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A note on Fréchet-Urysohn locally convex spaces

Jerzy Ka̧kol and M. López Pellicer

Abstract. Recently Cascales, Ka̧kol and Saxon showed that in a large class of locally convex spaces (so
called class G) every Fréchet-Urysohn space is metrizable. Since there exist (under Martin’s axiom) non-
metrizable separable Fréchet-Urysohn spaces Cp(X) and only metrizable spaces Cp(X) belong to class
G, we study another sufficient conditions for Fréchet-Urysohn locally convex spaces to be metrizable.

Una nota sobre espacios de Fréchet-Urysohn localmente convexos

Resumen. Recientemente Cascales, Ka̧kol y Saxon han probado que en una amplia clase de espacios
localmente convexos (llamada clase G) los espacios con la propiedad de Fréchet-Urysohn son metriza-
bles. Si se admite el axioma de Martin existen espacios Cp(X) separables que tienen la propiedad de
Fréchet-Urysohn y que no son metrizables. La metrizabilidad de los espacios Cp(X) que pertenecen a
la clase G ha motivado el que se estudie en este artı́culo condiciones suficientes para que los espacios
localmente convexos con la propiedad de Fréchet-Urysohn sean metrizables.

1 Introduction

One of the interesting and difficult problems (Malyhin 1978) concerning Fréchet-Urysohn groups asks if
every separable Fréchet-Urysohn topological group is metrizable [18]; see also [20] and [21] for some
counterexamples under various additional set-theoretic assumptions. The same question can be formulated
in the class of locally convex spaces (lcs). Under Martin’s axiom (MA) there exist non-metrizable analytic
(hence separable) Fréchet-Urysohn spaces Cp(X). On the other hand, the Borel Conjecture implies that
separable and Fréchet-Urysohn spaces Cp(X) are metrizable. In fact there exist many important classes of
lcs for which the Fréchet-Urysohn property implies metrizablity. We showed in [3, Theorem 2] that (LM)-
spaces, (DF )-spaces (in fact all spaces in class G) are metrizable if and only if they are Fréchet-Urysohn.
In [22, Theorem 5. 7] Webb proved that only finite-dimensional Montel (DF )-spaces enjoy the Fréchet-
Urysohn property. We extend this fact by noticing that every Fréchet-Urysohn hemicompact topological
group is a Polish space. The aim of the rest part of the paper is to characterize metrizability of Fréchet-
Urysohn lcs in terms of certain resolutions. First we prove that for a lcs X its strong dual F is metrizable if
and only if F is Fréchet-Urysohn and X has a bornivorous bounded resolution. This applies to observe that
the space of distributions D′(Ω) and the space A(Ω) of real analytic functions on an open set Ω ⊂ RN are
not Fréchet-Urysohn (although they have countable tightness by [3, Corollary 2. 4]). Nevertheless, there
exist Fréchet-Urysohn non-metrizable lcs which admit a bornivorous bounded resolution, see Example 1.
We show however that a Frćhet-Urysohn lcs is metrizable if and only if it admits a superresolution.

Presentado por Darı́o Maravall Casesnoves.
Recibido: 3 de septiembre de 2007. Aceptado: 10 de octubre de 2007.
Palabras clave / Keywords: K-analytic space, analytic space, Fréchet-Urysohn space, topological group.
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2 Notations, Definitions and Elementary Facts
A Hausdorff topological space (space) X is said to have a compact resolution if X is covered by an ordered
family {Aα : α ∈ NN}, that is, such that Aα ⊂ Aβ for α ≤ β. Any K-analytic space has a compact
resolution but the converse implication fails in general [19]. For a lcs X a resolution {Aα : α ∈ NN} is
called bounded if each set Aα is bounded in X . If additionally every bounded set in X is absorbed by
some Kα, the resolution {Aα : α ∈ NN} is called bornivorous. For α = (nk)k ∈ NN put Cn1n2...nk

:=⋃
{Kβ : β = (ml)l,mj = nj , j = 1, . . . , k}. Clearly Kα ⊂ Cn1,...,nk

for each k ∈ N. A lcs X is said to
have a superresolution if for every finite tuple (n1, . . . np) of positive integers and every bounded set Q in
X there exists α = (mk) ∈ NN such that mj = nj for 1 ≤ j ≤ p and Kα absorbs Q. This implies that for
any finite tuple (n1, . . . np) the sequence (Cn1,...,np,n)n is bornivorous in X .

Clearly any metrizable lcs X admits a superresolution: For a countable basis (Uk)k of neighbourhoods
of zero in X and α = (nk) ∈ NN set Kα :=

⋂
k nkUk. Then {Kα : α ∈ NN} is as required.

Moreover, (DF )-spaces, regular (LM)-spaces admit a bornivorous bounded resolution. Indeed, let X
be an (LM)-space and let (Xn)n be an increasing sequence of metrizable lcs whose inductive limit is X ,
see [15] for details. For each n ∈ N let (Un

k )k be a countable basis of absolutely convex neihbourhoods
of zero in Xn such that Un

k ⊂ Un+1
k and 2Un

k+1 ⊂ Un
k for each k ∈ N. For each α = (nk) ∈ NN set

Kα :=
⋂

k nkUn1
k . Then {Kα : α ∈ NN} is a bounded resolution. In fact, {Kα : α ∈ NN} covers X

and the set
⋂

k nkUn1
k is bounded in Xn1 , hence in the limit space X . If additionally X is regular, i.e. for

every bounded set B in X there exists m1 ∈ N such that B is contained and bounded in Xm1 , then for
each k ∈ N there exists nk ∈ N such that B ⊂

⋂
k nkUm1

k . This yields a sequence α = (mk) ∈ NN such
that B ⊂ Kα. Any lcs admitting a fundamental sequence (Bn)n of bounded sets has a superresolution; put
Kα := Kn1 for α = (nk) ∈ NN.

A space X is Fréchet-Urysohn if for each set A in X and any x ∈ A there exists a sequence of elements
of A converging to x.

A lcs X is barrelled (quasibarrelled) if every closed absolutely convex absorbing (bornivorous) subset
of X is a neighbourhood of zero. A lcs X is called Baire-like [17] (b-Baire-like [16]) if for every increasing
(and bornivorous) sequence (An)n of absolutely convex closed subsets of E there exists n ∈ N such that
An is a neighbourhood of zero in E. Every metrizable (metrizable and barrelled) lcs is b-Bairelike (Baire-
like) and every barrelled b-Baire-like space is Baire-like. Every Fréchet-Urysohn lcs is both b-Baire-like
and bornological, [9]. By Cp(X) and Cc(X) we denote the spaces of real-valued continuous functions on
a Tychonov space endowed with the topology of pointwise convergence and the compact-open topology,
respectively.

3 Results and Remarks
Note that for an uncountable compact scattered space X the space Cp(X) is Fréchet-Urysohn [1, Theo-
rem III. 1. 2] non-metrizable and admits a bounded resolution. (**) Is a Fréchet-Urysohn lcs metrizable if
it admits a strongly bounded resolution? Clearly every lcs with a fundamental sequence of bounded sets
generates a bornivorous bounded resolution. In [3] we proved that every Fréchet-Urysohn lcs in class G is
metrizable, so every Féchet-Urysohn (DF )-space is normable. Nevertheless, we have the following

Example 1 Let X be a Σ-product of RI , with uncountable I , formed by all sequences of countable sup-
port. Then X contains a Fréchet-Urysohn non-metrizable vector subspace having a bornivorous bounded
resolution.

PROOF. Clearly X is a Fréchet-Urysohn space, see [13]. Let G be the linear span of the compact set
B := [−1, 1]I . Set E := F ∩ G and denote B ∩ F by C. For α = (nk) set Kα = n1C. Note that{
Kα : α ∈ NN}

is a strongly bounded resolution in E. First observe that the family
{
Kα : α ∈ NN}

is
ordered, covers E and each Kα is a bounded set in E. Next, let P be a bounded set in E and let A be
its closed absolutely convex cover in E. Then A is bounded in RI , hence relatively compact in RI , and
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since every cluster point of a countable set in X has countable support, A is countably compact in X . But
since A is closed in E, we conclude that A is a countably compact subset of E. It is easy to see that A is
a Banach disk, i.e. its linear span EA endowed with Minkowski functional norm is a Banach space. Since
{nC ∩ EA : n ∈ N} is a sequence of closed absolutely convex sets in EA covering EA and EA is a Baire
space, there is m ∈ N such that A ⊆ mC. So if β = (nk) ∈ NN verifies that n1 = m, then A ⊆ Kβ , so
that P ⊆ Kβ . Therefore the family {Kα : α ∈ NN} is a strongly bounded resolution in E as stated and E
is non-metrizable since C is not metrizable. �

In general we note the following

Proposition 1 For a lcs X its strong dual (X ′, β(X ′, X)) is metrizable if and only if it is Fréchet-Urysohn
and X admits a bornivorous bounded resolution.

PROOF. If (X ′, β(X ′, X)) is metrizable, then it is Fréchet-Urysohn and X admits a bornivorous bounded
resolution. Now assume that X admits a bornivorous bounded resolution {Kα : α ∈ NN}. Then the polars
K◦

α of Kα in the topological dual X ′ of X form a base of neighbourhoods of zero for the strong topology
β(X ′, X). But the polars K◦◦

α in X ′′ compose a resolution consisting of equicontinuous sets covering X ′′.
This shows that the space (X ′, β(X ′, X)) belongs to class G (in sense of Cascales and Orihuela of [2]). If
(X ′, β(X ′, X)) is Fréchet-Urysohn, then [3, Theorem 2] yields the metrizability of (X ′, β(X ′, X)). �

Corollary 1 The spaces D′(Ω) of distributions and A(Ω) of real analytic functions for an open set
Ω ⊂ RN are not Fréchret-Urysohn.

PROOF. Since D′(Ω) is non-metrizable (quasibarrelled) and is the strong dual of a complete (LF )-space
D(Ω) of the test functions, we apply Proposition 1. The same argument can be used to the space A(Ω)
via [5, Theorem 1. 7 and Proposition 1. 7]. �

Although (**) has a negative answer we note the following result for a large class of lcs. We need the
following somewhat technical

Proposition 2 A b-Baire-like space X is metrizable if and only if X admits a superresolution

PROOF. Let {Kα : α ∈ NN} be a superresolution for X . We may assume that all sets Kα are absolutely
convex. Then the sets Cn1n2...nk

(defined above) are also absolutely convex. First observe that for every
α = (nk) ∈ NN and every neighbourhood of zero U in X there exists k ∈ N such that Cn1,n2,...,nk

⊂
2kU .

Indeed, otherwise there exists a neighbourhood of zero U in X such that for every k ∈ N there exists
xk ∈ Cn1,n2,...,nk

such that xk /∈ 2kU . Since xk ∈ Cn1,n2,...,nk
for every k ∈ N, there exists βk =

(mk
n)n ∈ NN such that xk ∈ Kβk

, nj = mk
j , j = 1, 2, . . . , k. Set an = max

{
mk

n : k ∈ N
}

for n ∈ N
and γ = (an)n. Since βk ≤ γ for every k ∈ N, then Kβk

⊂ Kγ , so xk ∈ Kγ for all k ∈ N. Therefore
2−kxk → 0 which provides a contradiction. The claim is proved.

Let Y be the completion of X . It is clear that Y is Baire-like. Next, we show that there exists α =
(nk) ∈ NN such that Cn1,n2,...,nk

is a neighbourhood of zero in X for each k ∈ N. Assume that does
not exist n1 ∈ N such that Cn1 is a neighbourhood of zero. Since (by assumption) the sequence (nCn)n

is bornivorous in X and X is quasibarrelled, we apply [15, 8.2.27] to deduce that Y = X =
⋃

n nCn ⊂
(1 + ε)

⋃
n nCn. But Y is a Baire-like space, so there exists n1 ∈ N such that Cn1 is a neighbourhood of

zero in Y .
Assume that for a finite tuple (n1, . . . np) of positive integers the set Cn1,...,nk

is a neighbourhood of
zero for each 1 ≤ k ≤ p. Since, by assumption, the sequence (nCn1,...,np,n)n is bornivorous in X , and
consequently X =

⋃
n nCn1,...,np,n, we apply the same argument as above to get an integer np+1 ∈ N such

that Cn1,...,np,np+1 is a neighbourhood of zero, which completes the inductive step. This fact combined
with the claim provides a countable basis (2−kCn1,...,nk

)k of neighbourhoods of zero, so X is metrizable.
�
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The weak topology of any infinite-dimensional normed space is non-metrizable non-bornological but
admits a superresolution. Since Fréchet-Urysohn lcs and spaces Cp(X) are b-Baire-like, Proposition 2
applies to get the following

Theorem 1 A Fréchet-Urysohn lcs is metrizable if and only if it admits a superresolution. Cp(X) is
metrizable if and only if Cp(X) admits a superresolution.

As we have already mentioned a Fréchet-Urysohn lcs in class G is metrizable. But only metrizable
spaces Cp(X) belong to class G, see [3]. On the other hand, (this fact might be already known) under
(MA)+¬(CH) there exist non-metrizable analytic Fréchet-Urysohn spaces Cp(X). Indeed, by [1, Theo-
rem II.3.2] the space Cp(X) is Fréchet-Urysohn if and only if X has the γ-property, i.e. if for any open
cover R of X such that any finite subset of X is contained in a member of R, there exists an infinite sub-
familyR′ ofR such that any element of X lies in all but finitely many members ofR′. Gerlits and Nagy [7]
showed that under (MA) every subset of reals of cardinality smaller than the continuum has the γ-property.
Hence under MA+¬(CH) there are uncountable γ-subsets Y of reals, see also [8]. Thus for such Y the
space Cp(Y ) is non-metrizable separable and Fréchet-Urysohn.

A set of reals A is said to have strong measure zero if for any sequence (tn)n of positive reals there
exists a sequence of intervals (In)n covering A with |In| < tn for each n ∈ N. The Borel Conjecture states
that every strong measure zero set is countable; Laver [11] proved that it is relatively consistent with ZFC
that the Borel conjecture is true. Assuming the Borel Conjecture, every Fréchet-Urysohn separable space
Cp(X) is metrizable. Indeed, since Cp(X) is separable and Fréchet-Urysohn, X admits a weaker separable
metric topology ξ and X has the γ-property. Set Y := (X, ξ). Since Y has the γ-property, then Cp(Y )
is Fréchet-Urysohn [7]. By [12, Proposition 4 and Theorem 1] the space Y is zero-dimensional. Since Y
is metrizable and separable, it is homeomorphic to a subset Z with the γ-property of the Cantor set. On
the other hand, Gerlits-Nagy [7] proved that γ-sets have strong measure zero. By the Borel Conjecture any
γ-set in the reals is countable. Hence Z is countable. Thus X is countable and Cp(X) is metrizable.

Since Fréchet-Urysohn lcs are b-Baire-like, then every Fréchet-Urysohn lcs with a fundamental se-
quence of bounded sets must be a (DF )-space. But Fréhct-Urysohn (DF )-spaces are metrizable, [3].
For topological groups the situation is even more striking. The paper [21, Example 1.2] provides non-
metrizable Fréchet-Urysohn σ-compact topological groups but for Fréchet-Urysohn hemicompact groups
X the situation is different. Next proposition extends Webb’s theorem [22, Theorem 5.7], who proved that
only finite-dimensional Montel (DF )-spaces enjoy the Fréchet-Urysohn property.

Proposition 3 Every Fréchet-Urysohn hemicompact topological group X is a locally compact Polish
space.

PROOF. Let (Kn)n be an increasing sequence of compact sets covering X such that every compact set in
X is contained in some Km. Observe first that X is locally compact: It is enough to show that there exists
n ∈ N such that Kn is a neighborhood of the unit of X . Let F be a base of neighborhoods of the unit of X
and assume that no Kn contains a member of F. For every U ∈ F and n ∈ N choose xU,n ∈ U \Kn, and
for each n ∈ N let An = {xU,n : U ∈ F}. Since 0 ∈ An for every n ∈ N, there exists a sequence (Um,n)m

in F such that xm,n → 0, m → ∞, where xm,n := xUm,n,n. By [14, Theorem 4] there exists a sequence
(nk)k of distinct numbers in N and a sequence (mk)k in N such that xmk,nk

→ 0. Since {xmk,nk
: k ∈ N}

is contained in some Kp but xmk,nk
/∈ Knk

, k ∈ N, we get a contradiction. Hence X is a locally compact
Fréchet-Urysohn group. Since every locally compact Fréchet-Urysohn topological group is metrizable, see
e.g. [10, Theorem 2], we conclude that X is analytic. But any analytic Baire topological group is a Polish
space [4, Theorem 5.4], and we reach the conclusion. �
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