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Natural and artificially controlled connections among steady
states of a climate model

J. I. Diaz and V. Garcia

Abstract. We consider a discretized a simple climate model of Sellers type and analyze the problem of
transferring the system (through some sufficiently large fithérom a stationary state to another one in
the same connected component.

Conexiones naturales y controladamente artificiales entre los estados
estacionarios de un modelo clim atico

Resumen. Consideramos un modelo clatico discretizado de tipo Sellers para el que analizamos las
posibilidades de conectar dos estados estacionarios mediante un proceso natural (curva dé@mifurcaci
respecto de un pametro) y mediante la ad@rm de un adecuado control.

1 Introduction

We present here a summary of new results ([6]) on Budyko-Sellers climate models of the type

P) {yt — (k(1 = 2¥)ys)z = Ra(x,y,v) — Re(y,w,u) = € (—1,1),t >0,
y($70) = yo(l‘) T e (_171)7

wherek > 0, R,(z,y,v) is a bounded increasing function grithe absorbed energy due to the co-albedo)
andR.(y, z,u) is a strictly increasing function on (related to the Stefan-Boltzman radiation law with an
emissivitywu varying in some positive interval). Heteandwv are taken as control variables (indicating the
anthropogenerated actions on the rate of emissions on the greenhouse gases).

For some purposes it is useful to assume the presence of possible localized controls of the form
u(t)X (1, ,1o) @andw(t)x, 1,) for some given latitude control interval;, ;) C (—1,1). We shall assume
here thatR, (x, y, v) is closer to the model proposed by Sellers andesce= (v(t)x (i, 1,) +1)QS(z)B(y)
with 3 a Lipschitz continuous, as for instanc&(y) = m if y < i, B(y) = m + (“=5)(M —m)
if y; <y < yw By) = M if y > y,, whereu; andu,, are fixed temperatures closed+d0°C and
m = (3; andM = (3, represent the coalbedo in the ice-covered zone and the free-ice zone, respectively,
0 < B; < Bw < 1. Moreover,S(z) is theinsolation functionand@ is the so-callecolar constant We
assumes : [-1,1] = R, S € C°([-1,1]), S1 > S(z) > Sp > 0 for anyz € [—1, 1]. We also assume that
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Re = (u(t)xq, 1,) +1)G(y) — f(z) with G : R — R a continuous strictly increasing function such that
G(0) = 0, lim|5|— |G(s)| = +o0 andf € CO([—1,1]).

Our main goal is to consider the problem of transfering the system from a stationary state to another
one. This type of problem was raised by J. von Neumann in a general context ([14], see also [13] and [10]).
Our study have two different parts: first we obtain a result on a (nhaturally) connected branch of stationary
solutions (for instance, as function of paramepeand in the absence of any contr@l;, i;) = (—1,1) and
u(t) = v(t) = 0). In a second part we shall use some techniques of the controllability theory of nonlinear
systems of ODEs to analyze the (artificial) transfering question by means of suitable controls.

As as mater of fact, we shall consider here only some simplified versions of prgBtenmwe shall
concentrate our attention in the discrete versiofrf arising by a spatial difference scheme discretization
(for a discretization by finite elements see [3]). There are several possible discrete simplified problems.
For instance, to avoid technicalities concerning the degenerate diffusion, as in other precedent papers ([5]),
we can replace the degenerate linear diffusion operator by the usual uniform diffusion expression but then
adding Neumann boundary conditions

— kyze = Ro(x,y,v) — Re(y,z,u) x € (—1,1),t >0,
(PL) ym(lat)*ym( ) 0 t>0a
y(x,0) = yo(x) z e (-1,1).

Then, a spatial difference scheme discretization of prolflBp) can be generated in the usual way: given
N e N, we defineh = 2/(N — 1) and we denote by;(t) to the approximation of(—1 + ih, t):

®) y(t) — Ay(t) + Re(y(t), u(t)) — Ra(y(t),v(t)) =0,
Yy (0) =y,

wherey(t) = (y1(t),y2(t),...,yn(t)T u(t), (t) € R, with u(t) andv(t) appearing only in some
coordinates associated to somec N, 1 < m < (the discretized control intervdly,l5) is here

represented by an interval of length — 1)h) em(Pyp) leads to the symmetric positive definite
matrix
1 -1 0 0 ... 0
—1 2 -1 0 ... 0
k 0 -1 2 -1 ... 0
AL:? : . - " )
0o ... 0 -1 2 -1
0o ... 0 0 -1 1

R,:{-1,—-1+h,...,+1} x RY x R™ — R is given by
Ro(T1, . s TN YLy -y YN V1« -, ON) = (Ra(21,91,01), - -+, Ra(zn yn, on) "
andR.:{—1,—-1+h,...,+1} x RY x R™ — R¥ by
Re(Z1, oo s N YLy oo YN, ULy - oo UN) = (Re(xl,,yl(t),ul),...,Re(xNny(t),uN)T,

where we used the following notation;(t) = 0 if j is not one of then coordinates where the control is
located ands;(t) = u(t) otherwise (and analogously fo§(¢)) andz; = —1 + (i — 1)h.

A different discrete approximation of proble(#®), which maintains the peculiar degeneracy of the
diffusion leads also to the formulatidi®;, ) but with a different symmetric matrix

0 0 0 0 0
k —(1—23) 2(1—23) —(1—413) 0 0
Ap— | ,
h? 2 2 2
0 —(1—2%5_y) 2(1—2%_;) —({1—2%_7)
0 0 0 0
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which results from the identityk(1 — 22)y.). = k(1 — 2?)y.. — 2kzy, when we neglect the transport
term2kzxy,.. Note that in that case the first and the last equatiori®gj are uncoupled.

Although our results are true for a general valué\oE N, for the sake of simplicity in the exposition,
here we shall only consider the caseMf= 3 andm = 1 leading to the vectorial formulation

with f : R3 x R x R x R — RR3 given by (whenA = Ay)

By — 1) + QS(=1)B(y1) — g(y1)+f( 1)
( , Q) 22 (y3 — 22 + 1) + (v + 1)QS(0)8(y2) — (u+ 1)G(y2) + £(0)
%( ys +y2) + QS(1)8(ys) — g(y3)+f( )

and (whenA = Ap)

QS(=1)B(y1) — G(y1) + f(—1)
fly,u,v,Q) = | k(ys —2y2 +y1) + (v + 1)QS(0)B(y2) — (u+ 1)G(y2) + f(0) | .
QS(1)B(y3) — G(ys) + f(1)

2 A connected set of stationary solutions depending on Q

In this section we shall assume the absence of any confiigl;) = (—1,1) andu(t) = v(t) = 0. Our
main goal is to adapt the results of [7] and [2] to show that the set of stationary sol(#itng)) € R? xR,
i.e. satisfying

Pg)  f>,1,1,Q) =0,

is very large (depending on the parame&®r We make the additional assumptions
(Hy.) there exisC; > 0 suchthatf(z;) < —Cf

(Hg) B is Lipschitz increasing function and there exi8ts. m < M ande > 0 such tha3(r) = {m} for
anyr € (—oo,—10 —€) andg(r) = {M} for anyr € (=10 + ¢, +00).

We note that since the matrik is symmetric (and, at least, semidefinite positive) the strict monotonicity

and the coerciveness assumeddimplies the existence of a unique,, (respecty ;) solution of the
problem (P2).,) (respect(P ) ) given by (PgY) but replacing3(y;) by m (respect. byV/). In the rest
of the section we shall use several comparison argumerks oHere we shall use the following notation:
y <yifandonlyify; <7;,y2 <7, andys < y5. Analogously, the use of the strict inequalityamong
vectors means that the strict inequality holds among all the components of the vectors. FinatlyRithe
notationae < y means thate < (y), fori =1, 2, 3.

We start by proving the existence of at least three solutions for suitafilethe line of [7]).

Theorem 1 Lety,, (respecty,) be the (unique) solutions of the probledgy )., (respect.(PZ)a).
Then:

i) forany@ > 0 there is a minimal solutioty (resp. a maximal solutiofr) of (ng). Moreover any
other solutiony must satisfy

Ym S YSYy<Y¥V<V¥yum,
~1(QSom + min f) < (Ym)i <G HQSym—Cy)  and
(QS@M + min f) < ( I)i (QSlM Cf) fori =1,2,3.

231



J. 1. Diaz and V. Garcia

If we assume, in addition,

G(—10+€) — min f < SoM

(Ho,)G(=10—e)+Cp >0 and =5 r=o=—m" < g

and define
_G(=10—¢) +Cf _ G(=104¢) —min f
Q1= S0l ; Q2 = SolM 1)
Qs = Q(—lOS— 6)—|-Cf7 Qs = Q(—lO—;e)—mlnf. @
1m om
then:

i) if 0 < @ < Q1 (repect.Q > Q4) then (Pgy) has a unique solutioly = y,, (ym)i < —10,
(repect.y = yur, (ym): > —10) and G~ (min f) < limg o inf ||yl < limg osup ||yl <
g1(=Cy),

i) if Q2 < @ < Qs, then(Pg) has at least three solutiong;, i = 1, 2, 3withy; = yum, y2 = ym,
andy; > ys > ya.

IDEA OF THE PROOF i) and ii) are consequence of the fact that the comparison principle holds for
problems(PZ )., (PZ)wm (since the systems are of cooperative type) and then the method of sub and
supersolutions can be applied (see e.g. Pao [15]).The proof of iii) is divided into several steps. First, we
construct two constant subsolutiolWs and two constant supersolutiobs such thatV, < Us < —10 —
€ < —10 + € < V; < Uy, proving the existence of, at least, two solutiongBfy ). The existence of a
third solution of(Pgy) is obtained by a topological fixed point argument. Let us show the convergence of
the mentioned solution céin) to a third solution of £ ¢). ForA < Ao (a certain positive parametdd),,

U, are supersolutions ¢Pg) andVy, V, are subsolutions ofP7’). So, arguing as in i) we obtain two
solutionsy; andys of (POQC) suchthat-10+e+ A AM <V <y; <Ujandls <ys < Uy < —10—c.
In order to prove thatP¢y) has a third solutiom; different tou; andus we apply a result due to Amann [1]
(which is justified since the operatbi(z) := (A+G)~'(QS(-)3(z) +£) is compact on the spade = R?).

O

Now we can show that it is possible to associate a bifurcation diagram for the special gdse)of

G(—10+e)+C _ SoM
_ —10 — < .
C¢,G(-10—€)+C >0 andg(7107€)+c_slm

Theorem 2 If we denote by the set of pairQ,y) € RT x R?, wherey verifies(Pgy) thenX contains
an unbounded connected component containing the p@igt ! (—C)).

PROOE We claim that the following result [16] can be applied to our case: L& a Banach space. If
F:Rx E — Eiscompactand’(0,u) = 0, thenX contains a pair of unbounded componefitsandC~
iNRY x E, R~ x E respectively andt N C~ = {(0,0)}". In order to do that we consider the translation
of y given byz := y — G~'(—C). Obviously,u is a solution of P¢y) with Glo)=Glo+G 1 (=C))+C
andf3(0) = (o + G~1(—C)). We defines in an analogous way tB. Let E = R3 and defineF(z) :=
(A +G)~"(QS()B(z) + f) is compact on the spade = R*. On the other hand, if) = 0 problem(P¢y)
has a unique solution = 0, so F'(0,0) = 0. In conclusion’ contains two unbounded components
andC~ onR* x R3 andR~ x RR3 respectively and’* N ¢~ = {(0,0)}. SinceX. is a translation of:
thenX contains two unbounded componeats andC~ onR* x R? andR~ x R? respectively and that
CtnC~ = {(0,G71(-C))}. Since@ > 0 in the studied model, we are interesteddr. In order to
establish the behaviour @f*, we also recall that for every > 0 there exists a constatit = L(q) such
thatif0 < @ < ¢ then every solutioy,, of (Pg) verifies|lyq|l« < L(q). Since the principal component
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is unbounded its projection over tiggaxis is[0, oo). On the other hand, if) is large enouglPZ) has a
unique solutiory, and this solution is greater thgh ' (Q.Sy M — C). Sincelim,|_. |G(s)| = 400, then
the unbounded branafi* containing(0, G~!(—C)) should go to(co, 00). M

Remark 1 In the continuous problem it is well known that there are many other solutions which does
not belongs to the branc™ of the above proof (sgf@]). In some special cases (for instance, the zero-
dimensional modelk = 0 and constant coefficients) it is possible to characterize the different parts of the
branch corresponding to stable (and unstable) solutions. Moreover, under symmetry conditiSgs)on
and f(x) the branchC* is formed by symmetry stationary solutiqgs; = (y)s.

3 Connecting stationary solutions by means of controls

We consider the problem of transferring the system from a stationary state to another oné)(whén

is fixed) but now by means of suitable choices of the conw@ig andv(t). In fact, we shall consider here
only the case of a single contro(¢) and when both solutions are in the same connected component (the
branchC™). For the sake of simplicity, we shall consider the connection between an arbitrary (possibly
unstable) symmetric statg’, (v° 4+ 1)Qo) to a final stable symmetric orig/, (v/ + 1)Qy), both in the
principal branchC*. The case when(t) is fixed and the only control ig(¢) follows the same arguments.
Finally, the case of two controls(t) andu(t) is even easier. We first extend, in [6], the obstructions results
of [5] to the case of the controils = 0 butv # 0 and localized. Spite of it, our results prove that if the final
state is a stationary state the problem is controllable. We start with the uniform diffusioAcase\

with Neumann boundary conditions

Theorem3 i) AssumeA = Ay, u(t) = 0 and that the controb(t) acts globaly in space(l, l») =
(—=1,1). Let(yf,Qo(v! + 1)) be a stable symmetric stationary solution in the bradth. Then,
for any other symmetric statg/’, (v + 1)Qo) in C* there exists a tim& > 0 and a piece-wise
continuous controb € L>°(0,T) with v(0) = v° andv(T) = v/ such that the solutio(t) of the
problem(P, ) with initial datumy® verifies thaty (1) = y/.

i) In the case of a localized controli(,l2) & (—1, 1)) the same conclusion holds when, in addition,
(¥°, (v° +1)Qo) and(y’, (v/ + 1)Qo) are closed enough.

PROOE We divide the proof of i) in two different steps. In the first step, given an sealD we connect
(y°, (v°+1)Qo) with a point(yf, Qo (v7 +1)) by means of the branch of stationary solutiéits and so, by
means of a parametrizatidy™ (7), Q(7)) with Q(7) = (1 — 7)(v° + 1)Qo + 7(vf + 1)Q, for 7 € [0, 1].
Obviously, this orbit does not need to be a solutionBf,,) but, givene > 0, we can construct the
function[0, 1/e] — R? x R given by (y®(¢),v°(t)) = ((y*(et), Q(ct)) which is “almost” a solution since
ly(t) = f(y(t),1,v(t),Q)|| = O(e). Then, sincdy’, (v 4+ 1)Qy) is stable we can assume thet(7.)

(with T, = 1/¢) is neary’. The second step consists in to conngdt7.) with y/ by means of a control
o(t) for t € [T.,T), for someT > T.. This can be donne thanks to well-known results (see, e.g. [12, 17])
since the Kalman’s condition for the linearized equation, rigdr (v/ + 1)Qo) holds. Note that due to
the symmetry assumption we can reduce the sy$ieg) ) to a system of only two equations leading to a
linearizationy(t) = Cy(t) + Bu(t) whereC= V,f(y/, (v/ + 1)Qo) andB = V,.f(y/, (v/ + 1)Qo),

and so the Kalman’s conditioRange(B, CB) = 2 holds. ii) For a localized contral(t) appearing only

in the second equation ¢P(,, ) the argument of connecting branch of stationary solut@hsnay fail but

at least we can apply the local controllability results for nonlinear equations since the Kalman'’s condition
holds. W

Remark 2 Itis a curious fact that, in the case of the original 3-sysi@y, ), the necessary and sufficient
condition in order to have the Kalman’s condition for the linearized equation allows to see that there are
other solutions (not necessarily symmetric) which does not satisfy it.
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Remark 3 The controllability aspects for the degenerate cAse- A j, are considered also if6].
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