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Abstract

This paper presents an investigation of how to refine patched-conic orbit ap-

proximations with a restricted four-body orbit setup. By approximating an overall

orbit as a series of two-body orbits, patched-conic approximations offer a greatly

simplified way of analyzing missions. However, they are limited in their ability

to fully represent a particular orbit. Therefore, we must use a numerical integra-

tion technique to more precisely describe interplanetary missions. By extending

the patched-conic approximation to a restricted four-body problem, we achieve a

more precise orbit transfer description. Taking into consideration the gravitational

influences of the sun, Earth, and Mars at all times, we compute a spacecraft’s trans-

fer orbit from Earth to Mars. The integrator provides a more precise estimate of

the state of the vehicle upon its arrival at Mars. The initial orbit conditions are

adjusted and the effects upon the arrival state are measured. Also, the values of

required departure burn are compared for the Hohmann solution, the patched-conic

approximation, and the restricted four-body problem.

1 Introduction

A Hohmann transfer is an interplanetary mission that requires a change in true

anomaly of 180 degrees. It is a particular type of minimum energy transfer orbit. In

fact, the Hohmann transfer requires a minimum initial burn in order to reach the foreign

planet.[2] The Hohmann is commonly used to transfer from one circular orbit to another.

Thus, it is an attractive option for designing future missions from Earth to Mars.

Analytic solutions relating the planets’ mean heliocentric orbit radii to the required

departure burn have already been established.[4] These equations were developed chiefly

through the application of conservation laws, including the conservations of both angular

momentum and energy. But these solutions only provide a rough estimate of how to reach

133



Mars’ sphere of influence. We desire a higher fidelity method for estimating the required

initial burn. In addition, we seek a method which allows us to alter the departure orbit

geometry and to analyze the effects upon the arrival at Mars.

The patched-conic approximation has thus been developed as a more accurate solu-

tion to interplanetary transfer description. It involves partitioning the overall transfer

into several two-body problems. In other words, only one celestial body’s influence is

considered to be acting upon the spacecraft at all times. This approximation provides a

much better understanding of the relation between the departure orbit and the overall

transfer than the analytic Hohmann solution. However, the patched-conic approximation

is still limited in that it only considers the gravity of one celestial body at a time.

When looking to design a real-time interplanetary mission from Earth to Mars, we seek

a higher fidelity orbit description than the patched-conic approximation. The restricted

four-body problem offers a more precise representation of the transfer orbit. Applied to

a Hohmann transfer from Earth to Mars, the restricted four-body problem considers the

gravitational influences of Earth, the sun, and Mars at all times. This orbit integration

scheme presents a method of analyzing a highly non-linear transfer orbit without breaking

the orbit into separate parts.

2 Patched-Conic Approximation

The patched-conic approximation offers an efficient method for describing interplan-

etary orbits. By partitioning the overall orbit into a series of two-body orbits, it greatly

simplifies mission analysis. For each of the portions of an orbit, one gravitational force is

assumed to be acting upon the spacecraft at a time.[2] To illustrate the efficiency of the

patched-conic approximation, we partition the standard Hohmann transfer of a spacecraft

traveling from Earth to Mars into three separate conic stages. During the initial portion

of the voyage, we approximate the transfer as a hyperbolic departure orbit with its pri-

mary focus positioned at the center of the Earth. After escaping the Earth’s sphere of

influence, the spacecraft then enters its elliptic orbit about the sun. Following this second

stage, the spacecraft enters Mars’ sphere of influence. Once again, we approximate the

motion as a hyperbolic orbit, this time with its focus located at the center of Mars.

2.1 Determining the Heliocentric Departure Velocity

A typical application of the patched-conic solution is to determine the approximate

magnitude of ∆υ needed to complete a certain transfer mission. We first seek the necessary

heliocentric velocity υ1 as the spacecraft leaves the Earth’s sphere of influence. This

particular velocity is illustrated in Figure 1. The υ1 necessary to complete the Hohmann
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Figure 1.— Illustration of the Hohmann transfer from Earth to Mars.

transfer may be computed as

υ1 =

√

2µS
r3 + r4 (r4

r3) (1)

where µS denotes the sun’s gravitational coefficient, r3 denotes the Earth’s mean orbit

radius, and r4 denotes Mars’ mean orbit radius. For a complete derivation of Equation

1, consult Schaub and Junkins.[4] Once the heliocentric departure velocity is calculated,

∆υ1 may be computed as

∆υ1 = υ1 − υ3 = υ3(√ 2r4
r3 + r4 − 1

)

(2)

where υ3 is the Earth’s mean heliocentric velocity, as shown in Figure 1. Because r4 > r3,

the resulting ∆υ1 will be positive.

2.2 Leaving Earth’s Sphere of Influence

The following discussion offers a closer examination of how the spacecraft escapes

Earth’s sphere of influence. Figure 2 offers an illustration of the departure.

Throughout the following analysis, heliocentric velocities are expressed as υi, while

planet-centric velocities are denoted as νi. Because the spacecraft is required to converge

to some velocity υ1 as it leaves Earth’s sphere of influence, the departure orbit must be

hyperbolic. The necessary Earth-relative velocity ν1 at the limit of the sphere of influence
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Figure 2.— Illustration of the hyperbolic departure from Earth’s sphere of influence.

is computed as

ν1 = υ1 − υ3 (3)

We can also use the vis-viva equation[4] to determine the Earth-relative velocity ν1 as

ν1 =

√

2µ3
r1

−
µ3
ah

≈

√

−
µ3
ah

(4)

where µ3 denotes the Earth’s gravitational coefficient and ah corresponds to the semi-

major axis of the departure hyperbola. We approximate r1 ≈ ∞ due to the assumption

that the spacecraft trajectory asymptotically approaches its limiting value at time t1.

Therefore, we can relate the departure hyperbola’s semi-major axis to either ν1 or υ1 via

ah =
−µ3
ν2

1

= −
µ3

(υ1 − υ3)2
(5)

Using the vis-viva equation once again, the Earth-relative speed ν0 that the vehicle must

have in order to initiate the hyperbolic transfer orbit at t0 becomes

ν0 =

√

2µ3
r0

−
µ3
ah

(6)

where r0 denotes the spacecraft’s initial parking orbit radius about the Earth. After

substituting the relation for ah given in Equation 5, the speed ν0 is expressed as

ν2

0 = ν2

1 +
2µ3
r0

(7)
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At this point, it is important to note that once ν1 and r0 are chosen for a particular

mission, the corresponding patched-conic approximation for ν0 is set.

In order to maintain its initial parking orbit about Earth, the spacecraft has a critical

speed of

νc =

√

µ3
r0

(8)

The initial burn required to begin the hyperbolic transfer is given as

∆ν0 = ν0 − νc =
√

2ν2
c + ν2

1 − νc (9)

As shown in Figure 2, the point where the initial ∆ν0 burn must be applied is defined

via the angle Φ. For any transfer to an outer planet, the spacecraft’s velocity should

asymptotically align itself with Earth’s heliocentric velocity. Thus, the burn angle Φ may

be determined from the geometry of the departure hyperbola as

Φ = cos−1

(

1

eh

)

+ π (10)

where eh refers to the eccentricity of the hyperbolic departure orbit. For a complete

derivation of Equation 10, refer to Bate, Mueller, and White.[1] In order to find the

departure eccentricity, the orbit’s angular momentum must be analyzed.

2.3 Entering Mars’ Sphere of Influence

We now analyze the patched-conic approximation of how the spacecraft enters Mars’

sphere of influence. Figure 3 offers an illustration of the arrival orbit. It is typical for any

spacecraft traveling to an outer planet to enter that planet’s sphere of influence ahead of

the planet. The spacecraft reaches the outer planet at the apoapses of the transfer orbit.

Therefore, the spacecraft’s speed will be less than that of the planet, allowing the planet

to overtake it. Once again, using the vis-viva equation,[4] we find the heliocentric arrival

velocity υ2 of the spacecraft to be

υ2 =

√

2µS( 1

r4 −
1

r3)+ υ2
1 (11)

When the spacecraft arrives at Mars, it will most likely cross Mars’ sphere of influence

with some heading angle σ2.[1]. For a perfect Hohmann transfer, the value of σ2 would

be exactly equal to 0 degrees. To compute the spacecraft’s Mars-centric velocity vector

ν2, Mars’ heliocentric velocity must be subracted from that of the spacecraft:

ν2 = υ2 − υ4 (12)
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Figure 3.— Illustration of the hyperbolic arrival at Mars’ sphere of influence.

Via the law of cosines, the magnitude of ν2 is calculated as

ν2 =
√

υ2
2 + υ24 − 2υ2υ4 cos σ2 (13)

Identical to the process used to describe the departure orbit, we use the energy (vis-

viva) equation to determine the semi-major axis of the arrival orbit through

1

ah

=
2

r2

−
ν2

2

µ4 (14)

Making the patched-conic assumption that the spacecraft’s approach orbit is hyperbolic,

we approximate ah as

ah = −
µ4
ν2

2

(15)

where r2 ≈ ∞. If the Hohmann orbit were perfect, the spacecraft would impact the

Martian surface. To avoid this occurence, the hyperbolic arrival trajectory is aimed such

that it will miss Mars by some miss distance dm, as shown in Figure 3. However, from

the spacecraft’s perspective, it is easiest to estimate the shortest distance da between the

approach asymptote and Mars. Similar to the departure orbit, we examine the spacecraft’s

constant angular momentum in order to determine the arrival eccentricity eh. The transfer

mission is usually designed in such a way that the periapses radius is equivalent to the

final parking orbit radius. Thus, the final orbit radius about Mars is uniquely determined

once both the eccentricity eh and arrival speed ν2 are given. Because eh depends upon

the miss distance, the arrival is actually set with prescribed values of dm and ν2.
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3 Restricted Four-Body Problem

In this section, we extend the patched-conic approximation to the restricted four-body

problem. Taking into consideration the gravitational influences of the sun, Earth, and

Mars at all times, we determine the spacecraft’s transfer orbit from Earth to Mars. All

orbital motion during the transfer is assumed to be planar. Also, the orbits of Earth and

Mars are assumed to be circular.

3.1 Derivation of the Equations of Motion

Before beginning the numerical integration process, we must first derive the equations

of motion that we wish to integrate. Figure 4 offers an illustration of the coordinate frames

used to designate the state of the spacecraft for all time t. The S: {ŝ1, ŝ2, ŝ3} frame is an
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Figure 4.— Definition of the coordinate frames and position vectors used during the
derivation of the spacecraft’s equations of motion.

inertial frame centered at the sun. We make the assumption that the sun is stationary

during the spacecraft’s transfer orbit. The E : {ê1, ê2, ê3} frame is a non-rotating frame

centered at Earth. This frame describes the state of the spacecraft with respect to Earth.

In addition, the M: {m̂1, m̂2, m̂3} frame is a non-rotating frame centered at Mars. In

a similar manner, the M frame tracks the state of the spacecraft relative to Mars. As

shown in Figure 4, the spacecraft’s positions with respect to the sun, Earth, and Mars

are labelled r1, r2, and r3, respectively.

For a general n-body problem, the total force fi acting upon mass mi, due to the other
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n − 1 masses, is

fi = G

n
∑

j=1

mimj

r3
ij

(rj − ri) (16)

where G is the universal gravitation constant. The term for which i = j is to be omitted.

Newton’s Second Law of Motion states

fi = mi

d2ri

dt2
(17)

Therefore, the n vector differential equations

d2ri

dt2
= G

n
∑

j=1

mj

r3
ij

(rj − ri) (18)

along with appropriate initial conditions completely describe the motion of the system

of n particles. Consult Battin for the complete derivation of Equation 18.[2] With the

restricted four-body assumption, we neglect the gravitational effects of the spacecraft

upon the three celestial bodies. We also treat the two planetary orbits as perfect circles.

Thus, Equation 18 becomes

r̈1 +
µS
r3
1

r1 +
µ3
r3
2

r2 +
µ4
r3
3

r3 = 0 (19)

where r̈1 represents the second inertial derivative of r1 with respect to time. Also, we

have used the relation

µ = G(m1 + m2) (20)

in order to express the equations of motion of the spacecraft in terms of the three gravi-

tational coefficients µi of the celestial bodies.

3.2 Numerical Integrator

A numerical integration technique is required in order to estimate the spacecraft’s state

vector over time. The integration technique chosen to perform this task is the Classical

Fourth-Order Runge-Kutta Method.[3] Figure 5 offers an illustration of one iteration of the

Fourth-Order Runge-Kutta Method. Using this method, we integrate the state variable

as

yi+1 = yi +
1

6
(k1 + 2k2 + 2k3 + k4)g (21)

Because each of the k’s represents a slope estimate, Equation 21 uses a weighted slope

average to more efficiently determine the state vector at the future time ti+1.[3]

At this point, it must be noted that we can use a variable time step in order to improve

the efficiency of the Runge-Kutta integrator. As the spacecraft travels through either
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Figure 5.— Illustration of the calculation of slope estimates during one iteration of the
Fourth-Order Runge-Kutta Method.

Earth’s or Mars’ sphere of influence, it accelerates at a much greater rate than during

the heliocentric portion of the mission. Therefore, it is very computationally efficient to

increase the integration time step g during the heliocentric portion of the transfer orbit.

4 Integration Results

We now examine the application of the four-body problem to the Hohmann transfer

from Earth to Mars. The effect of varying certain initial conditions upon the development

of the orbit is analyzed. Also, the values of necessary departure burn are compared for

the Hohmann solution, the patched-conic approximation, and the restricted four-body

problem.

4.1 Changing the Mars Offset Angle

There must exist some initial offset angle γ(t1) between Earth and Mars. If there were

no initial offset angle, the spacecraft would perform the Hohmann transfer without ever

entering Mars’ sphere of influence. By altering the initial offset angle, we can examine

the effect that it has upon the hyperbolic arrival orbit. Thus, we perform a series of

restricted four-body integrations, varying this offset angle γ(t1). Figure 6 displays a

group of arrival orbits for five different Mars offset angles. The planet-centric step size

used to integrate the five different cases is 50 seconds. Increasing the initial offset angle

noticeably varies the miss distance dm between the spacecraft’s projected trajectory and

the sun direction. As γ(t1) is increased from 44.718 to 44.843 degrees, the miss distance
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(a) γ(t1) = 44.718 deg.
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(b) γ(t1) = 44.781 deg.
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(c) γ(t1) = 44.843 deg.
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(d) γ(t1) = 44.906 deg.
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(e) γ(t1) = 45.031 deg.

Figure 6.— Series of hyperbolic arrival orbits corresponding to five different initial
offset angles between Earth and Mars. The x and y positions are taken relative to the
Mars-centered frame M. The step size gh used is 50 seconds.

decreases and the eccentricity of the hyperbolic arrival increases. Once γ(t1) surpasses

44.843 degrees, the spacecraft begins performing counter-clockwise orbits about Mars.

This effect is particularly important if we want to ultimately achieve a geostationary

orbit about Mars.

Secondly, the changes in initial offset angle γ(t1) have a slight effect upon the arrival

heading angle σ2 + ϑ2. Note that, as the offset angle is increased from 44.718 to 45.031

degrees, the heading angle decreases from its initial value of roughly 180 degrees. The

reason for this slight decrease in heading angle is that the spacecraft is now penetrating

Mars’ sphere of influence at an earlier time on its Hohmann transfer. Thus, the heading

angle begins to regress from the ideal value of 180 degrees for a perfect Hohmann transfer.

4.2 Changing Mars’ Heliocentric Orbit Radius

When we use the patched-conic approximation to estimate the necessary initial con-

ditions for the Hohmann transfer, the arrival orbit overshoots Mars by roughly 4e+005

kilometers. Therefore, if we want to achieve a certain hyperbolic periapses radius r3 about

Mars, we must alter at least one initial condition. Referring to the patched-conic arrival

orbit solutions presented in Section 2, we find that the r3 parking radius depends upon

the miss distance dm and the velocity ν2. The planar Hohmann transfer from Earth to

Mars will always yield an arrival speed ν2 roughly equal to 2.648 km/s, as calculated in
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Section 2. Thus, to achieve a specific parking orbit radius about Mars, we alter the miss

distance da until the necessary arrival geometry is obtained. One way to alter the miss

distance da of the arrival hyperbola is to make small changes in Mars’ heliocentric orbit

radius. Using such a method, we determine what Martian heliocentric orbit radius will

yield the miss distance da corresponding to the desired parking radius r3. Figure 7 offers

a flow chart illustrating the r4 correction process.

START

MarsMars rr =

1=i

)(2__)](,[ 0 Marsstar rsetuporbitidy =
v

)(4_4_)( 0ybodyRKida
v

=

)()()( ididid staraerror −=

OR

kmid error 10)( <

cMarsCentriplot _

STOP

)(idrr errorMarsMars +=

15=i

Figure 7.— Flow chart depicting the loop used to iteratively correct Mars’ orbit radius
r4 in order to achieve the desired arrival parking radius r3 about Mars.

The advantage of using a variable time step is accentuated when we perform the given

iteration to achieve a unique arrival geometry. Figure 8 offers an illustration of both

the uncorrected and corrected arrival orbit geometries. For the iterations performed,

we set the desired Mars parking radius r3 to 4000 km. The initial iteration yields a

miss distance of roughly 4e+005 kilometers. But after seven iterations are performed,

the miss distance is almost exactly equal to the necessary value dstar of 8142 kilometers.

Both graphs of Figure 8 show the projection of the ν2 velocity upon entry into Mars’

sphere of influence as a blue line. This projection is used to calculate the perpendicular

distance to the center of Mars, corresponding to the actual miss distance da. By the

seventh iteration, the magnitude of derror drops below 1 kilometer. Figure 8 illustrates

how the seventh iteration yields an arrival orbit with a periapses radius r3 of roughly

4000 kilometers. Thus, we have taken the restricted four-body problem and found a set

of initial conditions that result in a desired final parking orbit radius about Mars.
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Figure 8.— Illustration of both the uncorrected and corrected arrival orbit geometries
for the Mars orbit radius iteration. Values x and y are defined relative to the non-
rotating Mars frame M. Seven iterations were performed before achieving the final
corrected arrival.

4.3 Comparison of Predicted ∆υ Values

So far, we have analyzed three different ways to estimate the necessary ∆υ value to

travel from Earth to Mars on a Hohmann transfer. We first view the transfer orbit as a

single elliptic orbit with a change in true anomaly of 180 degrees. Such an approximation

treats the sun as the only gravitational influence upon the spacecraft during the transfer.

The second representation of the Hohmann transfer is as a series of two-body orbits

about Earth, the sun, and Mars, respectively. Because we represent each portion of

the orbit as a conic solution, we term this solution the patched-conic approximation.

The patched-conic approximation allows us to take into account the gravity of Earth

and Mars as the spacecraft travels through the planets’ spheres of influence. However,

this approximation ignores the gravitational effects of the planets when the spacecraft is

traveling outside of their spheres of influence.

The final representation of the transfer orbit is as a restricted four-body orbit. Thus,

we take the gravity of Earth, the sun, and Mars into consideration for the duration of

the entire transfer orbit. We also examine the effects of altering certain departure orbit

conditions upon the arrival orbit. More specifically, we determine the required ∆υ to

achieve a particular periapses radius r3 about Mars. Such a calculation cannot be made

when examining the orbit using either the Hohmann approximation or the patched-conic

approximation. Table 1 provides a listing of the ∆υ estimates corresponding to each of

the three Hohmann transfer representations.

Note that the difference in required ∆υ values lies mostly in going from the gen-

eral Hohmann approximation to the patched-conic approximation. However, integrating

the restricted four-body problem allows us to determine the minute change in ∆υ that
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Orbit Approximation ∆υ (km/s)

Hohmann Transfer 2.943
Patched-Conic 3.432

Restricted Four-Body 3.428

Table 1.— Table showing the differences in required ∆υ estimates for the Hohmann
transfer, patched-conic approximation, and restricted four-body problem. The value
of ∆υ for the four-body approximation corresponds to a desired Mars parking orbit
radius r3 of 4000 km.

yields the desired Mars periapses radius of 4000 km. Such minute details are extremely

important when attempting to establish a true interplanetary mission plan.

5 Conclusion

The original analytic solution to the Hohmann transfer from Earth to Mars offers

a crude estimate of the ∆υ required to perform the transfer. Because it neglects the

gravitational effects of both Earth and Mars, this orbit solution cannot achieve the same

accuracy as the patched-conic approximation.

The patched-conic approximation provides a much better estimate of the ∆υ required

to reach Mars on a Hohmann transfer. Its consideration of the planets’ gravitational

influences as the spacecraft travels through their spheres of influence makes this solution

much more credible than the simple Hohmann solution. By breaking the entire orbit into

three separate conic solutions, this approximation shows the effects of the departure orbit

geometry on both the elliptic transfer and hyperbolic arrival.

The restricted four-body integration scheme allows us to view the Hohmann trans-

fer from Earth to Mars as one propagated orbit. Thus, while taking into consideration

the gravity of Earth, the sun, and Mars for all time, we can analyze the effects of alter-

ing certain initial conditions upon the arrival orbit. In addition, we can determine the

necessary departure burn to achieve a desired parking orbit radius r3 about Mars. The

patched-conic approximation does not allow for such precise orbit modeling.

One idea for future work is to examine the applicability of the established four-body

integrator to other interplanetary missions. The sensitivity of the four-body integrator

to perturbations of these different orbits could then be analyzed. Still other future work

could focus on increasing the accuracy of the presented four-body orbit modeling scheme.

For instance, atmospheric drag is a disturbance that must be considered for both the

departure and arrival orbits. Much work remains in developing an orbit modeling scheme

that presents what would actually occur in a real-time transfer from Earth to Mars.
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