Ir al contenido

Documat


A Cramer-Rao analogue for median-unbiased estimators

  • Autores: N. K. Sung, Gabriela Stangenhaus, Herbert T. David
  • Localización: Trabajos de estadística, ISSN 0213-8190, Vol. 5, Nº. 2, 1990, págs. 83-94
  • Idioma: inglés
  • DOI: 10.1007/bf02863649
  • Títulos paralelos:
    • Análogo de la cota de Cramer-Rao para estimadores insesgados en la mediana
  • Enlaces
  • Resumen
    • Adopting a measure of dispersion proposed by Alamo [1964], and extending the analysis in Stangenhaus [1977] and Stangenhaus and David [1978b], an analogue of the classical Cramér-Rao lower bound for median-unbiased estimators is developed for absolutely continuous distributions with a single parameter, in which mean-unbiasedness, the Fisher information, and the variance are replaced by median-unbiasedness, the first absolute moment of the sample score, and the reciprocal of twice the median-unbiased estimator's density height evaluated at its median point. We exhibit location-parameter and scale-parameter families for which there exist median-unbiased estimators meeting the bound. We also give an analogue of the Chapman-Robbins inequality which is free from regularity conditions


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno