Put

g(t) =
1

(log(1/t))1/(p′−ε)

with 0 < ε < p′. Then clearly g satisfies (3.4). On the other hand,
m(g, λ), the distribution function of g, that is the measure of the set
{g(t) > λ}, λ > 0, is

m(g, λ) = 1 − exp(−λε−p′),

and
g(t) > λ iff t > exp(−λε−p′).
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We have

sup
λ>0

λ

(∫ 1

exp(−λε−p′ )

dt

t

)1/p′

= sup
λ>0

λ(λ−p′+ε)1/p′ = ∞.

As was observed earlier the operator T is naturally linked with
Sobolev imbeddings in the critical case. In the last ten years further
tuning of the scale of the Sobolev type spaces imbedded into exponential
spaces has been tackled, leading to target spaces of multiple exponential
type (see e.g. [FLS], [EK1]).

The decomposition technique was used in [KSchm] for an easy proof
of a characterization of the double exponential spaces analogous to those
in Theorem 2.1 (see also [EGO] for the “classical” global condition on
(0, 1)).

Theorem 3.8 ([KSchm]). Let Jτ = (e−eτ , e−τ ), τ ≥ 1, and 1 < p <
∞. Then there is λ such that

∫ 1
0 exp exp(λh(t))p < ∞ if and only if

sup
τ≥1

‖h∗‖Lτ (Jτ )

log1/p(e + τ)
< ∞.

Having in mind this characterization we prove

Theorem 3.9. Let

ϕ(u) = u log
e

u
, u > 0,

and

T1g(t) =
∫ 1

t

g(u)
ϕ(u)

du, t ∈ (0, 1).

Let 1 < p < ∞. Then there exists c > 0 such that

sup
τ≥1

‖T1g‖Lτ (Iτ )

log1/p(e + τ)
≤ c (3.7)

for all g satisfying ∫ 1

0

(g(t))p′

ϕ(t)
dt ≤ 1. (3.8)
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Proof. Denote

Aτ = log−1/p(e + τ)
(∫

Jτ

T1g(u)τ du

)1/τ

.

Then by Minkowski’s and Hölder’s inequalities,

Aτ = log−1/p(e + τ)
(∫

Jτ

[∫ 1

x

g(u)
ϕ(u)

du

]τ

dx

)1/τ

≤ log−1/p(e + τ)
∫ 1

e−eτ

(∫
Jτ

(
g(u)
ϕ(u)

)τ

dx

)1/τ

du

≤ log−1/p(e + τ)
∫ 1

e−eτ

g(u)
ϕ(u)

du |Jτ |1/τ

≤ log−1/p(e + τ) |Jτ |1/τ

(∫ 1

0

(g(u))p′

ϕ(u)
du

)1/p′(∫ 1

e−eτ

du

ϕ(u)

)1/p

.

Further,

|Jτ |1/τ =
(

1
eτ

− 1
eeτ

)1/τ

=
(

1
eτ

− 1
(eτ )e

)1/τ

and it is not difficult to check that

lim
τ→∞

(
1
eτ

− 1
(eτ )e

)1/τ

= e−1.

It remains to estimate
(∫ 1

e−eτ du/ϕ(u)
)1/p

. We have

(∫ 1

e−eτ

du

ϕ(u)

)1/p

=
(∫ 1

e−eτ

du

u log(e/u)

)1/p

.

Put e−eτ = ξ, i.e. τ = (log(1/ξ))/e. Then τ → ∞ iff ξ → 0. However,

lim
ξ→0

∫ 1

ξ

du

u log(e/u)
log log(1/ξ)

= lim
ξ→0

− 1
ξ log(e/ξ)

1
log(1/ξ)

· ξ ·
(−1

ξ2

) = 1,

which yields supτ≥1 Aτ < ∞ and completes the proof.
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4 Moser’s lemma in Lorentz spaces via decom-
position

Next we present Lorentz-space versions of exponential estimates.

Theorem 4.1. Let f and g be associated with the formula (2.3) and
assume that f ∈ Lq′,p(0,∞) with 1 < p < ∞, 1 < q < ∞, p �= q′. Let

Tg(t) =
∫ 1

t

g(s)
s

ds.

Then there exists c > 0 such that

sup
k

k−1/q‖Tg‖k,∞,Ik
≤ c

for all f with ‖f‖Lq′,p ≤ 1.

Proof. We estimate k−1/q‖Tg‖k,∞,Ik
as follows:

k−1/q

∫ 1

e−k

g(σ)
σ

dσ

= k−1/q

∫ 1

e−k

g(σ)
(

log
1
σ

)(−1+p/q′)/p (
log

1
σ

)(1−p/q′)/p dσ

σ

≤ k−1/q

(∫ 1

e−k

g(σ)p

(
log

1
σ

)−1+p/q′ dσ

σ

)1/p

×
(∫ 1

e−k

(
log

1
σ

)(1/p−1/q′)p′ dσ

σ

)1/p′

.

We have (
1
p
− 1

q′

)
p′ =

p(q′ − 1)
q′(p − 1)

− 1,

69 REVISTA MATEMÁTICA COMPLUTENSE
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hence (∫ 1

e−k

(
log

1
σ

)(1/p−1/q′)p′ dσ

σ

)1/p′

=
(∫ 1

e−k

(
log

1
σ

) p(q′−1)

q′(p−1)
−1 dσ

σ

)1/p′

=
(

q′(p − 1)
p(q′ − 1)

)1/p′
⎛⎝−

⎡⎣(log
1
σ

) p(q′−1)

q′(p−1)

⎤⎦σ=1

σ=e−k

⎞⎠1/p′

=
(

q′(p − 1)
p(q′ − 1)

)1/p′

k
p′
q
· 1
p′ = const. k1/q.

We tackle the case p = 1 separately.

Theorem 4.2. Let f and g be associated with the formula (2.3) and
assume that f ∈ Lq′,1 with 1 < q < ∞. Let

Tg(t) =
∫ 1

t

g(s)
s

ds.

Then there exists c > 0 such that

sup
k

k−1/q‖Tg‖k,∞,Ik
≤ c

for all f with ‖f‖Lq′,1 ≤ 1.

Proof. As this is similar to what we have done above we proceed briefly.
We have

k−1/q

∫ 1

e−k

g(σ)
σ

dσ

= k−1/q

∫ 1

e−k

g(σ) (log(1/σ))1/q′ (log(1/σ))1/q dσ

σ log(1/σ)
≤ c‖f‖L1,q′ (0,∞).
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5 An example of application to imbeddings in
the critical case

The decomposition technique turns out to provide very transparent
proofs of claims involving exponential Orlicz spaces. As an example we
give a simplified proof of the Sobolev imbedding theorem in the critical
case due to Adams [A].

Theorem 5.1 ([A]). Let 0 < α < n ∈ N, put p = n/α and suppose
that f ∈ Lp (Rn) is such that ‖f‖p,Rn = 1 and supp f ⊂ B = B(0, r),
the open ball in R

n with centre 0 and radius r. Then there is a constant
A = A(n, p) such that∫

B
exp

(
β0 |Iα ∗ f |p′

)
dx ≤ Arn.

Here Iα(x) = γα/ |x|n−α, γα = Γ
(

n−α

2

)
/
(
πn/22αΓ (α/2)

)
and β0 =

γ−p′
α n/ωn−1, ωn−1 = 2πn/2/Γ (n/2).

Proof. Put Rα(x) = β
1/p′
0 Iα(x) = (n/ωn−1)

1/p′ / |x|n−α, h = Rα ∗f and
assume without loss of generality that f ≥ 0. Then

R∗
α(t) = t−1/p′ , R∗∗

α (t) = pR∗
α(t),

and by O’Neil’s convolution inequality

h∗(t) ≤ h∗∗(t) ≤ pt−1/p′
∫ t

0
f∗(s) ds +

∫ |B|

t
f∗(s)s−1/p′ ds.

Hence ∫
B

exp
(
h (x)p′

)
dx ≤

∫ |B|

0
exp

(
F (t)p′

)
dt,

where

F (t) = pt−1/p′
∫ t

0
f∗(s) ds +

∫ |B|

t
f∗(s)s−1/p′ ds.

Put
g(y) = f∗ (|B| y) (|B| y)1/p , 0 < y < 1.

Then ∫ 1

0
g(y)p dy

y
=

∫ |B|

0
f∗(t)p dt = 1
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and

F (t) = p (t/ |B|)−1/p′
∫ t/|B|

0

g(u)
u1/p

du +
∫ 1

t/|B|
g(u)

du

u
.

It follows that∫
B

exp
(
h (x)p′

)
dx ≤ |B|

∫ 1

0
exp {(Sg)(t) + (Tg)(t)}p′ dt, (5.1)

where

(Sg)(t) = pt−1/p′
∫ t

0

g(u)
u1/p

du, (Tg)(t) =
∫ 1

t
g(u)

du

u
.

By Theorem 2.1, to prove that the integral on the right-hand side of
(5.1) is finite it is enough to show that

sup
k∈N

k−1/p′‖Sg + Tg‖k,Ik
< ∞,

where Ik =
(
e−k−1, e−k

)
. However, Sg is bounded, since by Hölder’s

inequality,

t−1/p′
∫ t

0

g(u)
u1/p

du ≤
(∫ 1

0
g(u)p du

u

)1/p

≤ 1.

Thus it is enough to check that

sup
k∈N

k−1/p′‖Tg‖k,Ik
< ∞,

and this is guaranteed by Theorems 2.1 and 3.1.

Remark 5.2. We observe that the operator T and questions about its
exponential integrability appears in various applications; let us refer for
instance to [F], dealing with qualitative properties of elliptic PDEs. Our
decomposition might be considered as an alternative easy and powerful
method for handling operators of this type.
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