
RACSAM
Rev. R. Acad. Cien. Serie A. Mat.
VOL. 101 (2), 2007, pp. 133–157
Ciencias de la Computación / Computational Sciences
Artı́culo panorámico / Survey

What Machines Can and Cannot Do∗

Luis M. Laita, Eugenio Roanes-Lozano and Luis de Ledesma Otamendi

Abstract. In this paper, the questions of what machines cannot do and what they can do will be treated
by examining the ideas and results of eminent mathematicians.

Regarding the question of what machines cannot do, we will rely on the results obtained by the ma-
thematicians Alan Turing and Kurt Gödel. Turing machines, their purpose of defining an exact definition
of computation and the relevance of Church-Turing thesis in the theory of computability will be treated
in detail. The undecidability of the “Entscheidungsproblem” (German for “decision problem”) is shown
to be a consequence of the computations that Turing machines can or cannot do.

Beginning with Peano’s arithmetic, a variant of it, “theory S”, is presented and discussed. By studying
representability and expressibility in S, the notion of recursive functions will be reached.

Gödel arithmetization of logic and of first order theories and his completeness and incompleteness
theorems, together with Church’s incompleteness theorem, provide both the important possibility of co-
difying mathematics and the reasons for existence of other undecidable problems

Regarding the question of what machines can do, we mainly rely on the ideas of the Nobel Lau-
reate Herbert A. Simon. Nevertheless, a few facts about modern computing machines and about the so
called “expert systems” will be described, because they suggest the existence of important capabilities of
machines.

The paper ends with a few considerations about the question: who is more intelligent, the man or the
machine?

Lo que las máquinas pueden y no pueden hacer

Resumen. En el presente artı́culo, la cuestión de lo que las máquinas pueden y no pueden hacer será
considerada basando la argumentación en ideas y resultados de eminentes matemáticos e informáticos.
En la cuestión ¿qué no pueden hacer las máquinas?, nos basamos en resultados obtenidos por Alan Tur-
ing y Kurt Gödel. Las máquinas de Turing, su propósito de mostrar una definición exacta de lo que
significa “computación” y/o “algoritmo”, conjuntamente con la importancia que tuvo y sigue teniendo
en la teorı́a de la computabilidad la tesis de Church-Turing, serán tratadas detalladamente. Se muestra
que la indecidibilidad del problema de la decisión (“Entscheidungsproblem”) es una de las consecuencias
de lo que las máquinas de Turing pueden o, mejor, no pueden hacer. Se presenta y discute una variante
de la aritmética de Peano, denominada “Teorı́a S”, de forma que definiendo en S las nociones de “re-
presentabilidad” y “expresabilidad”, llegaremos a la noción de “función recursiva”. La aritmetización de
Gödel de la lógica y de las teorı́as de primer orden, y sus dos teoremas de incompletud, conjuntamente

∗This paper is based on a lecture delivered by the first author at the International Symposium Mathematics for the XXIth Century,
organized in Madrid, Spain, on May 3–4, 2006, by the Ramón Areces Foundation and the Royal Academy of Sciences of Madrid,
together with the Executive Committee of the International Congress of Mathematicians 2006 (ICM2006 Madrid). The second and
third authors have improved relevant parts of the lecture.

∗Presentado por Manuel de León y Manuel López Pellicer.
Recibido: 18 de marzo de 2007. Aceptado: 10 deoctubre de 2007.
Palabras clave / Keywords: Artificial Intelligence Surveys, Applications of Computability and Recursion Theory
Mathematics Subject Classifications: 68T02 and 03D80
c© 2007 Real Academia de Ciencias, España.

133

L. M. Laita, E. Roanes-Lozano and L. de Ledesma Otamendi

con el teorema de incompletud de Church, hacen posible, por un lado, la codificación en matemáticas,
y, por otro, mostrar la existencia de problemas indecidibles adicionales. Con respecto a la cuestión de
¿qué pueden hacer las máquinas? nos basamos fundamentalmente en las ideas sobre inteligencia artificial
del Premio Nobel Herbert A. Simon. Sin embargo, debido a que revelan importantes capacidades de
las máquinas, describiremos algunos hechos acerca de algunas máquinas computadoras actuales, y otros
hechos acerca de los denominados “sistemas expertos”. El artı́culo termina con algunas consideraciones
acerca de la pregunta: ¿quién es más inteligente, el hombre o la máquina?.

1 Introduction
In this paper, the questions of what machines cannot do and what they can do will be treated by examining
the ideas and results of eminent mathematicians and computer scientists.

Regarding the question of what machines cannot do, we shall rely on the results obtained by the great,
and at the same time eccentric, mathematicians Alan Turing and Kurt Gödel.

Regarding the question of what machines can do, we shall mainly rely on the ideas of the Nobel laureate
Herbert Simon. Nevertheless, a few facts about modern computing machines and about the so called “expert
systems”shall be described, because they suggest the existence of interesting capabilities of machines.

2 Some of the things that machines cannot do
As advanced above, we shall focus our attention on Turing and Gödel. For an interesting history of machines
see [64].

2.1 Alan Turing
2.1.1 Turing machines

Alan Mathison Turing was born in London in 1912. He and his team decodified the German codifying
machine “Enigma”, contributing decisively in this way to the Allied victory over Germany in the Second
World War. He himself designed the decoding machines named “Bomb” and “Colossus”. As a reward for
his successful contributions to the war effort, Turing was awarded the Royal Medal of the British Empire.

He was homosexual and was accused to maintain sexual relations with a minor. This produced the
rejection of his colleagues and the British Government obliged him to medicate in an exchange for not
going to prison. This situation, together with the awful secondary effects of the medication imposed to him,
made him to commit suicide, in Wilston, in 1954. An excellent biography of Turing, as well as of Gödel
and of other logicians, is Mosterin’s book [45].

The reason for which he is recognized by the scientific community is the creation of “Turing machines”
(Turing used to call them “Logical computing machines”), which were later able to show the existence of an
important undecidable problem known as the “Entscheidungsproblem” (German for “decision problem”),
that will be treated later on.

In its simplest version, a Turing machine consists of a potentially infinite tape, divided into squares in
such a way that each square is either blank, also denoted by a “0”, or an “1”, and a reading-writing head
which is able to read what is written in those squares. Afterwards, the reading-writing head follows only
one of the next commands each time:

• erase what is being read and write a “0” or an “1” in that square,

• remain “looking” at the square,

• move one square to the left,

• move one square to the right.

134

What Machines Can and Cannot Do

The instructions of the machine are of the form, say, qi1Lqj which means “if the machine is in state qi and
its reading-writing head is reading an 1 in some square of the tape, the reading-writing head should move
one square to the left (L) and the machine ends in state qj”, or of the form, say, qi10qj which means “if
the machine is in state qi and its reading-writing head is reading an 1 in some square of the tape, the head
erases that 1 and writes 0 in that same square”. For such instructions, the machine ends in state qj (j is not
necessarily equal to i + 1 and qj may be the same as qi, all this depending from how the machine has been
programmed). If a command ends in the state symbol qj , the next command must begin by the same state
symbol.

The machine (in its simplest version) is at “the standard position” when in its initial state the head is
looking at the first square containing a “1” of a finite row of squares containing an “1” each (no blanks in
between), the remainder of the tape being empty.

The problem is that Turing machines are complex, even to perform duties as to “compute” the function
y = 2 · x for any given natural number x, that is, the operation “multiply by 2” (something that young
boys and girls learn to do mechanically). The Turing machine [8] that computes this function has twelve
states with the possibility of having to return to the first state as many times as needed to double the starting
number of “1” in the initial state, when the machine is started in a standard position.

This complexity (relative complexity, as will be seen later) does not matter much, because what Turing
was looking for was not mainly, although this was one of his aims, to construct a “calculator”, as many
mathematicians before him, like Leibniz, Pascal and Babbage, among others, had tried to, but to provide an
exact definition of “algorithm”, and an exact definition of “computation”.

The terms “computation” and “algorithm” or “effective calculation” seem to coincide. When thinking
on algorithms, we are prone to refer to actions performed by human beings (always with the help of “arti-
facts” that can be from a pencil to a machine) meanwhile when thinking on computation we are prone to
refer to actions performed by machines (always with the help of a human being). When defining what is an
algorithm, it is, curiously but not well explained why, in addition to require the process to be “mechanical”
and finite, it is required that no ingenuity or insight on the side of the human being is needed to carry out
the algorithm, suggesting that humans performing algorithms are as intelligent (or as clumsy as machines).

Algorithms should be verified and validated. Verification consists, basically, in checking the consis-
tency of the algorithm; validation consists of checking that the outputs of the algorithm are correct in a
large number of their practical and theoretical applications, when matched with widely accepted empirical,
technical, or theoretical results.

Verification and validation refer to three levels of correctness of an algorithm. In the first level, it is
checked that the outputs of the algorithm are correct in all cases it has been applied. The bigger the number
of correct outputs is found, the bigger the credibility of the algorithm is. The second level is to formally
modelize classes of tentative applications of the algorithm and show that the algorithm outputs consistent
relevant results in each of those classes by applying it to a relevant representative of each class. The
third level consists of using computer verifiers-provers that interact with teams of mathematicians and/or
computer scientists, after performing a careful translation of the commands and other items of the algorithm
into a symbolic language able to be understood by both the computer and the human team.

When an algorithm goes successfully through the first and second verification levels it is usually con-
sidered as verified and validated. It has to be said that going through the third verification level is a sample
of the everlasting search for rigor in mathematics; moreover, even in the case the algorithm has success-
fully passed the requirements in the three verification levels, “absolute” verification is not obtained, but
“absolute” certainty does not exists in any field of knowledge.

Buchberger algorithm has accomplished superabundantly the requirements of the first two verification
and validation levels. But it has been a nice exercise of rigor to submit it to the third level requirements, a
process carried out by José Antonio Alonso, José Luis Ruiz e Isabel Medina, of the University of Sevilla,
Spain, using ACL2, being the result positive, as expected.

Professor Alonso, who was the one who informed us about the appropriateness of considering three lev-
els in verification and validation, adds the question: but, who or what verifies/validates the verifier/validator?

To the approach to an exact definition of effective calculation contributed, on one hand, Church and his

135

L. M. Laita, E. Roanes-Lozano and L. de Ledesma Otamendi

disciples Rosser and Kleene, specially the later, who developed the so-called “λ-calculus” (a function of
positive integers is λ-calculable if its values are found by using a certain repeated process of substitution,
not to be explained here) and, on the other hand, Herbrand and Gödel, who developed the so-called “theory
of recursive functions”, all of them in the period 1932 to 1936. Turing, just after knowing Church’s work
on λ-calculus, showed that his (Turing) computable functions coincided with recursive functions (in the
domain of positive integers).

Other algorithms as those provided by Post and Markov, and other machines, specially “unlimited regis-
ter machines” (or, simply, “register machines”) [13], have been shown to be equivalent to Turing machines
(that is, they compute the same functions, i.e., recursive functions). Thus, it is indifferent to say “recursive
functions” or “computable functions”. Register machines, conceived by Shepherdson and Sturgis [61] con-
sists of a tape divided into squares, as Turing machines, but infinite only to the right of a square considered
to be the first one in the tape. They also consist of a simple set of instructions. Examples of instructions are:

• Z(n), which means: write a 0 in square nth, and

• J(m, n, j), which means: if the number which appears in the mth square is the same as the one in the
nth square, jump to the jth instruction; otherwise go to the next instruction to J(m, n, j).

The initial configurations of the tapes of these machines consist of a finite series of natural numbers, each
of them written in a square of the tape, beginning in the first square. After the rightmost square, in which
a natural number different from 0 appears written, the remainder of the squares of the tape are filled with a
0 each. Register machines processes reflect very well the processes of construction of recursive functions.
They are much easier to study and program than Turing machines, very likely because they look much more
like real computers.

Recently, “machines” for the so-called molecular based on ADN combinatorics and cellular systems
have been proved to be equivalent to Turing machines. The first author of this article witnessed such
a proof for cellular computing provided by a student of Professor Paun in Sevilla University. Excellent
introductory books for descriptions of these “machines” are [47, 48] (essential parts of the hardware of these
machines, obtained in biochemistry laboratories rather than in conventional factories, are totally different
from conventional computers hardware). They still are only a little farther than being at the prototype
level, but they have been shown to be faster that supercomputers in solving a few problems to which they
have been applied. An example is Adleman experiment [2, 3], improved, in regards to the speed of the
experiment, by Lipton [41].

Adleman experiment consisted in applying molecular computation to the problem of solving a concrete
instance of the Hamiltonian path in a graph with two distinguished nodes (the graph in the example had
7 nodes). To each vertex and to each edge an oligo and an ADN molecule are, respectively, associated.
Regarding the capability of information storage in ADN molecules, it is one bit per cubic nanometer (a
nanometer, “nm”, is equal to 10−6 millimeters), while the best conventional supercomputers store one bit
per 1012 nm3. A “good” (not yet built) molecular “machine” could perform 1020 operations per second,
while the best today’s supercomputers can perform 1012.

Finally, it is curious to check that abaci, the oldest “machines” compute the same functions than Turing
machines (see Chapter 6 of [8]). As all the mentioned machines are equivalent to universal Turing machines
(universal Turing machines embody all Turing machines), all of them compute the same class of functions.

An interesting and illustrative testimony about the importance of an appropriate “atmosphere” in the
birth of genial ideas, on logic in this case, is Enderton’s quotation [46].

Princeton in the 1930’s was an exciting place for logic. There was Church together with his
students Rosser and Kleene. There was John von Neumann. Alan Turing who had been thin-
king about the notion of effective calculability, came as a visiting graduate student in 1936 and
stayed to complete his Ph. D. under Church. And Kurt Gödel visited the Institute for advanced
Study in 1933 and 1935, before moving there permanently.

136

What Machines Can and Cannot Do

Let us pause for a while to describe what recursive functions are and what relation they have with
arithmetization of formulae of first order theories (this introduction to the concept of arithmetization will
be completed when studying Gödel numbers in 3.1). Our description is based on [43].

Recursive functions are defined inductively. The “initial functions” are three: for the sake of simplicity
(these functions, as well as the rules for defining new functions from given functions are defined in any
book on the theory of computability), we only mention the “zero function”: Z(x) = 0 for all x and the
“successor function”: S(x) = x + 1 for all x. The rules for obtaining new functions from given functions
are “substitution”, “recursion” and “introduction of the µ-operator”. The recursive functions obtained from
the initial functions and from finite number of applications of only substitution and recursion rules are
called “primitive recursive”. These, plus those obtained from them by finite numbers of applications of
Introduction of the µ-operator rule are called “recursive”.

According to Mendelson, the first semi-automated try of formalizing arithmetic was performed by
Dedekind [14]. This formalization was improved by Peano, and the resulting set of nine axioms is known
as “Peano’s arithmetic”. Peano’s theory has the shortcoming that the notion of “property” used in its ninth
axiom (an induction axiom) relays much on intuition. Mendelson improved and made changes in Peano’s
arithmetic, by building a theory, again with nine axioms, which he named “theory S”, a totally formalized
axiomatic theory which avoids intuitive notions. This theory accounts for the proofs of all results of ele-
mentary number theory. These results refer to properties of “number theoretic relations” and of “number
theoretic functions”, which are, respectively, relations with arguments natural numbers and functions, the
arguments and values of which are natural numbers too.

To each natural number a term is assigned (which is a formal expression, not a number), called “nu-
meral”. Numerals are the logical terms 0, s0, ss0, . . . where 0 is the only constant of theory S and s is the
function “symbol successor”. These terms are represented, respectively, as 0, 1, 2, 3,

In this context, a number theoretic relation R(k1, k2, . . . , kn), where k1, k2, . . . , kn are natural numbers,
is “expressible in the theory S” when there exists a well formed formula A(x1, x2, . . . , xn) of the language
of S with n free variables, such that for any list of natural numbers k1, k2, . . . , kn the following two
conditions hold:

1) if R(k1, k2, . . . , kn) is true (in the model of natural numbers), then S ` A(k1, k2, . . . , kn) (which
means that A(k1, k2, . . . , kn) can be proved in S).

2) if R(k1, k2, . . . , kn) is not true (in the model of natural numbers), then S ` ¬A(k1, k2, . . . , kn) (that
is, ¬A(k1, k2, . . . , kn) can be proved in S).

A similar, although a little more complex, definition of “representability in the theory S of number theoretic
functions”, can be given, but in order to simplify our description, it is omitted here.

But what is of utmost importance is that recursive functions and, consequently, all number theoretical
computable (by ideal machines) functions coincide (if the Church-Turing thesis, in the Church version, is
accepted, see below) with the functions representable in S.

The importance of “expressibility” and “representability” is that they relate natural number theoretic
relations and functions with formulae of the language of S, that is, recursive functions (with natural numbers
as arguments) with formulae of the arithmetic S. For instance, expressibility relates the recursive function
theory predicate “For(x)” and “Pr(y, x)” (meaning that y is the Gödel number (to be defined in 2.1.5) of
the proof of a formula, the Gödel number of which is x), with (two) formulae of S (this will be used later
on to describe intuitively the meaning of the second of Gödel incompleteness theorem).

But what happens with functions and relations, the argument of which are not natural numbers? The
answer is that first order theories and, thus, many expressions and processes (as “to be a formula” and “to be
a proof”) of mathematics can be arithmetizable in the sense that they can be codified by using Gödel’s num-
bers and functions and relations (predicates) of recursive functions theory. This allows to apply recursive
functions theory ideas and constructs to study the meta-mathematics of mathematics (meta-mathematics
deals with, among other items, general properties of groups of theorems of a part of mathematics: for in-
stance, the tautology theorem in meta-logic deals with properties of mathematical logic theorems in such a

137

L. M. Laita, E. Roanes-Lozano and L. de Ledesma Otamendi

way that it helps proving new logic theorems). Gödel’s incompleteness theorems can be considered meta-
mathematical theorems.

2.1.2 Church-Turing thesis

Church-Turing thesis (see [68]) is considered by some as “the first axiom of the theory of computability”.
Nevertheless, this is a little an exaggeration because one should always have in mind that it is not more that
a “thesis” (or rather, a well founded hypothesis).

In Turing’s version, it says: LCMs (logical computing machines, as Turing named his machines) can do
anything that could be described as “rule of thumb” (that is, a useful way of calculating approximately) or
“purely mechanical”. If the word “calculable” means: anything that could be described as “rule of thumb”
or “purely mechanical”, then the translation of the previous statement is:

calculable =⇒ Turing computable

In Church’s version, the thesis says: “a number theoretical function (that is, a function of natural num-
bers) is effectively calculable only if it is recursive”:

effectively calculable =⇒ recursive

“Rule of thumb” and “purely mechanical” are fuzzy notions; to be “effectively calculable” is usually
understood as a mechanical procedure that, in principle, can be carried out by a human being in a finite
number of steps, with nothing more than a paper and a pencil, with no insight or ingenuity on the side of
the human being. An example is using tables of truth-values for checking whether or not a propositional
formula is a tautology (it has been said above “in principle” because complexity of the algorithm may be
so great that it is not useful to carry it out). That effective calculations do not require ingenuity or insight is
quite dubious either.

For these reasons, the next versions, one by Gandy and the other in [68], seem to be more rigorous.
Gandy’s version is: “whatever can be calculated by a machine (working on finite data, in accordance

with a finite program of instructions) is Turing-machine-computable.
The thesis in [68] (denoted as “thesis S” by their authors) is: “any process that can be given a mathe-

matical description (or that is scientifically describable or scientifically explicable) can be simulated by a
Turing machine”.

A nice consequence of the thesis is (see [70]).

All ordinary computers are equivalent to each other in terms of theoretical computation
power, and it is not possible to build a calculation device that is more powerful than a computer.

From what has been said, Church-Turing thesis does not say that any kind of calculus is a computation,
as one would be tempted to say when reading only the original Turing statement of the thesis, that may
suggest that calculation is a mathematical proof plenty of intuitions and maybe based on dubious bases. An
interesting example of this kind of calculation was Boole’s inferential method for attaining consequences
from a given set of logical hypotheses. He, by using a doubtly well based methodology (see 4.1.1), reached
a result that corresponds to a today’s accepted theorem which links logical consequence with an ideal
membership problem, a sound effective method. It has to be said that many programmers do not care too
much about whether or not their procedures are actually computations, except when rigor problems arise.

That computable implies calculable is clear, the converse is the questionable one: an equivalent form to
state Church-Turing thesis is “what isn’t computable isn’t and never shall be calculable”.

The thesis is no more than an hypothesis, but it is supported by the fact that all attempts to define ef-
fective calculability have ended in realizing that they are equivalent to Turing computability. After Turing’s
work, many ideal machines and algorithms, mentioned in 2.1.1 above, have been designed for many diffe-
rent reasons: to simplify Turing machines, to try to extend these, to try to find new classes of computable
functions that are not Turing computable and to make computations faster and more efficient. All these

138

What Machines Can and Cannot Do

machines, have curiously been proved to be equivalent to Turing machines and to compute the same class
of functions, recursive functions, thus also denoted as computable functions. The equivalence of the men-
tioned machines with Turing machines support Church-Turing thesis written as follows: “universal Turing
machines can simulate the behavior of any machine”.

We strongly recommend the discussion of the “Church-Turing thesis” (specially its misunderstandings)
provided in the Stanford Encyclopedia of Philosophy, with an impressive bibliography [68].

At the end of this paper we shall make some comments about the relationship between this thesis and
the comparison of human intelligence with artificial intelligence.

An important comment is: the rising of quantum computation makes us guess that a new type of ma-
chines that aren’t equivalent to Turing machines could be developed. And then, perhaps a new type of
Turing-like machine could be shown to be equivalent to quantum computers. Interesting and important
studies on this topic appear in [6, 15].

2.1.3 Undecidable problems

Turing and Church, by using different approaches, proved the undecidability of the “Entscheidungspro-
blem” proposed by Hilbert and Ackerman in 1928 (given a formula of a predicate logic system, to decide
by an algorithm whether or not such formula is a theorem in that system).

Undecidable problems are problems such that not only machines or men using algorithms have been
unable to solve but, rather, that there exists a proof of the fact that such problems aren’t and never shall be
able to be solved either by an algorithm or by a machine.

Let’s outline, in today’s terms, the proof of the undecidability of the “Entscheidungsproblem”. Among
the possibly Turing computable functions, there is a curious one, the “productivity function p”. The “pro-
ductivity” P of a Turing machine is defined as follows.

Suppose a Turing machine the head of which starts marking an empty square in an empty tape. If after
performing all its instructions, the head of the machine ends in standard position marking the first “1” of a
row of k “1s”, being the remainder of the tape empty, the productivity of the machine is k. Let us agree that
the productivity P of a Turing machine is cero in the following cases: if it does not start, if it doesn’t end in
the standard position, if the final string of “1” does not form an unbroken row and if it doesn’t stop.

The productivity function “p(n)” is the productivity of the most productive Turing machine of n states.
This machine, if it exists, is called “BB”, “busy beaver”, a mention to the frantic activity of beavers carrying
sticks (“1”) to fill gaps in walls.

The final result is that BB does not exists, in other words, that the productivity function p isn’t Turing
computable. If Church-Turing thesis holds, p is neither computable nor calculable. The computation of
p(x) = y is an undecidable problem. The problem of the undecidability of the problem of computing p is
linked to the “halting problem”, which is the problem of designing a systematic and effective procedure for
identifying the Turing machines that never halt, once started in their standard position. Suppose that we are
in an extremely large room in which all Turing machines of n states fit, and imagine we make them start
on empty tapes. Some will stop in situations for which they can be assigned a productivity P ≥ 0, or a
productivity 0; but, what happens with those machines that seem not to stop? What would be needed is an
algorithm or a machine which would state, generically, whether or not a Turing machine stops. But if such
a machine would exist, it would be able to compute the productivity function.

Thus the decidability of the halting problem is reduced to the question of existence or non existence of
the BB machine, a problem whose answer is “no”. It means that the halting problem is undecidable, that is,
it isn’t and never shall be Turing-computable.

It can be asked: does it really matters if the halting problem of a Turing machine is an undecidable
one? The answer is that the Entscheidungsproblem, referring to formulae in the predicate calculus with
predicates in two or more arguments is reducible to the halting problem, and thus, it is undecidable. A
nice proof of the fact that the Entscheidungsproblem is reducible to the halting problem, not using Turing
machines but “register machines” appears in [13].

139

L. M. Laita, E. Roanes-Lozano and L. de Ledesma Otamendi

By the Completeness Theorem in Gödel’s version (it has another version by Henkin that will be later
enunciated and used), also the “validity” problem (to determine by an algorithm whether or not a formula
of the predicate logic, for predicates in two or more arguments, is “valid”) is undecidable. Gödel’s version
of the Completeness theorem says: a (first order theory T) formula is a theorem of T if and only if it is valid
in T (which means that it is valid in all models of T).

The problem for monadic logic, that is, for predicates in one argument was proved by Löwenheim to be
decidable. Löwenhem was born in 1878 in Krefeld, Germany, and died 1957 in Berlin, and he had a very
difficult life (almost all his writing in mathematics and logic were lost in a bombing on Berlin). He was, in
some sense, able to “codify” logical foundations of mathematics in the domain of real numbers. What he
proved is that, for any set of sentences of predicate logic, if there is an interpretation in which they are true
in some structure, there is also an interpretation that makes them true in a countable subset of the original
structure.

It is also known that, for propositional logic, the problem (in this case of determining tautologies) is
decidable (by constructing truth tables).

Thus, predicate logic, which is, together with propositional logic, at the very basis of human formalized
thought and of the machines symbolical processes (and thus, of artificial intelligence), does not possess
effective, general and finite procedures to determine neither the theoremicity nor the validity of its state-
ments. This, we do not exaggerate, contradicts rooted beliefs of mathematicians and philosophers about the
strength of the foundations of formal sciences (and, maybe, about the validity of the belief that symbolic
processes of human beings brains are always sound). Recall that a formal science is a science such that its
assertions (among them its axioms) can be expressed, symbolically, in a very precise language and that the
procedures for making inferences are very precisely stated too.

2.1.4 A digression

As a digression, suppose that a person with little level of power of abstraction, but having some semi-
mechanical capabilities (to distinguish just four different symbols like “0” “1”, “L” and “R”, to erase “0”
or “1”, write “0” or “1”, go left, go right) and to know the actions to be performed when seeing the pairs
(0:0, 0:1, 0:L, 0:R, 1:0, 1:1, 1:L, 1:R) and able to follow orderly the arrows in the diagram of the Turing
machine, is provided by

(1) such a diagram (on a piece of paper),

(2) a pencil with an eraser incorporated.

The paper contains in its upper side a row 1 1 of two “1”. We doubt what would be more difficult for him:
to begin understanding an elementary notion of natural number, to know how to sum these numbers and to
relate sum to product, or just to follow, mechanically, the instructions of a Turing machine.

2.1.5 The intelligence of machines

Regarding Turing’s interests on the problem of the intelligence of machines, he proposed what is known
now by the “test of Turing” in the journal “MIND”, in 1950. Turing began stating that is first essential to
give a precise meaning to the terms “machine” and “thought”and went into the following test-play.

There are three players, a man (A), a woman (B) and another person (C) that proposes questions. C can
be a man or a woman. C is in a room different from A and B. The aim of C is to find out, by asking a battery
of questions, who of A and B is a woman (or a man)? The answers are written in typewriters (so that A
and B cannot be identified by their voices or their writing). C may ask questions related to calculi, which
are, usually, better treated by machines, and other questions referring to emotions which are, usually, better
answered by human beings.

Turing asks the following question: if we replace A by a machine, does C makes as many mistakes
while assessing the gender of A and B as in the case that A is a person (a man)? If the number of mistakes
was the same, according to Turing, the machine would be intelligent.

140

What Machines Can and Cannot Do

Turing himself recognized that intelligence is a so complex entity, that his test of intelligence of ma-
chines was very limited but, that by trying experiments like this one, some time in the future machines could
be attributed intelligence.

Note that we have been making a distinction between solving problems by “human beings using algo-
rithms” and “machines solving problems”. It has to be said that, at the present time, there is not an essential
distinction between these two concepts. Today, most humans solving problems by algorithms use machines,
not merely pen and paper. Thus, when we say “problem solved by humans using algorithms”, we are almost
saying “problem solved by humans using machines”. We have said “almost” because machines are little by
little becoming independent from humans. This is not only because machines can perform tasks in which
humans are less efficient, both cuantitatively, like working with large pieces of information or, qualitatively,
like (this refers to most humans) playing chess, but, also, because machines, as we shall see later on this
paper, emulate human behavior and simulate human characters as having “insight”. This doesn’t imply that
machines are intelligent yet, because they accomplish all those mentioned tasks because some human(s)
being(s) has (have) programmed them.

3 Kurt Gödel

3.1 The arithmetization of logic. Gödel numbers

Kurt Gödel was born in Brno, today in Czech Republic, in 1906. In 1929 he moved to Vienna, in which
University stood out both because of his intelligence and his peculiar personality. It was during his sojourn
at this university when he discovered his famous incompleteness theorems.

When Hitler overtook power in Germany and Austria, he emigrated to the U.S.A., and was hired by
Princeton University. He returned to Vienna because of an illness: his biographers say that during his illness,
he spent much time reading about madness, something that might have made him even more eccentric than
he was before

He returned definitively to America in 1940. Gödel died in Princeton, in 1978.
He is considered among the most creative mathematicians in history. His contributions were important

in the foundations of mathematics and in the theory of computability. Maybe because he and Einstein
became scientific partners in Princeton, Gödel dedicated a great amount of time to the study of physics,
although this interest for physics had also been remarkable while he was a student in Vienna, much before
he went to Princeton.

In this paper we shall focus our attention only, because this has to do with our topic about what machines
cannot do, to two Gödel’s genial mathematical constructs, which are intimately related between them: the
“arithmetization” of formal logic and the incompleteness theorems.

Gödel had the, seemingly just curious but actually crucial, idea that a natural number (a code) could
be assigned to formulae, axioms, theorems, proofs and so on, not only in logic, but also in arithmetic and
theories which are extensions of arithmetic. This idea, together with his contribution to the foundations and
development of the theory of recursive functions led him to state two of the three incompleteness theorems
(the other one was due to Church). We deal next, in a quite informal way, with both the arithmetization of
logic and formal theories containing arithmetic and the incompleteness theorems [62].

There exists a computable (recursive) function “ß” that assigns a natural number, that is, a code, here
denoted “c” to any list of natural numbers. The Gödel number determination is totally algorithmic or able
to be performed by a Turing machine or its equivalent machines). Gödel proved that ß has the following
properties:

ß(c, 0) = number of elements of the list
ß(c, i) = ith element of the list, if i > 0

Now, given a formula like ∀x∃yA(x, y), which has ten symbols, if a different natural number is assigned
to each symbol, one gets a list of ten natural numbers and, thus, the Gödel number of the list.

141

L. M. Laita, E. Roanes-Lozano and L. de Ledesma Otamendi

As a proof is on its side a list of formulae and a Gödel number corresponds to each of these formulae,
we again have a list of natural numbers assigned to the proof and, thus, a Gödel number can be assigned to
the whole proof. As a matter of course, theorems, which are the last formula of a proof, have their Gödel
number too.

An illustration of the Gödel number of a theorem, which appears in the interesting book of Douglas
Hofstadter, “Gödel, Escher, Bach” [21], is the number that corresponds to the logical formula that translates
the theorem: “The number of prime numbers is infinite”:

8445329844508787863070005766619463864455067111 .

An alternative to the use of the function ß is the following [43]: to each symbol, a certain natural number
is assigned. This was advanced above, but without stating what number corresponded to each symbol. For
instance:

G(() = 3
G()) = 5
G(,) = 7
G(¬) = 9

G(→) = 11
G(xn) = 5 + 8n, for n = 1, 2, 3, . . .
G(an) = 7 + 8n, for n = 1, 2 ,3, . . .
G(fm

n) = 9 + 8 · (2m · 3n), for n = 1, 2,3, . . .
G(Pm

n) = 11 + 8 · (2m · 3n) for n = 1, 2, 3, . . .

where xn are variables, an are constants, fm
n is a function symbol and Pm

n is a predicate symbol, for
m,n ≥ 1.

The Gödel number of an expression as P 3
2 (a2, x4) is

211+8·(23·33) · 33 · 57+8·2 · 77 · 115+8·4 · 135

Note that it is a product of powers of ordered prime numbers, and each of these powers is the Gödel basic
number assigned to the corresponding symbol. This is an arithmetization of logic, of arithmetic and of
consistent extensions of arithmetic.

The meaning of the predicates “For(x)” and “ Pr(y, x)” have been described in 2.1.1: a formula, formed
with these two predicates: ∃x(For(x) ∧ ∀y¬Pr(y, x)) will be used in Gödel’s second incompleteness
theorem. It means that there exists a Gödel number x of a formula such for all y, Pr(y, x) the predicatė “y
is the Gödel number of a proof of the formula the Gödel number of which is x”, is false. Intuitively, “there
is a formula that cannot be proved”. As explained below, a broad definition of “inconsistent theory” is that
all formulae of the language of the theory have a proof in the theory, which would mean that contradictory
formulae could be also proved, meaning inconsistency.

Thus, that “there is a formula that cannot be proved”, means consistency.
Not only For and Pr can be defined in recursion theory, but also a great variety of assertions can be

defined too. An example is “to substitute” (function Sub(a, b, c)), which means: “substitute in a formula
which Gödel number is a, the variable which Gödel number is b by the term which Gödel number is c. In
Cutland’s book [13], even program commands are assigned Gödel numbers.

3.2 The incompleteness theorems
The ideas described above, together with Gödel’s work on recursiveness and other extra-scientific conside-
rations, led him to the intuition of his two incompleteness theorems. As seen above, Church also worked on
recursion theory and on incompleteness, but, Church and Gödel knowledge of each other’s work probably
took place when Gödel went to Princeton for the first time. Any way, we shall assert the three incomplete-
ness theorems in this order: Church’s version first, and the two Gödel’s versions afterwards.

142

What Machines Can and Cannot Do

These theorems produced both a deep change about the idea of capability of formalization of mathema-
tics in the way Russell and Whitehead guessed, but also had much to do in the problem this paper deals with:
what machines (and, consequently what both mathematicians’ formalisms and the mechanical behaviors of
our brains) can or cannot do.

The completeness theorem has a second version, due to Leon Henkin [62], under whose supervision the
first author of this paper worked during an academic year. This version says: a theory is consistent if and
only if it has a model.

Let us explain Henkin’s version.
Informally, a model of a theory is a universe where the axioms of the theory “have sense” (more for-

mally, “are valid formulae”).
For instance, Euclid proposed, as one of the axioms of Geometry, that through a point external to a

straight line, only one parallel to the given line can be drawn. Our three dimensional world is a model for
Euclidean geometry because this axiom, as well as the others he proposed, have sense in this world.

The theorems in any theory follow from the axioms by application of some explicit inferential method.
The theorems also have sense in the same models where the axioms have sense.

Axioms aren’t, as students many times told, truths no subject to discussion, but, rather, assertions which
gather in a few and condensed statements, prior knowledge. From those assertions, knew knowledge can
be extracted (theorems).

Coming back to Euclid’s example, he probably was an excellent teacher who organized the dispersed
knowledge in Geometry (the tradition says that on Plato’s Academy doors, there was a statement saying
“none ignorant of geometry can cross this door”) in axioms and results rationally proved from the axioms
and the previously proven results.

The problem with axioms is that when new visions of the world question them, they have to be revised
or even abandoned. Newton “inertia principle” (an axiom) suffered this process of being questioned when
relativity theory changed the idea of space as being curved. In this situation, neither Newton’s nor Euclid’s
axioms continued being the only models of the world.

In mathematics there aren’t changes in paradigm in regards to theories (sets of axioms), but based on
our next argument it seems to us that there are paradigm changes in methodology, being probably the most
important one, or seems to us to be, the one that is taking place at the present time because the interaction
of computers and mathematics.

The appearance of a recent methodology, not following conventional mathematical proof methodolo-
gies, of solving an old problem, “Kepler’s problem” (he guessed a solution by 1611, but he couldn’t find a
proof) may suggest that changes of paradigm (this concept is the core of Kuhn’s ideas on scientific revolu-
tions [25]) in mathematics is now or will be soon occur; our account is taken from Keith Devlin’s description
in [16].

The problem asks what is the more efficient way to pack equal-sized spheres together in a large crate.
Kepler suggested that the more efficient way was to pack them as greengrocers do and have been doing
when packing oranges by centuries, which is that each sphere (orange) in each higher layer sit in the hollow
made by the four spheres beneath it.

As Devlin says, the general problem isn’t formulated in terms of the number of spheres that can be
packed in the crate, but in terms of the density of the packing, which is the total number of spheres divided
by the volume of the crate they are contained in. Let us insist that we are referring to large crates.

Gauss almost approached the solution proving that the mentioned “orange” piled arrangement was the
most efficient among all “lattice packings”, but for reasons appearing in Devlin’s account, this was not the
solution to the problem. The real solution came when the Hungarian mathematician Laszlo Toth managed
to reduce the problem to a huge calculation in 1953. Using this idea, Hales and Ferguson announced in
1996 that they had found the solution. But the solution required 250 text pages and 3 gigabytes of computer
stored data and programs. Hale posted the solution in the Internet, something that allowed that as many
mathematicians as would be willing so, could check the proof.

Popper’s original idea is that a theory in science can be “proved” (better, “accepted”), if it has the
property of being “falsable” [50]. Being “falsable” does not mean that it can be shown to be false but,

143

L. M. Laita, E. Roanes-Lozano and L. de Ledesma Otamendi

rather, that it is built in such a form that any scientist willing so, is able to try to find counter-examples
to the theory by using sound scientific experimentation or by finding logical inconsistencies in some of
the models of the theory (theories as the happiness of the Greek gods in the Olympus cannot be falsable,
“falsable” has a different meaning than “false”). If someone finds a strong counter-example to the theory,
the theory should be changed or abandoned (not always happens so, as Kuhn opinions on how the changes
of paradigms actually take place).

Hale’s proof acceptance of the solution of the Kepler’s problem follows a very similar path as Poper’s
proof acceptance of falsable theories. Being posted in the Internet, as it is, there are in principle, thousands
of counter-examples searchers for Hales’ proof of the solution of the Kepler’s problem. No counter-example
has been found.

A similar process followed the resolution of the problem of the four colors, but by that time both the
theory and the huge calculations needed for its solving could not be posted in the Internet because it did not
exist by that time.

If proofs of the type of Kepler’s problem and the four colors problem are accepted, as they belong to
a truly non conventional mathematical proving and solving methodology, maybe a change of paradigm is
taking place in mathematics, as has happened in astronomy and physics.

Coming back to the completeness theorem, it is very important to emphasize that Henkin’s proof of
the theorem uses, at a certain point, Zorn’s lemma, so that the proof is existential, not constructive. No
algorithm or machine can carry out the complete proof.

There are many proofs in mathematics, mostly based on the Axiom of Choice, that aren’t constructive.
These type of proofs are accepted because their usefulness (otherwise a good deal of mathematical theories
or ideas had to be rejected), but the tendency of mathematicians is, usually, that once an existential proof
has been found, a constructive proof is searched for.

When discussing the second incompleteness theorem, it shall be seen that this play of existential and
constructive proofs leads to a seemingly paradoxical situation.

A digression is: if existential proofs are considered as “calculi”, Church-Turing thesis suggests that now
or some time in the future, they shall become computations (but recall that there aren’t computations for
many foundation problems).

Regarding the incompleteness theorems, recall that they are three. The first to be stated, although is
posterior to the two others is due to Church, and the second and third, to Gödel. The three theorems shall be
stated formally but shall be followed by informal translations because, otherwise, some complex procedures
from recursive functions theory would be needed to be explained in detail.

By making a not much orthodox extrapolation, it shall be also suggested that these theorems can say
something about the limitations of artificial intelligence.

The first incompleteness theorem says: if T is a consistent extension of arithmetic, then T is undecidable.
That a theory is decidable means that the predicate ThmT (x), where x runs over the Gödel numbers of

the theorems of T (in other words, the predicate “to be a theorem” of T) is recursive or computable. Thus,
a simplified statement of the first incompleteness theorem is the following one:

Any theory that both contains arithmetic and is consistent, doesn’t have any effective gene-
ral technique for deciding, given a formula stated in its language, whether such a formula is or
isn’t a theorem of the theory.

In terms of artificial intelligence one could say:

Artificial intelligence does not have machines or algorithms to determine if, given a state-
ment expressed in its language, such an assertion is or isn’t a consequence of its own presup-
positions.

The second incompleteness theorem is: if a theory T is a recursively axiomatized extension of arithmetic,
then it isn’t complete. To be axiomatized, for theories, means that the predicate AxT (x), where x runs over
the Gödel numbers of the axioms of T (in other words, the predicate “to be an axiom” of T) is computable

144

What Machines Can and Cannot Do

(or recursive). To be complete, for a theory, T , means that for each one of all its closed formulae, it can be
stated that either the formula or its negation is a theorem in T .

Thus, a simplified statement of the second incompleteness theorem is the following one.

Any theory that both contains arithmetic and has an effective procedure to recognize its
axioms, contains at least a formula such that neither that formula nor its negation can be proved
inside the theory.

In terms of artificial intelligence one could say:

If artificial intelligence has a machine or an algorithm to recognize its own presuppositions,
there is at least one expression of its language such that neither that expression nor its negation
can be proved.

A consequence of the two first incompleteness theorems is that not all mathematical theories are de-
cidable and/or axiomatized under the meaning these predicates have in the theory of computability (or
recursion theory). If Church-Turing thesis is admitted, this means that not all theories can recognize its
axioms by using algorithms and that not for all consistent theories can an algorithm be defined for deciding
in general, that given a formula written in its own language, such a formula is or isn’t a theorem in the
theory.

The third incompleteness theorem is: if arithmetic is consistent, then, inside it, there isn’t any algorithm
that can prove the formula

∃x(For(x) ∧ ∀y¬Proof(y, x))

(this formula means: “there exists a formula that has not a proof”). This formal statement can be informally
stated as follows.

If a theory which is an extension of arithmetic is consistent, there is no algorithm or machine
that can prove that it is consistent.

But recall that the completeness theorem in Henkin’s version says that a theory is consistent if and only
if it has a model. As arithmetic has models, is, thus, consistent. Does this mean that “if a theory containing
arithmetic is consistent, then it is inconsistent?”.

This looks like the famous paradoxes in logic, specially the liar’s paradox. If someone says “What I
am saying is a lie”, should it be interpreted as that when he/she is telling the truth he/she is lying and when
he/she is lying he/she is telling the truth? The liar paradox, has been misused many times by people in
important arguments (in preprints published previously to his recent book [59], Pedro Schwartz already
comments the misuse of this paradox in politics). The paradox mixes a language and a meta-language.
“What I am saying” belongs to a language: it is by itself a statement or a series of statements in a same
level; to assert that “it is a lie”, belongs to a meta-language that makes assertions about the statements in
the first language.

Similarly, some interpretations of Gödel’s second incompleteness theorem are circular because those
interpretations identify the language in which “to be consistent” means “proved to be consistent by an
existential and non-constructive proof” with the language in which in which “to be consistent” means “to
be constructively proved by an algorithm or a machine to be consistent”. Maybe because the existence
of such a paradox, Hofstadter checked and compared in his book “Gödel, Escher, Bach” [21] circulari-
ties in the works of these three “artists”: it is difficult to explain circularities in Escher’s painting and in
Bach’s compositions, but they are due, probably, that they were using, respectively, a “Meta-painting” and
a “Meta-music” which produce as result, both puzzling and beautiful pieces of arts, as pieces of art are the
incompleteness theorems.

In terms of artificial intelligence, one could say regarding the third incompleteness theorem: If artificial
intelligence (that must contain arithmetic) is consistent, it hasn’t algorithms or machines that prove its
consistency.

145

L. M. Laita, E. Roanes-Lozano and L. de Ledesma Otamendi

Has this something to say in regards to the comparison of the intelligence of humans and the intelligence
of machines?

On one hand, the first type of consistency that is referred to in the theorem, can be proved by human
intelligence by using accepted (under suspicion) mathematical beliefs but not by machines. But humans
cannot design a machine that proves consistency of the most basic theories. Is, thus, human intelligence
more powerful than artificial intelligence? A joke could be that machines are better (we do not say “more
intelligent”) than us because they prove that they cannot prove their consistency, while us never would
accept that we are inconsistent.

Kant said that the axioms of Euclidean geometry are given a priori to human intuition. But new geo-
metries appeared that later modeled new physics in which the axiom that says that by an external point to
a straight line only one parallel line can be drawn does not hold. Well, Riemann proved that if Euclidean
geometry is consistent, his was consistent either. Thus, two human constructions that say contrary things
can both be consistent. We suppose that a machine that would contradict itself, would stop functioning.

According to Arbib [5], Ernest Nagel and James R. Newman assert that Gödel theorem limits in an
unquestionable way the mathematical power of machines. Others, like Hilary Putnam, proposed a contrary
opinion [5].

4 Some of what machines can do

4.1 Expert systems: machines can make logical deductions and know-
ledge extraction

Expert systems or knowledge based systems (to be both hereinafter denoted as “ES”) are an interesting
mixture of human and machine interaction. Some call then “expert” because the knowledge they contain
has been provided by human experts, others ask the system to be able to learn by itself.

Our work on ES has been devoted to the first type of ES, which can be considered as systems based
on automated inference. The experts have provided all necessary information. Our approach is a part of
symbolic computation [31].

We believe that, so far, expert systems cannot substitute specialists. They can be useful, for instance, in
the case of medical diagnosis, for non-specialists like family doctors, that may match their own diagnoses
with the expert system’s diagnoses, before deciding whether to send the patient to a specialist or not. In
some cases, where the information contained in the expert system is remarkably complex and large, the ES
becomes useful even to specialists.

Before describing what ES are, let us say that a crucial prior step to extracting consequences from the
ES is to verify it. Verification consists of several steps, the most important of which is to check the ES is
consistent [29].

The ES to be here described are called “Rule Based Expert Systems” which consist of three components.

• A “knowledge base” (denoted as KB), is composed by two different subsets of formulae. Let us call
“literal” both any propositional variable and its negation.

The first subset (hereinafter denoted as R), orderly collects and symbolically represents as logical
formulae the available information obtained from experts’ consultation, but, also from other sources,
as published studies, both in books and journals and in the the Internet. These logical formulae, called
“production rules”, translate statements as “IF such and such factors, symptoms, etc. occur or do not
occur, THEN such action or evaluation has to be performed”.

The second subset (hereinafter denoted as F , is called the set of all “potential facts”. It coincides
wit the union of the set of all literals in the IF side of the production rules which do not appear in
any THEN side of these rules and the set of their contrary literals (for example, the literals p and ¬p
are contrary literals). The whole set F is not used in each computation but, rather, what are used are

146

What Machines Can and Cannot Do

subsets of F , generically denoted hereinafter by the letter A, which are maximal consistent subsets
of F . For instance, in ES dealing with medical diagnoses, a subset A is assigned to each patient.

• An “inference engine” (hereinafter denoted as “IE”) which both verifies the consistency of the the KB
and extracts consequences automatically from the mentioned symbolic formulation of information.

• An interactive “graphic user’s interface” (hereinafter denoted as “GUI”) for users not necessarily
being familiar with the logical and mathematical details of the system construction.

The implementation, in our case in the computer algebra language CoCoA (“a language for doing Com-
putations in Commutative Algebra” [69, 11, 49]), leads to an automated method for knowledge extraction
(for finding diagnoses in the case of medical ES). The method is based on previous works by Kapur and
Narendran [24] and Hsiang’s [22] (Boolean logic) and Alonso, Briales, Riscos and Chazarain [4, 12] (mul-
tivalued modal logic). An algebraic approach and its application to ES appear in [28, 51]. Gröbner bases
(GB) of a polynomial ideal and normal forms of polynomials modulo an ideal (both based on Buchberger’s
algorithm) [9, 10] are used in the implementation. An introduction to GB and computer algebra can be
found in [1, 66].

Figure 1. Intuitive graphic description of the theorem.

Let us describe the theorem intuitively using Figure 1. The KB of the ES is represented by the rectangle
at the left side. It is composed by production rules and a subset (in the case of an ES for medical diagnoses,
this subset characterizes a patient by his/her symptoms) of the set “F ” of all factors and symptoms that
characterize an illness.

The rectangle is enclosed into a set that represent the infinite set of all well formed formulae that can be
written by using, in addition to logical connectives, the propositional variables contained in the formulae in
the rectangle.

The question is: does a diagnosis (or treatment) “α” follow from the information (written as logical
formulae) contained in the KB? Again, the KB is composed by production rules and facts characterizing
a patient.

The process, that is complex, but that can be performed by any user not necessarily knowing mathema-
tics or logic, consists of the following steps:

147

L. M. Laita, E. Roanes-Lozano and L. de Ledesma Otamendi

1. Translate all gathered information about the illness.

2. Translate such information into logical formulae (production rules, and factors that characterize a
patient).

3. Translate the negations of these formulae into polynomials. This is done automatically by the program
by providing the polynomial translation of the logic connectives (their number depends on the number
of truth values of the logic considered). These polynomials are the members of the rectangle in the
right side of Figure 1. They (and some other auxiliary polynomials) “generate” an ideal (the grey part
of Figure 1) in a polynomial quotient ring with coefficients in a finite field (2Z in case of bi-valued
logic, 3Z in case of of three-valued logic, etc.).

4. The theorem says: α follows from the information contained in the KB (the rectangle at the left side
of Figure 1) of the ES if and only if the polynomial that translates the (negation of) α belongs to the
mentioned ideal.

5. But, how to know that a polynomial belongs to an ideal? This is the famous “ideal membership
problem”, a question that could be solved if obtaining canonical bases of a polynomial ideal was
possible. But this topic was solved both by Heisuke Hironaka with his “standard bases” (Hironaka
visited Madrid Royal Academy of Sciences recently) and Bruno Buchberger with his “Gröbner bases”
in the late sixties. The latter have the advantage that an algorithm for their computation (Buchberger’s
algorithm) was provided [9]. This algorithm is very useful in many parts of computer algebra and
geometry, but, also, in automatic proving in many other fields. The algorithm is pretty complex and
requires knowledge of a non trivial background, but the only thing a user not necessarily familiar with
mathematics has to do to check an ideal membership is just to type, e.g. in CoCoA, an instruction like
NF(NEG(α),ideal). Then the answer is “yes” if and only if the output of the computer algebra
system is “0”.

6. Curiously, but very important, verification (checking for the existence of inconsistencies in the ES),
can also be calculated using GB just typing an instruction as GBasis(ideal): the system is in-
consistent if and only if the output is “1”. The reason is that if “1” belongs to the ideal, then the
ideal is the whole ring and, consequently any formula (enclosed in the infinite set at the left side of
Figure 1) written in the language the ES is expressed, follows from the ES, which means, as referred
to above, that the ES is inconsistent. We have constructed a simple program that, in case of incon-
sistency, incrementally detects which rule produces the inconsistency. We have successfully applied
this verification method to the detection of inconsistencies in medical “appropriateness criteria” [30].
For instance in the case of coronary diseases, we were told that he researchers of RAND Corporation,
the leading group in studying appropriateness criteria, were verifying systems manually. Ours is, as
far as we we know, the first method that detects inconsistencies automatically.

We have also applied Gröbner bases to other fields, as decision taking in railway interlockings [52, 53]
and in airport surface movement guide and control systems (SMGCS) [54]; automatic theorem proving and
discovery in geometry [55, 56, 57, 58], etc.

4.1.1 A note on George Boole

As a matter of interest, let us say a few words about the background of the theorem in this section. In
addition to Stone’s and Moisil’s XX century work on Boolean rings, we have found that George Boole,
in a time (first half part of the XIX century) where ideal machines didn’t exist yet (although Babbage had
developed a complex calculator), was a pioneer on modern symbolic computation, and a forerunner of
the theorem that links tautological consequence in logic with an ideal membership problem referred to in
Section 4.1 above.

Boole says in page 55 of The Mathematical Analysis of logic [7]: “The treatment of every form of
hypothetical Syllogism will consist in forming the equations of the premises, and eliminating the symbol or

148

What Machines Can and Cannot Do

symbols which are found in more than one of them. The result will express the conclusion.”. Let us see an
example (page 56, 5th example):

If X is true, Y is true: x · (1− y) = 0,
If W is true, Z is true: w · (1− z) = 0,

Either X is true or W is true, x + w − x · w = 1,

From these equations, eliminating w we have: y − y · z = 1, which expresses the conclusion, in Boole’s
words, “Either Y is true, or Z is true, the members being non-exclusive”.

Boole calls “elimination” to the following process: given

ay + b = 0
a′y + b′ = 0,

multiply the second equation by a and the first by a′, and perform the substraction, obtaining

ab′ − a′b = 0.

Note that the polynomial translation of the negation (Boole negates an expression by making it equal to
0) of the conclusion results to be an algebraic combination of the polynomial translation of the negation of
the premises, a fact which shows Boole as a forerunner of the ideas underlying the theorem commented in
Section 4.1.

4.2 Herbert Simon

4.2.1 Machines can discover

Herbert A. Simon (under whose supervision the first and third authors of this paper jointly worked for a
time), together with Al Newell and Cliff Shaw, begun, some 50 years ago, “plunging into the exhilarating
waters of Artificial Intelligence” [63]. They called this new science “Complex Information Processing”.
The name changed to “Artificial Intelligence” [42], a term introduced by John McCarthy by the same time.
We shall focus our attention only on Herbert Simon, who was Professor at Carnegie-Mellon University
in both the Departments of Computer Science and Psychology. He was awarded the Nobel Prize in Eco-
nomics, but his most original work, for which he was most appreciated, was Artificial Intelligence in the
questions of: can machines make scientific discovery?, can they make analogies, have intuitions, insight
and inspiration?. He was actually looking for a scientific language that could be the language of theories
of human thought, like differential equations language was the language of (parts of) physics. He thought
that such a language was the subset of Computer Languages with ability to handle symbols of any kind. He
and his team published works in his and related topics, [26, 33, 38, 39, 40, 60], a work in which we have
collaborated [35, 36, 20] and [32].

In regards to scientific discovery, Simon and his collaborators, presented, among many others, a program
called BACON, that discovers experimental laws in physics. Let us describe it in a simplified version.

Let us see how Bacon “discovers” Kepler’s third law and how the same program, applied to other
astronomy problems and to other fields as physics, happens to discover, by a kind of analogy, laws in those
fields.

BACON consists first of a table that introduces objects (planets) and magnitudes (in this case, dis-
tances, “D”, from the planets to the Sun and the periods “P ” or time that the planets take in a complete
round around the Sun). BACON also contains a set of production rules that translate strategies for finding
regularities involving D and P . The finding of regularities is the aim of most scientific researches. Auxi-
liary production rules as those defining mathematical operations must also be introduced, among them two
simple operations: “ratio” and “product”).

Among the production rules in BACON, we only refer to four, named “INCREASING”, “DECREA-
SING” “LINEAR” and “CONSTANT”, because they are the most intuitive ones.

149

L. M. Laita, E. Roanes-Lozano and L. de Ledesma Otamendi

Johannes Kepler [67] was born in 1571. His master, Maestlin, used to teach both geocentric and he-
liocentric systems, although Kepler was a convinced heliocentrist. He worked during long periods of time
with Tycho Brahe, a great observer of the heavens who had collected thousands of valuable data. It seems
that Kepler used Brahe’s information to assert his first two laws, but for the third one he used his own obser-
vations and these were only twelve! The friendship, as well as the cooperation between Brahe and Kepler
deteriorated. Brahe died poisoned: by Kepler? Kepler died in Ratisbone in 1630, after having published an
immense treatise based on the heliocentric theory, with a great amount of data about the planetary system.

Kepler’s third law asserts D3

P 2 = constant. “D” represents the distance from the planet to the Sun and
“P ” represents the time the planet takes to do one round to the Sun.

The four production rules above mentioned are the following (they have been taken from [34], pages 76
onwards):

• INCREASING

IF you want to find laws,

And you have recorded a set of values for the term X (example: Distance),

And you have recorded a set of values for the term Y (example: Period),

And the absolute values of X increases as the absolute values of Y increases and these values are not
linearly related

THEN consider the ratio of X and Y .

• DECREASING

IF you want to find laws,

And you have recorded a set of values for the term X (example: Distance),

And you have recorded a set of values for the term Y (example: Period),

And the absolute values of X increase as the absolute values of Y decrease and these values are not
linearly related,

THEN consider the product of X and Y .

• LINEAR

IF you want to find laws,

And you have recorded a set of values for the term X (example: distance),

And you have recorded a set of values for the term Y (example: period),

And the values of X and Y are linearly related with slope M and intercept B,

THEN infer that a linear relation exists between X and Y with slope M and intercept B.

• CONSTANT

IF you want to find laws,

And the dependent term D (final relation between X and Y) has value V in all data clusters,

THEN infer that D has always value V .

150

What Machines Can and Cannot Do

Planet Distance Period Term 1 Term 2 Term 3
(D) (P) (D/P) (D2/P) (D3/P 2)

A 1,0 1,0 1,0 1,0 1,0
B 4,0 8,0 0,5 2,0 1,0
C 9,0 27,0 0,333 3,0 1,0

Table 1. Objects, magnitudes and terms for three imaginary planets.

In Table 1, three imaginary planets A, B and C are considered.
Distance “D” to the Sun of each one of these planets appears in the second column, observe that “D”

increases.
Period “P ” of each one of these planets appears in the third column. Observe that “D” also increases.
As D and P increase together, production rule “INCREASING” says “perform ratio” D

P , which is
Term 1 of the fourth column.

As D increases and D
P decreases, production rule “DECREASING” says “perform product” D2

P , which
is Term 2 of the fifth column.

As D
P decreases and D2

P increases, production rule “DECREASING” says “perform product” D3

P 2 , which
is Term 3 of the sixth column.

As D3

P 2 is constant for A, B and C, production rule “CONSTANT” says “make D3

P 2 equal to constant”.
But D3

P 2 = constant is, precisely, Kepler’s third law.

4.3 Machines make analogies and discover regularities

Production rules INCREASING, DECREASING and CONSTANT, as well as all others in the BACON
program are high level statements that are expressed as symbolic production rules in some program and are
so introduced into the computer. The program follows a process of discovery by applying the appropriate
instruction in each step. Both the fact that Kepler only based his third law on twelve observations and the
simplicity of the program might suggest that he, in fact, might have followed the instructions of BACON
without having them written down as a “program”.

But a most interesting fact is that, once BACON was written down and run on Kepler’s third law, Simon,
Langley and the other designers of BACON, realized the following.

1. By introducing distance D and time T , some laws of the uniformly accelerated movement, as Earth
gravitational acceleration, 9.8 = D

T 2 , is obtained.

2. By introducing the distance D of a satellite of Jupiter and its period P , Borelli’s law was found.

3. By introducing the length L of an electric wire, the resistance r and the intensity I and potential
difference v of a current, by using the production rule “LINEAR”, an Ohm’s-like law was obtained:
IL = −rI + v.

4. By introducing the volume V and pressure P of a gas, Boyle’s law P · V = constant was obtained.

5. But, more importantly, qualitative laws, i.e., new perspectives, were discovered: a step further than
merely quantitative laws.

Note that in Table 1 the data were adjusted knowing Kepler’s third law. If we worked with real data, the
last column would be formed by values only close to 1.0. Nevertheless, BACON system is also able to find
the right rules in such cases. This is the case above for Borelli’s and Boyles’ laws.

This made Simon and his collaborators think that machines may perform activities such as pattern
discovery (and learning by analogy), processes which are very human.

151

L. M. Laita, E. Roanes-Lozano and L. de Ledesma Otamendi

Nevertheless, these patterns and analogies discovered by machines weren’t possible if a human wouldn’t
have introduced the right data. The question is that we, humans, as well as some animals, learn patterns and
analogy maybe by an innate process but necessarily improved by learning from others (i.e., programmed by
others).

The following are works on machine systems that simulate human behavior:

4.4 Machines have intuition, inspiration, insight

In the already mentioned article, “Explaining the Ineffable” [63], Simon presented a curious problem named
“the mutilated checkboard”. Recent works, with substantial answers to it, have been recently published [18,
19, 20].

The aim of these articles is to show the interaction between Artificial Intelligence and Cognitive Sci-
ence Theory. These type of studies has resulted in new conceptions about the possibilities of a computer
simulation of human intelligent attitudes. Furthermore, these simulations (the already existing and the ones
to be developed in the future) are pieces of a theory of Cognitive Psychology.

Simon was involved on showing that there are computer programs that, in many senses, may reflect
human behaviour such as intuition, inspiration and insight [63]. Let us focus our attention only on insight.

To consider and define insight in such a way that it may be said that machines behave in a insightful
way, Simon and the mentioned authors intended both to give an acceptable characterization of insight and
some clues about how insight is attained. This is better understood by considering the experiment of the
mutilated checkboard problem [63].

A group of persons, having no prior knowledge of the problem, is provided with both a chess table
(8 × 8 = 64 squares), two of whose diagonally opposite corners have been removed and dominoes.
The experiment consists of asking the people in the group to totally cover the mutilated checkboard with
dominoes, with the condition that each of the dominoes can only cover two adjacent squares of the board.
The experiment is supervised by a trained interviewer.

Through experiments, it was seen that the resolution of the problem started being irregular, by tries at
random to cover the checkboard, and, many times, depending on the hints given by the interviewer.

After such a blind try, some people abandoned and many of them needed a rest. But in most cases, Simon
and Kaplan checked that some people had suddenly found some regularity, suggesting that the solution of
the problem was near.

The guessed solution to the problem is that it is not possible to cover the mutilated checkboard with
dominoes because each of these covers just two squares, one black and the other white, but in the mutilated
checkboard, the number of squares black and white is not the same.

Thus, the experiment ends when one or more persons of the group find the regularity (it is actually an
invariant) provided by the properties of the dominoes and the properties of the mutilated checkboard. This
finding, usually sudden, is one of the key elements in the insight definition.

The nice fact is that this process of “having insight” can be programed, as shown by Hernando, de
Ledesma and Laita [19]. This suggests that machines (computer programs) may emulate a human power as
insight.

As already said, we have also constructed an “expert system “BOOLE 2””, that in some ways simulates
the intuition, inspiration and insight that George Boole had when developing his algebraic logic [32].

4.4.1 A brief addendum

As mentioned in page 136, today’s computation both molecular based on ADN and cellular with mem-
branes [47, 48], open new approaches to the idea of computation and of complexity of problems.

Something different might occur with quantum computation, which uses “qubits” instead of today’s
computers “bits”. Some elementary quantum machines, with a few qubits have already been constructed. If
powerful quantum machines are constructed in the future, a 250 qubits machine could make 1075 simulta-
neous computations, something that might change our idea of what machines can do. Quantum mechanics

152

What Machines Can and Cannot Do

asserts the crucial influence of the observer on the experiments: would this mean that the user cannot in-
teract with the computer while the program is running? Probably a new logic of quantum computation is
needed, a logic that would embody relativists concepts. A quantum Church-Turing thesis would also be
necessary.

5 Last comment: are machines more intelligent than humans?

The first conclusion of this study about what machines can and cannot do, is that one cannot answer this
question in a clear and definite way [27].

Machines have more calculating power, they play chess much better than most humans and, above all,
they emulate or simulate what are considered typical human abilities, as to make scientific discoveries,
simulate insight and so on.

But, in all cases, machines do all of this because they have been programmed by a human, similarly,
somewhat, as senior researchers teach doctoral students. Moreover, the “discoveries” and “insight” of
machines, as those mentioned in this paper, are very limited types of discoveries and insight. The reader is
recommended to read the classic [44].

Some human characters seem to be difficult to simulate by machines, for instance to have or feel hope
for desirable things.

We all have hopes and immediately design a more or less informal “algorithm” to get these hopes.
When talking of “hopes” we are referring, not only to just every day hopes, but deep hopes as, for instance,
those that scientists have. Let us refer briefly, as an illustration, to the hopes the great physicist Stephen
Hawking [17] has about finding a unified theory that would avoid the contradictions (or rather, the incom-
patibilities) between the approaches to an explanation of the world, cosmic and atomic, of relativistic and
quantum mechanics. He and others scientist have already developed calculi, as the theories of chords and
of p-branes, approaching a unified theory of gravitation.

By establishing a (probably week) parallelism with what has been said in this paper, from the algorithm
designed to reach the goal of some hope and by the Church-Turing Thesis, we would get a computation, that
is, a machine that would give an effective and finite procedure to achieve the goal of a particular hope. But
the experience shows that both our small hopes, as well as the great ones, rarely end being a “computation”,
both because the reality breaks the process of making real our little hopes or because new paradigms related
with the conception of the world make unrealistic the existence of machines that efficiently and forever
would show us how to accomplish the great hopes. Could a machine be designed that would emulates the
process of having hopes, trying to obtain the objects of these hopes and end with an output that says: “hope
partially or not accomplished, search for a new one”?; surely not at the present time.

But we do not know what, in this regard, will happen in future, first because of the particular characte-
ristics of quantum computation which embodies a great deal of uncertainty and dependence from the human
processing the computation and, second (and more importantly), because new strategic and economic rea-
sons rather than absolute ones, may change our present view of machines limitations.

In addition to hopes, there are of course plenty of tasks performed by humans, so far unable to be
performed by machines, like the mathematization of a problem expressed in natural language. But recall, for
instance, that some mathematical problems, as Kepler’s experiment mentioned above, need man-machine
cooperation and that, in many instances, user interaction with the machine (recall what was said regarding
verification and validation of algorithms), is actually viewed as more useful, thus, embodying a change in
the mathematical methodology paradigm.

Anyway, the most realistic answers to the question: who are more intelligent, machines or humans?, are
the following two ones. First the one given by Simon: when facing a task, who would get it better? and,
second, that this question is today (we do not know for how much time ahead), senseless: instead of asking,
at the present time, who is more intelligent, try guessing: how the pair man-machine will evolve?. Humans
have always evolved by using artifacts, but today have an admirable artifact: the computer. The evolution
man-machine is no more as predictable as it was with the artifacts of the past.

153

L. M. Laita, E. Roanes-Lozano and L. de Ledesma Otamendi

Acknowledgement. We acknowledge the comments of professors José Antonio Alonso and Mario
Pérez-Jiménez (Universidad de Sevilla). Their comments have helped us to improve the paper.

We would also like to thank the support given by Professor Manuel López Pellicer: he both invited us
to publish the article in RACSAM and patiently accepted the changes we made in successive versions of
the paper.

This work was partially supported by the research projects MTM2004–03175 (Ministerio de Edu-
cación y Ciencia, Spain) and UCM2005–910563 (Comunidad de Madrid – Universidad Complutense de
Madrid, research group ACEIA).

References
[1] Adams, W. W. and Loustaunau, P., (1994). An Introduction to Gröbner Bases, Graduate Studies in Mathematics,

American Mathematical Society, Providence, RI.

[2] Adleman, L., (1994). Computation of Solutions to Combinatorial problems, Science, 268, 1021–1024.

[3] Adleman, L., (1996). On Constructing a Molecular Computer, in DNA based Computers, Lipton R. J. and Baum,
E. B. eds., American Mathematical Society,

[4] Alonso, J. A., Briales, E. and Riscos, A., (1990). Preuve Automatique dans le Calcul Propositionnel et des
Logiques Trivalentes, in Proceedings of the Congress on Computational Geometry and Topology and Computa-
tion (Universidad de Sevilla, Seville, Spain), 15–24.

[5] Arbib, M., (1976). Cerebros, Máquinas y Matemáticas, Alianza editorial, Madrid.

[6] Bernstein, E. and Vazirani, U., (1997). Quantum Complexity Theory, SIAM J. of Computing, 26, 5 1411–1473.

[7] Boole, G., (1847). The Mathematical Analysis of Logic, Being an Essay towards a Calculus of Deductive Rea-
soning, Cambridge and London. Reprinted in George Boole, Studies in logic and probability, R. Rhees ed., Watts
and Co., London, 1952, 49–124.

[8] Boolos, G. S. and Jeffrey, R. C., (1982). Computability and Logic, Cambridge University Press, Cambridge,

[9] Buchberger, B., (1965). An Algorithm for Finding a Basis for the Residue Class Ring of a Zero-Dimensional
Polynomial Ideal, Ph. D. Thesis (in German), Math. Institute - University of Innsbruck, Insbruck, Austria,

[10] Buchberger, B., (1965). Applications of Gröbner Bases in Non-Linear Computational Geometry, in Mathematical
Aspects of Scientific Software, J. R. Rice ed., Springer-Verlag, IMA Vol. 14, New York, NY, 60–88.

[11] Capani, A. and Niesi, G., (1996). CoCoA User’s Manual, v. 3.0b., Dept. of Mathematics - University of Genova,
Genova, Italy.

[12] Chazarain, J., Riscos, A., Alonso, J. A. and Briales, E., (1991). Multivalued Logic and Gröbner Bases with
Applications to Modal Logic, J. of Symbolic Computation, 11, 181–194.

[13] Cutland, N. J., (1980). Computability: an Introduction to Recursive Function Theory, Cambridge University
Press, Cambridge.

[14] Dedekind, R., (1901). Essays on the Theory of Numbers, Dover Publications, 1963. Reprint of Open Court Pub.
Co.

[15] Deutsch, D., (1985). Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer, Pro-
ceedings of the Royal Society Ser. A, A400, 97–117.

[16] Devlin, K., (1998). Kepler’s Sphere Packing Problem Solved, in MAA Online (The Mathematical Association of
America). URL: http://www.maa.org/devlin 9 98.html

[17] Hawking, S., (2002). El mundo en una cáscara de nuez, Editorial Planeta, Colección Crı́tica, Barcelona.

154

What Machines Can and Cannot Do

[18] Hernando, A., de Ledesma, L. and Laita, L. M., (2005). El problema del tablero mutilado, una resolución a través
de perspicacia (insight), Bol. Soc. “Puig Adam” de Profesores de Matemáticas, 70, 72–79.

[19] Hernando, A., de Ledesma, L. and Laita, L. M., (2003). Towards a Theory of Insight, in Proceedings of the 12th
IASTED Conference on Applied Simulation and Modelling, Ed. Hamza, 181–186.

[20] Hernando A., de Ledesma, L., Laita, L. M., A System simulating representation Change Phenomena while Pro-
blem Solving, Mathematics and Computers in Simulation, (accepted for publication).

[21] Hofstadter, D. R., (1979). Gödel, Escher, Bach: an Eternal Golden Braid, Basic Books.

[22] Hsiang, J., (1985). Refutational Theorem Proving using Term-Rewriting Systems. Artificial Intelligence, 25, 255–
300.

[23] Jha, A. et al., (2003). La Informática inteligente, newspaper El Mundo, December 22nd , p. 28.

[24] Kapur, D. and Narendran, P. (1984). An Equational Approach to Theorem Proving in First–Order Predicate
Calculus. 84CRD296, General Electric Corporate Research and Development Report, Schenectady, NY, March
1984, rev December 1984. Also in: Proceedings of IJCAI-1985; 1446–1456

[25] Kuhn, T., (1970). The structure of Scientific Revolutions, Chicago University Press, –with a postscript. First
published in 1962.

[26] Kulkarni, D. and Simon, H. A., (1988). The Processes of Scientific Discovery, the Strategy of Experimentation,
Cognitive Science, 12, 139–175.

[27] Laita, L. M., (2006). Algunas consideraciones acerca de la pregunta; ¿llegarán a ser algún dı́a las máquinas
más inteligentes que los seres humanos?. Lección inaugural de curso 2006–07 de la Universidad San Pablo CEU
(Fundación de la Universidad San Pablo CEU, Madrid).

[28] Laita, L. M., Roanes-Lozano, E., de Ledesma, L. and Alonso, J. A., (1999). A Computer Algebra Approach to
Verification and Deduction in Many-Valued Knowledge Systems, Soft Computing, 3, 1, 7–19.

[29] Laita, L. M. and de Ledesma, L., (1997). Knowledge Based Systems Verification, in Encyclopedia of Computer
Science and Technology, A. Kent and J. G. Williams eds., Vol. 36, Marcel Dekker, New York, 253–280.

[30] Laita, L. M., Roanes-Lozano, E., Maojo, V., de Ledesma, L. and Laita, L., (2000). An Expert System for Ma-
naging Medical Appropriateness Criteria Based on Computer Algebra Techniques, Computers and Mathematics
with Applications, 51, 5, 473–481.

[31] Laita, L. M., Roanes-Lozano, E. and Alonso, J. A. (eds.), (2004). Symbolic Computation in Logic and Artificial
Intelligence (special issue). RACSAM, Revista de la Real Academia de Ciencias, Series “A” of Mathematics 98,
1–2.

[32] Laita, L. M., de Ledesma, L. and Roanes-Lozano, E., (2005). The genesis of Boole’s Logic; its History and a
Computer Exploration, Memorias de la Real Academia de Ciencias, Serie de Ciencias Exactas, Vol. XXXIII,
Madrid.

[33] Langley, P. W., Zytkow, J. M., Simon, H. A. and Bradshaw, G. L., (1986). The Search for Regularity: four Aspects
of Scientific Discovery, in Machine Learning: An artificial intelligence approach, Michalski, R. S., Carbonell, J.
G. and Mitchell, T. M. eds., Vol. 2, Morgan Kaufmann, San Mateo, CA, 425–469.

[34] Langley, P. W., Zytkow, J. M., Simon, H. A. and Bradshaw, G. L., (1987). Scientific Discovery, Computational
Explorations of the Creative Processes, MIT Press, Cambridge, MA.

[35] de Ledesma, L., Laita, L. M., Aurora Pérez, A. and Borrajo, D., (1993). Descubrimiento cientı́fico e inteligencia
artificial, in Segundo curso de conferencias sobre inteligencia artificial: teorı́a y práctica, organized by Darı́o
Maravall–Casesnoves, Real Academia de Ciencias (ed.), Madrid, 115–132.

155

L. M. Laita, E. Roanes-Lozano and L. de Ledesma Otamendi

[36] de Ledesma, L., Pérez, A., Borrajo, D. and Laita, L. M., (1995). Theory-driven historical discovery: Boole’s
abstract formalization of Logic, in: Working Notes of the AAAI Spring Symposium Series, Systematic Methods of
Scientific Discovery, Stanford, 60–65.

[37] de Ledesma, L., Pérez, A., Borrajo, D. and Laita, L. M., (1997). A Computational Approach to George Boole’s
Discovery of Mathematical Logic, Artificial Intelligence, 91, Simon, H. A., Valdés–Pérez, R. and Sleeman, D. H.
guest eds., 281–307.

[38] Lenat, D. B., (1977). Automated Theory Formation in Mathematics, in: Proceedings of the 5th IJCAI.

[39] Lenat, D. B., (1982). The Nature of Heuristics, Artificial Intelligence, 19, 189–249.

[40] Lenat, D. B., (1983). Eurisko: A Program that Learns new Heuristics and Domain Concepts, Artificial Intelli-
gence, 21, 61–98.

[41] Lipton, R. J., (1996). Speeding up Computations via molecular Biology, in DNA based Computers, Lipton R. J.
and Baum, E. B. eds., American Mathematical Society.

[42] Luger, G. F. and Stubblefield, W. A., (1998). Artificial Intelligence, Structures and Strategies for Complex Pro-
blem Solving, Addison Wesley Longman, Inc., Harlow, England.

[43] Mendelson, E., (1964). Introduction to Mathematical Logic, D. Van Nostrand, Princeton, New Jersey.

[44] Minsky, M., (1963). Can Machines Think?, in Computers and thought, Fiegenbaum and Feldman eds., McGraw-
Hill.

[45] Mosterı́n. J., (2000). Los Lógicos, Espasa Calpe S. A., Madrid.

[46] O’Connor, J. J. and Robertson, E. F., MacTutor History of Mathematics, November 2004.
URL: http://www-history.mcs.st-andrews.ac.uk/history/index.html

[47] Pérez-Jiménez, M. and Riscos-Núñez, A., (2004). Modelos de Computación Molecular, Celular y Cuántica, Fénix
Editorial, Sevilla.

[48] Pérez-Jiménez, M., Romero-Jiménez, A. and Sancho-Caparrini, F. eds., (2004). Recent Results in Natural Com-
puting, Fénix Editorial, Sevilla.

[49] Perkinson, D., (2000). CoCoA 4.0 Online Help, electronic file acompanying CoCoA v.4.0,

[50] Popper, K., (1959). Logic of Scientific Discovery, Hutchinson, London, Translated from: Logic der Forschung,
Julius Springer Verlag, Vienna, 1935.

[51] Roanes-Lozano, E., Laita, L. M. and Roanes Macı́as, E., (1998). A Polynomial Model for Multivalued Logic,
with a Touch of Algebraic Geometry and Computer Algebra, Mathematics and Computers in Simulation, 45, 1,
175–184

[52] Roanes-Lozano, E., Laita, L. M. (1998). An Applicable Topology independent Model for Railway Interlocking
Systems, Mathematics and Computers in Simulation, 45, 1, 83–99.

[53] Roanes-Lozano. E. and Laita, L. M., (2002). Railway Interlocking Systems and Gröbner Bases, Mathematics and
Computers in Simulation, 58, 203–214.

[54] Roanes Lozano, E., Muga, R., Laita, L. M. and Roanes Macı́as, E., (2005). A terminal area topology-independent
GB-based conflict detection system for A-SMGCS, RACSAM (Revista de la Real Academia de Ciencias, Serie
A, Matemáticas), 8, 1–2 214–229.

[55] Roanes-Macı́as, E. and Roanes-Lozano, E., (1994). Nuevas Tecnologı́as en Geometrı́a, Editorial Complutense,
Madrid.

[56] Roanes-Lozano, E. and Roanes-Macı́as, E., (1996). Automatic Theorem Proving in Elementary Geometry with
DERIVE 3, The Intl. DERIVE J., 3, 2, 67–82.

156

What Machines Can and Cannot Do

[57] Roanes-Macı́as, E. and Roanes-Lozano, E., (2001). Automatic determination of geometric loci. 3D-Extension
of Simson-Steiner Theorem, in: Artificial Intelligence and Symbolic Computation. Procs. Intl. Conf. AISC 2000,
Campbell, J. A. and Roanes-Lozano, E. eds., Springer LNCS 1930, Berlin-Heidelberg, 157–173.

[58] Roanes-Macı́as, E. and Roanes-Lozano, E., (2004). A Completion of Hypotheses Method for 3D-Geometry. 3D-
Extensions of Ceva and Menelaus Theorems, in Proceedings of 20th European Workshop on Computational
Geometry, Dı́az-Bánez, J. M., Márquez, A. and Portillo, J. R. eds., Universidad de Sevilla, Seville, 85–88.

[59] Schwartz, P., (2007). En busca de Montesquieu. La democracia en peligro, Encuentro, Madrid.

[60] Shrager J. and Langley, P., (1990). Computational Models of Scientific Discovery and Theory Formation, Morgan
Kaufmann.

[61] Shepherdson, J. C. and Sturgis, H. E., (1963). Computability of recursive Functions, Journal Assoc. for Compu-
ting Machinery, 10, 217–255.

[62] Shoenfield, J. R., (1967). Matemátical Logic, Addison Wesley, Reading, Massachussets.

[63] Simon, H. A., (1996). Explaining the Ineffable: AI on the topics of Intuition, Insight and Inspiration, in: Pro-
ceedings of the 14th IJCAI, 839–846.

[64] Trillas, E., (1998). La Inteligencia Artificial, in: Máquinas y Personas, J. M. Sánchez Ron (series ed.). Temas de
Debate, Madrid.

[65] Turing, A. M., (1948). Intelligent Machinery, report for the National Physical Laboratory, in Machine Intelligence,
5, Meltzer, B. and Michie, D. eds., Edinburgh University Press, New York (1969), 3–23.
Also in: URL: http://www.alanturing.net/intelligent machinery/

[66] Winkler, F., (1996). Polynomial Algorithms in Computer Algebra, Springer-Verlag, Vienna,

[67] —-, Johannes Kepler, Enciclopedia Gran Larousse Universal, Vol. 23, Ed. Plaza y Jané, Barcelona, 1979, 7314–
7315.

[68] —-, The Church–Turing Thesis, Stanford Enciclopedia of Philosophy.
URL: http://plato.stanford.edu/entries/church--turing. First published January 1997,
substantive revision 2002.

[69] URL: http://cocoa.dima.unige.it

[70] URL: http://www.bookrags.com/Church

Luis M. Laita Eugenio Roanes-Lozano Luis de Ledesma Otamendi
Emeritus Professor of Computer Associate Professor of Algebra, Professor of Computer Sciences
Sciences and Artificial Intelligence Algebra Dept., and Artificial Intelligence,
Artificial Intelligence Dept., School of Education, Artificial Intelligence Dept.,
Computer Science School, Computer Science School,
Univ. Politécnica de Madrid Univ. Complutense de Madrid Univ. Politécnica de Madrid
Corresponding Academician of
Madrid Royal Academy of Sciences.

157

