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Abstract

We consider the introduction of the gravitational coupling parameter µ as a

canonical variable. In the special case of Keplerian systems, this variable can be

incorporated, as a canonical orbital element (in fact, a canonical constant), into

the segment of momenta of certain canonical sets. The corresponding canonically

conjugate coordinate turns out to be an eccentric–like anomaly.
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1 Introduction

Baumgarte (1980, §2; Appendix 1) studied canonical transformations to make a canonical

variable (momentum) of the gravitational coupling parameter µ, its conjugate coordinate-

type variable being –essentially– the eccentric anomaly of elliptic Keplerian motion.

In a certain sense, this way of thinking may be looked on as pertaining to a kind of

dual version of attempts to introduce some anomaly–like parameters as canonical elements

(e.g., Andoyer 1913, and references therein) within the canonical theory of Keplerian

systems; in particular, this sort of duality between µ and an eccentric–like anomaly is found

in Levi–Civita (1913, specially §2), the energy of the system being treated as an absolute

constant. Certain classical results due to these two authors, as well as several proposals

by some other researchers –dating back to the second decade of the 20th century–, were

thoroughly examined, systematized and extended by Soudan (1953, 1955), whose analysis

concentrates on canonical orbital elements for elliptic–type quasi–Keplerian motion. In

this respect, see also Hagihara (1970, §5.20).

Further generalizations, not only for bound orbits, were derived by Cid & Calvo

(1973/1975), starting from polar nodal variables. Palacios (1973/1977) extended Soudan’s

treatment of quasi–Keplerian motion to the case of hyperbolic–type orbits.
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After a review of some of these precedents for a canonical approach to the treatment

and interpretation of the gravity parameter µ, we give an outline of their possible exten-

sions within the framework of a uniform formulation and description of two–body motion,

i.e., regardless of the type of conic orbit at issue (Stiefel & Scheifele 1971, §11; Floŕıa 2000).

2 Baumgarte’s First Approach: Näıve Homogeneous Formalism

In this Section we reformulate the canonical approach taken by Baumgarte (1980, §2) to

deal with elliptic orbits in the Kepler problem, provided that the eccentric anomaly is

chosen as the independent variable. On the basis of his results, we sketch out a proposal

for their adaptation to a universal treatment of Keplerian orbits.

Let the canonical set of Cartesian variables be represented by the symbols (p,x),

where the notation pt ≡ (p1, p2, p3) refers to the momenta canonically conjugate to the

usual Cartesian coordinates xt ≡ (x1, x2, x3, ); accordingly, r2 =|| x ||2≡ x2 = x2
1+x2

2+x2
3.

Here the notation ( )t represents the usual matrix transposition, while t stands for the

independent variable (physical time).

In these notations, the unperturbed two–body motion, with t as the independent

variable, is governed by the standard, conservative Keplerian Hamiltonian

HK ≡ HK (p;x;−) = (1/2)p2 − (µ/r) , (1)

where µ designates the gravitational parameter of the two–body system (essentially at-

tached to the attracting central mass). If E is the total energy of the system, the problem

possesses the first integral HK = E . In the case of bound orbits (E < 0), one may in-

troduce an action variable α = µ/
√
−2 E , which suggests the use of the homogeneous

canonical formalism (Stiefel & Scheifele 1971, §30, §34, §37), on enlarging the ordinary

phase space with two additional dimensions, that is, introducing a new pair of canonically

conjugate variables (p0, x0), where p0 = −E is minus the total energy, and x0 ≡ t. In this

way, the physical time t is viewed as a dependent canonical variable (more precisely, an

additional coordinate occurring on equal footing with the usual spatial coordinates). In

addition to this, transformations of the independent variable x0 ≡ t −→ s, from t to a

new fictitious time s, can be defined by means of differential relations of the type

dt = f̃ds , t ′ = f̃ , where f̃ ≡ f̃ (p,x, p0, x0) > 0 , ( ) ′ ≡ d/ds. (2)

In extended phase space formulation, with t as the independent variable, the preceding

Keplerian Hamiltonian reads (after adequate choice of initial conditions)

Hh ≡ Hh (p, p0;x−;−) = HK + p0 = 0. (3)

An extended phase space Hamiltonian which vanishes initially will vanish on any solution

of the system of differential equations. The corresponding homogeneous Hamiltonian,
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with the fictitious time s taking the role of the independent variable, is

H∗h = Hh f̃ = (HK + p0) f̃ =
1

2
p2f̃ + p0f̃ −

µ

r
f̃ . (4)

This scaling function f̃ for the differential time transformation (2) is now chosen so as to

create and isolate an additive term with expression −µ/√2p0 , say from

−µf̃/r ←→ −µ/
√

2p0 =⇒ f̃ = r/
√

2p0. (5)

The pseudo–time s ≡ E is the eccentric anomaly, and the Keplerian Hamiltonian becomes

H∗h =
[
(1/2)p2 + p0

]
( r/

√
2p0 ) − (µ/

√
2p0 ) . (6)

One may attempt to eliminate the additive isolated term −µ/√2p0 from H∗h : given

that the coordinate x0 is ignorable in H∗h, the canonically conjugate momentum p0 is

constant. Dropping the constant expression −µ/√2p0 allows one to omit the x′0–equation.

Accordingly, an alternate treatment of this question proceeds as follows: the expression

(−µ), originally a parameter, can be contemplated as a canonical momentum in H∗h ,

−µ = p4. (7)

The coordinate x4, canonically conjugate to p4, is ignorable in H∗h:

H∗h ≡ H∗h (p0, p1, p2, p3, p4;−, x1, x2, x3,−;−) =
[

1

2
p2 + p0

]
r√
2p0

+
p4√
2p0

. (8)

Now, perform a canonical transformation to new variables (pk, xk) , k = 0, 1, 2, 3, 4,

such that the momenta should change according to the equations

pi = pi , i = 0, 1, 2, 3, p4 = p4/
√

2p0 ≡ −µ/
√

2p0 . (9)

Thus, xj = xj (j = 1, 2, 3), and the transformation operates non–trivially on the variables

of interest, that is, on the variables (p0, p4, x0, x4),

p4 = p4/
√

2p0 , p0 = p0 , (10)

x4 = x4/
√

2p0 , x0 = x0 − ( p4/2p0 )x4 , with (11)

x4 = s = E (+ const.) , (12)

after which the Hamiltonian of the Kepler problem is converted into the function

H∗h ≡
r√
2p0

[
1

2
p2 + p0

]
+ p4 =

r√
2p0

[
1

2
p2 + p0

]
+ p4 , (13)

where, for convenience in writing, one has simplified the notation by omitting the overbars

according to the convention r → r, p→ p, and p0 → p0. This function can be viewed as
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a new homogeneous Hamiltonian, in which p4 would play the part of the energy–like term

of the canonical couple (p4, x4). Consequently, if the isolated momentum p4 is removed,

H∗ ≡ ( r/
√

2p0 )
[
( 1/2 )p2 + p0

]
(14)

can be viewed as a non-homogeneous Hamiltonian (in an ordinary phase–space coordina-

tized by the chart (pi, xi) , i = 0, ..., 3), to which an action variable α = H∗ is attached.

The new independent variable corresponding to H∗ is the canonical variable x4, con-

jugate to p4, that is, x4 = s = E (up to an additive constant).

These results, originally restricted to elliptic motion, can be generalized to the case of

other types of two–body conic–section orbits. If a unified treatment of Keplerian orbital

motion is desired, use can be made of universal functions, variables and parameters (Stiefel

& Scheifele 1971, §11; Battin 1987, §4.5, §4.6; Floŕıa 2000). To this end, irrespective of

the specific kind of orbit, a new time parameter τ is directly introduced, instead of the

elliptic eccentric anomaly, via Eq. (2): the scaling function f̃ in Eq. (5) is to be taken as

f̃ = r =⇒ t −→ τ : dt = rdτ , (universal) Sundman’s transformation, (15)

thanks to which the transition to variables (pk, xk) , k = 0, ..., 4, can be avoided, Hamilto-

nian (4) can be dealt with exactly in the same way as H∗h in Eq. (13), and the independent

argument τ is, essentially, the canonical coordinate x4 conjugate to p4.

3 Baumgarte’s Second Approach: Hamilton–Jacobi Theory

Referring to Baumgarte (1980, Appendix 1), the Kepler problem can also be treated within

the extended–phase–space Hamilton–Jacobi theory formulated in (enlarged) spherical po-

lar variables, for which the notations (x0, r, θ, ϕ; p0, pr, pθ, pϕ) are adopted,

x1 = r cos θ cosϕ , x2 = r cos θ sinϕ , x3 = r sin θ ,

pr = ṙ , pθ = r2θ̇ , pϕ = r2ϕ̇ cos2 θ ,

with x0 ≡ t. Consider also −µ = p4, and the homogeneous Keplerian Hamiltonian

Hh ≡ H + p0 =
1

2

[
p2
r +

p2
θ

r2
+

p2
ϕ

r2 cos2 θ

]
+
p4

r
+ p0 ( = 0 ). (16)

As well known, pϕ is the z–component of the angular momentum vector, while the com-

bination p2
θ + p2

ϕ/ cos2 θ measures the square of the magnitude of that vector. In view of

the above Hamiltonian, the momenta p0 and p4 are already elements. Take

p0 = P0 ,
√
p2
θ + ( p2

ϕ/ cos2 θ ) = Pψ , pϕ = Pϕ , p4 = P4 , (17)
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and the generating function S ≡ S (x0, r, θ, ϕ, x4;P0, Pψ, Pϕ, P4) as a complete solution to

the Hamilton–Jacobi partial differential equation linked to Hamiltonian (16),

1

2

(
∂S

∂r

)2

+
1

r2


(
∂S

∂θ

)2

+
1

cos2 θ

(
∂S

∂ϕ

)2


 +
1

r

∂S

∂x4

+
∂S

∂x0

= 0. (18)

Subsequent calculations will take advantage of the useful abbreviations

Q∗ = p2
θ = P 2

ψ −
P 2
ϕ

cos2 θ
, Q = p2

r = −2P0 −
2P4

r
− P 2

ψ

r2
, Ij =

∫ r

r0

dr

rj
√
Q

. (19)

The lower limit r0 in the integral over r will be the lowest positive root of Q = 0.

Accordingly, separation of variables leads to the expression for the generating function

S =
∫ r

r0

√
Qdr +

∫ θ

0

√
Q∗ dθ + ϕPϕ + x4P4 + x0P0, (20)

which defines a canonical transformation in which all the new variables are cyclic for the

problem posed by (16): the transformation generated by S bringsHh into the equilibrium.

Four constants are obtained for the derivatives ∂S/∂P0, ∂S/∂P4, ∂S/∂Pψ and ∂S/∂Pϕ :

∂S/∂P0 = x0 − I0 = c0 , ∂S/∂P4 = x4 − I1 = c4 , (21)

∂S

∂Pψ
= −PψI2 +

∫ θ

0

Pψ√
Q∗

dθ = cψ,
∂S

∂Pϕ
= ϕ− Pϕ

∫ θ

0

dθ

cos2 θ
√
Q∗

= cϕ . (22)

With the notations (amending some typing mistakes in Baumgarte’s formulae) for

quantities a and e, as functions of the new momenta,

a = −P4/(2P0) , P 2
ψ = −P4 a (1− e2), (23)

after performing the required quadratures I1 and I0 over r, one obtains

I1 = E/
√

2P0 , E =
√

2P0 (x4 − c4) , r = a (1− e cosE) , (24)

which gives the parametric representation of an ellipse with the eccentric anomaly E as

the parameter, semi–major axis a and eccentricity e. And from relations (21),

dx0/dE = r/
√

2P0 =⇒ x0 − const. = t− tP =
[
a/ (2P0)

1/2
]
(E − e sinE ) = I0 . (25)

In these formulae r0 is the distance of the pericentre; tP is the time of a pericentre passage.

As a conclusion, taking −µ = p4 leads to the introduction of the eccentric anomaly E

as a variable related to the canonical coordinate x4, conjugate to p4.

The above considerations can be made universal, that is, uniformly valid for any kind

of conic–section orbit, if principles of the nature of those presented, e.g., in Stiefel &

Scheifele (1971, §11), Battin (1987, §4.5, §4.6), or Floŕıa (2000), are applied. With this

aim in view, the expressions in Eq. (23) are replaced by

2P0 = −P4(1− e)/q , P 2
ψ = −P4 q (1 + e) = −P4 p , (26)

the distance of the pericentre q playing a role similar to (although more general than) the

one taken by the semi–major axis in derivations concerning elliptic or hyperbolic motion.
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4 On Canonical Sets of Orbital Elements for Quasi–Keplerian Systems

Starting from polar nodal variables, previous results due to Soudan (1953, 1955), concern-

ing quasi–Keplerian systems, were generalized by Cid & Calvo (1973/1975). Proceeding

along the same basic guide–lines as Soudan, Palacios (1973/1977) derived the correspond-

ing sets of canonical variables in the case of hyperbolic–type orbital motion.

Examining and amending some developments due to Andoyer (1913), Soudan (1953,

1955) devised a systematic procedure to obtain six canonical sets of orbital variables that

are elements for elliptic–type motion acted upon by a certain central potential of the

form V (r) = −µ/r − µ ′/r2, which is linked to the so–called quasi–Keplerian systems.

Five of these canonical sets generalize the classical ones usually known after Delaunay,

Levi–Civita, Hill, de Sitter and Jekhovsky in the case of pure, unperturbed Keplerian

motion, while a new set was uncovered by Soudan. As in the Andoyer (1913) proposal,

this unified procedure was based on a thorough analysis of the Hamilton–Jacobi equation

in spherical polar variables and certain parameters; different special choices of parameters

(playing the role of dynamical variables –canonical momenta– or absolute constants) in a

generating function lead to the said sets of canonical variables.

In terms of polar nodal variables, (r, θ, ν; pr, pθ, pν), the study of orbital motion in a

central force field with potential V (r) hinges on the analysis of the Hamiltonian

H = ( 1/2 )
[
p2
r + ( p2

θ/r
2 )

]
+ V (r) . (27)

Subsequent developments will be related to the specific type of quasi–Keplerian potential

V (r) = −µ/r − µ ′/r2 , where µ and µ ′ are parameters (28)

(Cid & Calvo 1973/1975). Here the meaning of (θ, pθ) is not the same as in our Section

3. Let E be the constant energy of the solution. The Hamilton–Jacobi equation is

( 1/2 )
[
( ∂S/∂r )2 + ( 1/r2 ) ( ∂S/∂θ )2

]
− (µ/r )− (µ ′/r2 ) = E , (29)

to which a solution by separation of variables is found under the form

S = S (r, θ, ν;H,G, E , µ, µ ′) = θG+ νH +
∫ r

r0

√
2E +

2µ

r
+

2µ ′ −G2

r2
dr, (30)

that is, a function depending on the variables (r, θ, ν) and five parameters, where G and H

are separation constants. As for r0, it is usually taken as the lowest zero of the function of

r under the radical sign. This solution contains the quantities (G,H, E , µ, µ ′); in the case

of pure Keplerian systems, G is the (constant) norm of the angular momentum vector, H

represents the (constant) vertical component of the angular momentum, E is the energy

constant, µ ′ = 0, and the gravity parameter µ is an absolute constant. Nevertheless, in
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what follows these quantities (G,H, E , µ, µ ′) are contemplated as parameters, and three

of them can be taken as the new momenta. Replacing µ ′ with a new parameter η ,

µ ′ −→ η : 2µ ′ −G2 = − G2/(1 + η) , 2µ ′ = [ η/(1 + η) ]G2 , (31)

S = S (r, θ, ν;H,G, E , µ, η) = θG+ νH +
∫ r

r0

√√√√2E +
2µ

r
− G2

(1 + η)r2
dr , (32)

pr ≡ ṙ =
∂S

∂r
=

√√√√2E +
2µ

r
− G2

(1 + η)r2
, pθ =

∂S

∂θ
= G , (33)

while ν = QH = h and pν = H remain unchanged. To complete the system of transforma-

tion equations implicitly defined by S, according to the standard procedure in dealing with

the Kepler problem, introduce a true–like anomaly f by means of a differential relation

r2df = Gdt, such that f0 = 0→ r(f0) = r0. Notice also that η = 0 when µ ′ = 0.

The five parameters (G,H, E , µ, η) are still available, and different choices of new

canonical momenta created by the transformation generated by S are possible, while the

remaining quantities would act as parameters or absolute constants in the transformation.

Some illustrative cases are presented, in which µ is introduced as a canonical variable.

• Take E and η as constants, and consider the new canonical set (µ,G,H;Qµ, QG, h).

The remaining, non–trivial transformation equations are

QG =
∂S

∂G
= θ −

∫ r

r0

Gdr

(1 + η)r2ṙ
= θ − f

1 + η
, Qµ =

∂S

∂µ
=

∫ r

r0

dr

r ṙ
=

∫ t

T

dt

r
= s (34)

where s is a regularizing variable, an eccentric–like anomaly, as introduced by means of

this last integral, and T is a value of t corresponding to r0 : r(T ) = r0 = r |(s0=0). The

preceding expression for QG would become somewhat simpler in terms of another true–like

anomaly ϕ given as r2(1 + η)dϕ = Gdt, with r0 = r |(ϕ0=0).

• Take G and η as constants; the new set is (µ, E , H;Qµ, QE , h). The significant

transformation equations are now

QE =
∂S

∂E =
∫ r

r0

dr

ṙ
=

∫ t

T
dt = t− T , Qµ =

∂S

∂µ
=

∫ r

r0

dr

r ṙ
=

∫ t

T

dt

r
= s . (35)

The preceding variable s in (34) and (35), coinciding withQµ (the coordinate conjugate

to µ), satisfies formally the same differential relation (15) as the fictitious time τ in Section

2, and can be expressed as a universal variable –in terms of universal functions– thanks

to an adequate modification of Sundman’s transformation (Stiefel & Scheifele 1971, §11,

Eqs. [54] and [60]), suitably adapted to the case of perturbed Kepler problems.

More involved considerations are to be taken into account when η is not an absolute

constant, in which case lengthy reckoning work is required (see Cid & Calvo 1973/1975).
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