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Abstract

The family g of periodic orbits of the Restricted Three-body Problem —planar,

direct, periodic orbits around the smaller primary— is of interest in astrodynamics.

Specifically, in the case of natural planetary satellites it is known that it provides

stable, egg-shaped, periodic orbits close to the natural satellite, which could be

used for a variety of applications. In the limit case of Hill the family g no longer

provides egg-shaped orbits, which now pertain to the family g′ that bifurcates from

g at a certain value of the Jacobi constant. We investigate the influence of the

mass ratio between the primaries in the behavior of direct periodic orbits of the

Restricted Three-body Problem, and find that different parts of the family g are

linked through new families of three-dimensional periodic orbits. Further, we find

that the family g′ is a limiting case of the family g, where the two parts made of

egg-shaped orbits match exactly.

1 Introduction

The existence of liquid water in some icy moons, pointed by the recent NASA’s Cassini

finding of a cloud of oxygen exuded by Enceladus and the prior NASA’s Galileo discovery

of a briny ocean under the surface of Europa, motivate strong scientific interest in new

missions to planetary satellites. Old results from Celestial Mechanics are at the disposal

of astrodynamicists for their mission design studies, where the computation of periodic

orbits of the Restricted Three-body Problem (RTBP) play a role in determining transfers,

stability regions, or even the science orbit [10, 12, 13, 15].

Among the overwhelming amount of results on periodic orbits of the RTBP, Szebe-

hely’s book [16] and Hénon’s original papers [5, 6, 7, 8, 9] remain as fundamental references

on the topic. The basic periodic orbit families of the RTBP start as small retrograde os-

cillations around the five Lagrangian points, and retrograde and direct oscillations around

each primary. After Strömgren, the basic families are named alphabetically correspond-

ing the letter g to the family originating from small direct oscillations around the smaller
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pimary. Strömgren and coworkers considered the equal mass case that is primarily of in-

terest in stellar dynamics. Other authors studied mass ratios between the primaries that

are of interest in the solar system, for which they used different nomenclatures. Thus, for

instance, Broucke [1] computed two “different” families of direct periodic orbits around

the Moon that he named H1 and H2, yet he speculated that both families should be part

of a type-g earth-Moon family. Analogously, Szebehely [16] classifies Darwin’s families A,

B, and C of satellites as parts of a type-g family of Darwin’s “sun-Jupiter” system.

Despite planar stability regions of direct motion around the primaries are known to

be smaller than those of retrograde motion [6], a surprising recent result [12, 15] shows

that stability regions of direct motion close to the smaller primary can be larger in three-

dimensions than similar regions of retrograde motion. The stability regions in three-

dimensions computed in [12] originate from planar direct motion around the smaller pri-

mary. Then, we feel compelled to revisit previous results on families of periodic orbits

that originate from small, planar, direct oscillations around the smaller primary; more

specifically to those parts of these families with orbits that remain close to the smaller

primary.

We continue several families of three-dimensional periodic orbits that bifurcate ver-

tically from the family g close to the smaller primary, and find that they connect dif-

ferent parts of the family g through three-dimensional space. We find this behavior in

Strömgren’s case of equal masses, but we also find these kind of connections linking Dar-

win’s families A, B, and C, and Broucke’s families H1 and H2, which supports the belief

that they are parts of the same family g. For very small mass ratios, such as the case of

many planetary satellites, we also find that these three dimensional corrections are very

similar to the connections of the families g and g′ computed by Michalodimitrakis [14] for

the Hill problem.

The computations of this paper show that for decreasing values of the mass ratio

between the primaries the two parts of the family g that are made of stable periodic

orbits close to the smaller primary, get closer and closer to each other in terms of the

Jacobi constant values, until they exactly match for the Hill problem. Therefore, the

family g′ is a limit case of the family g produced by the symmetries of the Hill model.

Other families of three-dimensional periodic orbits that bifurcate vertically from the

family g are found to connect direct and retrograde motion around the smaller primary

in the case of equal masses, which was a known result for higher order resonances in the

Jupiter-Europa system [11]. Finally, we find practical application for a three-dimensional

g family orbit at Enceladus as a stable science orbit with global ground visibility.

For completeness, we summarize in the appendix the well known equations of the

RTBP and recall usual definitions of stability indices.
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2 The family g

The ratio of the smaller primary to the total mass of the system is the mass parameter

µ, which ranges from the Copenhaguen category (µ = 1/2, equal masses) to the limit case

of Hill (µ → 0). We use a reference system centered on the smaller primary, which we

call “smaller” even in the case of equal masses.

Starting from small, planar, direct, stable oscillations around the smaller primary,

the family g presents an intricate behavior passing through different collisions, suffering

from reflections, and changing from stability to instability at different values of the Jacobi

constant. These complications motivate phrases like Henon’s ([5], p. 11) “La courbe de

stabilité est très compliquée [. . . ] et n’a pas été dessinée en entier”, or Broucke’s ([1], p.

71) “It is likely that, if one were to continue family H1 or the two open ends of H2, some

junction between H1 and H2 would be found”.

2.1 Equal masses

The family g starts with almost circular orbits that soon change to ovals. After

different phases with orbits of exotic shapes the orbits become ovals again (see [16], pp.

466–470). Remarkably, ovals of different parts of the family g are relatively close in terms

of the Jacobi constant.

Figure 1 shows the part of the family g that is of current interest. The right plot of the

figure shows sample stable and unstable ovals, while the left plot presents the horizontal

and vertical stability curves, where we can see several of the many critical points identified

in [8]. Specifically, in the left plot of Fig. 1 we find: reflections g1, g2, g14; horizontal,

period doubling bifurcations g3, g15; vertical, period doubling bifurcations g1v, g2v, g11v,

g12v, g13v, and g14v; and the vertical bifurcation g23v.
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Figure 1.— Family g of the Copenhaguen category. Left: Horizontal (full line) and ver-

tical (dashed) stability curves. Right: Sample stable (full line) and unstable (dashed)

periodic orbits for C = 3.8, the smaller ones, and C = 3.54.
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The continuation of the family g from the ovals that first occur around C = 3.8

to those around C = 3.5 is tedious to follow because of the collisions and reflections in

between. However, as an alternative route, we find a shortcut by computing the families of

three-dimensional periodic orbits that bifurcate from Henon’s points g1v and g2v, which

we call families g1v and g2v, respectively.

Thus, the family g1v bifurcates from g at C = 3.8579 in a vertical, period doubling bi-

furcation of Henon’s type Dv [8] —bifurcation orbit with initial conditions (x, 0, 0, 0, ẏ, ż =

ǫ)— and exists for decreasing values of the Jacobi constant. It is made of unstable orbits

that change to complex instability in the interval 3.82204 > C > 3.5022. The family re-

flects over itself at C = 3.31099 and continues for increasing values of the Jacobi constant

until its termination at C = 3.37345 (Henon’s point g11v) in a period doubling bifurca-

tion of the family g, again of the type Dv. Figure 2 shows the stability curves b1 and

b2 (left plot) and two sample periodic orbits close to the bifurcations (right plot). Note

the inverse hyperbolic sine scale used for the stability curves. For the complex unstable

orbits, b1 is always the conjugate of b2 [2], thus only the positive branch is illustrated

(dotted line in the left plot of Fig. 2).
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Figure 2.— Family g1v of the Copenhaguen category. Stability curves and sample

orbits.

The behavior of the family g2v is very similar to the previous one, although both

period doubling bifurcations from the family g are now of type Av —bifurcation orbit

with initial conditions (x, 0, z = ǫ, 0, ẏ, 0). It starts at C = 3.85839, suffers a reflection at

C = 3.28772, and ends at C = 3.42236 (Henon’s point g12v). It is made of unstable orbits,

but now we do not find the complex instability region. The left plot of Fig. 3 shows the

stability curve corresponding to the b2 stability index of the family g2v jointly with the

vertical stability curve of the family g. The index b1 varies in the range 7.57 ≤ b1 ≤ 147.3

and is not presented. Sample orbits of the family g2v close to its bifurcations from g

are presented in the right plot of Fig. 3, where the higher value of the Jacobi constant

corresponds to the smaller size of the orbit.

We also find other three-dimensional connections between planar orbits by computing
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Figure 3.— Family g2v of the Copenhaguen category. Left: b2 stability curve of family

g2v (full line) and vertical stability curve of the family g (dashed); the vertical lines

mark the bifurcation points g2v, g12v. The range of ordinates presented does not

include the high b1 values. Right: Sample orbits close to the bifurcations.

the vertically bifurcated families at C = 3.49986 and C = 3.4895 (Henon’s points g13v

and g14v). These new families do not link two parts of the same family, but they connect

direct and retrograde motion around the smaller primary. The family g13v bifurcates from

the plane in a type Av period doubling bifurcation and ends at C = 1.47930 on a four-fold

periodic orbit of the family f (retrograde motion around the smaller primary). Similarly,

the family g14v bifurcates from the plane in a type Dv period doubling bifurcation, and

ends at C = 1.47936 on a four-fold periodic orbit of the family f . Despite the orbits of

both families are very similar in shape, the family g14v is made of unstable orbits while

g13v enjoys two regions of stability for C < 1.63864 and C > 2.86972. Figure 4 shows the

stability curves of the families g13v and g14v. Some sample stable orbits of the family

g13v are presented in Fig. 5.
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Figure 4.— Stability curves of the families g13v (dashed lines) and g14v (full lines).
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Figure 5.— Stable orbits of the family g13v for C = 3.4 (left), 2.9 (center), and 1.6

(right).

2.2 Darwin’s and Broucke’s computations

Darwin [3] considers a mass parameter µ = 1/11 for a “sun-Jupiter” system.1 A

dramatic difference between Darwin’s family A and Strömgren’s family g is that direct

orbits around the smaller primary do not find the first reflection (see Fig. 6 in comparison

to Fig. 1). From our computations, we find that the region of (mild) instability in Fig.

1 between the two first reflections at the critical points g1 and g2 reduces in size for

decreasing values of the mass parameter until it disappears at µ ≈ 0.11. Therefore, the

loop of instability does not occur for Darwin’s family A: the extrema in C at g1 and g2

(critical points of Henon’s [6] type 1) do not exist any longer, and the family A remains

stable until the first vertical bifurcation g1v, of type Dv, that occurs at C = 3.55241. The

orbits of the family A immediately return to stability at C = 3.55187 in another vertical

period doubling bifurcation g2v, now of type Av. Note that, using Henon’s notation, the

first critical point of Darwin’s family A is named g1v, but contrary to the Copenhaguen

category it occurs for a value of the Jacobi constant higher than the value where g2v

occurs. At C = 3.55074 the orbits become unstable again after a horizontal period

doubling bifurcation, and soon approach to a collision orbit.

Rather than continue Darwin’s family A through collisions and reflections, we instead

compute the vertically bifurcated family g1v, and present the stability curves in the left

plot of Fig. 7. As illustrated in the right plot of Fig. 7, the sun-Jupiter family g1v ends

on a planar, type Av period doubling bifurcation orbit from Darwin’s family B at g11v,

C = 3.2729. Similarly to the family g1v of the Strömgren’s case of equal masses, the

sun-Jupiter family g1v has large areas of complex instability. However, contrary to the

case of equal masses where the family g1v is always unstable, the sun-Jupiter family g1v

1Note that the value µ ≈ 0.1 for Darwin’s Sun-Jove system is about two orders of magnitude over the

real value µ ≈ 0.001 of the sun-Jupiter system. Consequently, Szebehely classifies Darwin’s case in the

Copenhaguen category.
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Figure 6.— Darwin’s family A. Left: Horizontal (full line) and vertical (dashed) sta-

bility curves. Right: Magnification.

enjoys a small region of stability between its bifurcation from the family A at C = 3.55241

and the change to complex instability at C = 3.54172.
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Figure 7.— Three-dimensional connection of Darwin’s families A and B. Left: Stability

curves. Right: highly unstable periodic orbit close to the termination onto the family

B.

The continuation of Darwin’s family B for increasing values of the Jacobi constant

shows that it reflects over itself at C = 3.49211 and continues with orbits of the family

C (see Fig. 8). Therefore, we can conclude with Szebehely [16], p. 492, that “Darwin’s

families A, B, and C of satellites correspond to a part of Strömgren’s Class (g)”.

Note that we named the critical points in Fig. 8 analogously to corresponding ones

in the case of equal masses. However, we did not continue the planar families A and

B through collisions and reflections until finding the presumed junction. Therefore, one

should not consider the indices as an enumeration of critical points. Table 1 provides the

characteristics of these critical orbits, where b means bh except for orbits g3, g14, and

g15, where b is bv.

Similarly to the case of equal masses, we find a second connection between different

parts of the sun-Jupiter family g (or Darwin’s families C and B). However, contrary to the

case of equal masses, this new connection is not reached through the sun-Jupiter family

g2v, but it is established by the family of three-dimensional periodic orbits that vertically
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Figure 8.— Darwin’s families B and C. Left: Horizontal (full line) and vertical (dashed)

stability curves. Right: Two sample stable (full line) and unstable (dashed) orbits for

C = 3.46.

Orbit x C Period b

g1v −0.2435991439849617 3.552410898304 1.8493709733738 0.18354733

g2v −0.2455174512342443 3.551869991020 1.8968265295139 −0.37276085

g3 −0.2484286120350057 3.550737367633 1.9836232812507 −1.92094641

g11v −0.1562486451302664 3.272898336713 2.9529359920457 117.877474

g12v −0.1570471865924994 3.284532038939 2.8803898003163 99.7640602

g14 −0.1180857532701786 3.492114811420 1.5282345073578 −0.23555266

g13v 0.2651671916648681 3.450426595805 2.4310924660528 −0.86763844

g14v 0.2689765674982433 3.449074178436 2.5079655829120 −1.07197976

g15 0.2788037226766065 3.445400246793 2.7570329211262 −0.17941511

Table 1.— Some critical orbits of the sun-Jupiter family g (y = ẋ = 0).

bifurcates from Darwin’s family C at the critical point g13v.

Thus, the sun-Jupiter family g13v bifurcates from Darwin’s family C at a Jacobi

constant value C = 3.45043 in a type Dv period doubling bifurcation. It starts with

stable orbits that change to complex instability at C = 3.38533. At C = 3.1336 the

orbits become stable, change again to complex instability at C = 3.106, and to instability

at C = 3.07466. Then, a reflection immediately occurs and, for increasing values of

the Jacobi constant, the sun-Jupiter family g13v continues with unstable orbits until its

termination at C = 3.28453 in a type Av, period doubling bifurcation from the family B.

Figure 9 shows the stability curves of the sun-Jupiter families g1v and g13v jointly

with those of the family g. A two-dimensional projection (C, Re(b)) is provided where,

for clarity, the real part of complex stability indices is not presented; therefore, Re(b) ≡ b.

Note the region of stability of the family g13v in 3.106 < C < 3.1336 (the small closed
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curve at the left bottom corner of the left plot of Fig. 9); the right plot of Fig. 9 shows a

sample stable periodic orbit in this region.
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Figure 9.— Left: Stability curves of Darwin’s families A, B, and C (full and dashed

lines), and its connecting families g1v (black dotted) and g13v (gray dotted); vertical

lines mark the bifurcations of g1v and g13v. Right: Stable orbit of g13v for C = 3.126.

See text for further explanation.

The stability curves of the sun-Jupiter families g2v and g14v are presented in the left

plot of Fig. 10. The family g2v bifurcates from Darwin’s family A in a type Av period

doubling bifurcation at C = 3.55187, and is generally made of unstable orbits with two

regions of complex instability in 2.24169 < C < 2.54898 and 3.02395 < C < 3.05267.

However, we find two regions of stability in 2.54898 < C < 2.66915 and 3.00734 < C <

3.02395. The right plot of Fig. 10 shows a sample stable orbit.

We do not continue the family g2v until its termination. It seems to exist for de-

creasing values of the Jacobi constant with orbits of increasing size and instability. A

similar behavior is found for the sun-Jupiter system family g14v, however we always find

instability for the computed orbits.
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Figure 10.— Stability curves of the sun-Jupiter families g2v (full lines) and g14v (dot-

ted lines). Right: Stable orbit of the family g2v for C = 2.6.
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Similar results to those of the sun-Jupiter case are found for the Lunar RTBP stud-

ied by Broucke [1], who considers a mass parameter µ = 0.012155 ≈ 1/82.27 for the

earth-Moon system and names H1 and H2 —analogous to Darwin’s families B and C

respectively— the families of direct periodic orbits he computed around the Moon. Again,

we find an earth-Moon family g1v of three-dimensional periodic orbits that bifurcates at

C = 3.18511 from H1 and ends at C = 3.113 onto H2, smoothly connecting Broucke’s

families H1 and H2. We also find an earth-Moon family g13v that bifurcates from H2 at

C = 3.17098 and ends on H2 at C = 3.11448, thus connecting two different parts of the

family H2. Figure 11 shows the stability curves of H1, H2 —which we do not continue

through collisions and reflections— and the connecting families g1v and g13v. Again, we

only present the parts of the stability b1 and b2 curves of the g1v and g13v families with

real stability indices. Note that, as in the sun-Jupiter case, the orbits of g1v and g13v en-

joy stability before changing to complex instability, now at C = 3.17996 and C = 3.15928

respectively.
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Figure 11.— Left: Stability curves bh (full line) and bv (dashed) of families H1 and

H2, and its connections g1v (black, dotted) and g13v (gray, dotted) bifurcating at the

vertical lines. Right: Magnification on the regions of stability of g1v and g13v.

Continuing, we find the earth-Moon families g2v and g14v that bifurcate respectively

from H1 at C = 3.18491 and from H2 at C = 3.17069 in two type Av period doubling

bifurcations. These families also show a similar behavior to the sun-Jupiter case and we

do not provide the stability curves. The orbits are generally unstable but we can find

again stable orbits in the case of g2v. The characteristics of Broucke’s mentioned vertical

critical orbits are given in Table 2, where bv = −2 always.

2.3 The case of Europa

A much smaller mass parameter applies to a host of other planet-satellite systems.

Thus, for instance, µ = 2.5 × 10−5 for the Jupiter-Europa system. For such small ratios

between the primaries either the RTBP or the Hill problem are good models to approxi-

mate the real dynamics. When using Hill’s model the family g finds a bifurcation of a new
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Orbit x C Period bh

g1v −0.1276737432187769 3.185108386266 1.9531534239966 −0.29086064

g2v −0.1288574555922996 3.184913314810 2.0092982280377 −0.72831954

g11v −0.0750867380106130 3.112998766162 2.9548132818750 152.482084

g12v −0.0754072134664140 3.114478718988 2.9214458245635 141.495545

g13v 0.1340483871267902 3.170979187720 2.2535326036338 −0.78366577

g14v 0.1356854966891561 3.170686700408 2.3237569650483 −1.03818310

Table 2.— Some vertical critical orbits of the earth-Moon family g (y = ẋ = 0).

family g′ of planar, direct periodic orbits that starts with egg-shaped orbits [7]. Due to

the symmetries of the Hill problem, there are two families g′ each one made of orbits that

are symmetric of corresponding orbits of the other family g′ with respect to the origin.

Figure 12 shows the vertical and horizontal stability curves of the families g and g′

of the Hill problem [9] and the vertical critical orbits of family g and both branches of

family g′ that are the ends of the bridges of three-dimensional periodic orbits linking the

families. The three-dimensional connections of both g′ branches of Hill’s limiting case

with the family g were originally computed by Michalodimitrakis (families g1v and g′2v

of [14]). Contrary to [14], where instability is found for all the orbits of the family g1v,

similarly to the computed cases of the RTBP we find a region of stability before the

change to complex instability.
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Figure 12.— Left: Vertical (full line) and horizontal (dashed) stability curves of the

families g and g′ of the Hill problem. Right: critical bifurcation orbits where the family

g1v intersects with the family g (oval orbit) and the families g′ (egg-shaped orbits).

The behavior of the family of planar, direct, periodic orbits around Europa in the

RTBP is analogous to Darwin’s and Broucke’s cases, and we find again connections of

vertical critical orbits of the Jupiter-Europa family g by means of new families of three-

dimensional periodic orbits. Figure 13 shows the vertical and horizontal stability curves
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of the family g in the Jupiter-Europa RTBP. We note that the left plots of Figs. 12 and

13 are very similar. However, as we see in the magnification in the right plot of Fig. 13,

the family g′ does not exist in the Jupiter-Europa RTBP. Instead, the two distinct parts

of the family g that are made of egg-shaped, direct, periodic orbits are very close to each

other in terms of the Jacobi constant. Therefore, from the computations in this paper

we see that for decreasing values of the mass parameter µ of the RTBP two parts of the

family g get closer and closer to each other in terms of the Jacobi constant values until

they exactly match for the Hill problem.
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Figure 13.— Left: family g of the Jupiter-Europa system. Right: Magnification.

The gap separating the two distinct branches illustrated on the right side of Fig. 13

is appreciated in the (C, x0) space for the Earth-Moon case on pg. 89 of [1] and for the

Jupiter-Europa case in [15].

2.4 One application to Enceladus

The bifurcation of families of three-dimensional orbits is not limited to simple period

or period doubling bifurcations. Other families of higher-resonant periodic orbits bifur-

cate with multiple periods from the simple families [6]. The multiple period, vertical

bifurcations of the family g could provide stability regions of interest for a science mission

around a planetary satellite [12]. We find an application for the observation of Enceladus

in the family that bifurcates vertically from the family g of the Saturn-Enceladus system

after 9 revolutions of the orbiter in 2 revolutions of Enceladus around Saturn.

Figure 14 shows the stability curves of the 9:2 vertical family. Thus, starting from

planar, direct, egg-shaped orbits of the family g, decreasing variations of the Jacobi con-

stant produce three-dimensional periodic orbits of increasing z distance with b2 ≈ 2 and

|b1| < 2. The family finds a reflection in the Jacobi constant at C = 3.000118 after

which the orbits are clearly stable. The continuation for increasing values of C finds a a

change to complex instability at C = 3.000123 (dotted line), and then to instability at

C = 3.000142. The family ends at C = 3.000147 on a simple period bifurcation of the
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unstable planar orbit shown in the right plot Fig. 14, which clearly impacts Enceladus

(equatorial radius ∼ 256 km).
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Figure 14.— Left: stability curves of the 9:2 vertical family of the Saturn-Enceladus

system. Right: termination orbit (distances are km).

In the region of stability that ocurs after the reflection, the orbits remain relatively

close to Enceladus and provide global surface coverage, including visibility on every pass

of the south pole region where the suspected H2O plume originates [4]. Figure 15 shows

two orbits of this family: an egg-shaped, non impact orbit with very mild instability, and

a stable orbit that could be useful as a science orbit.

-200 0 200 400 600

-400

-200

0

200

400

x

z

-400 -200 0 200 400

-400

-200

0

200

400

x

z

Figure 15.— Non impact periodic orbits around Enceladus (distances are km). Left:

Egg-shaped orbit for C = 3.000139. Right: stable, science orbit for C = 3.000118.

3 Conclusions

The numerical continuation of the family g for different mass ratios between the pri-

maries shows two typical behaviors of the periodic orbits. For µ > 0.11 the almost circular,

direct, periodic orbits around the smaller primary are (mildly) unstable in a region be-

tween two consecutive reflections of the family. At µ ≈ 0.11 the mild instability region
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collapses to a critical point of the horizontal stability curve that is neither a reflection

nor a bifurcation orbit. For smaller values of µ which widely apply to the solar system

dynamics, this region of mild instability disappears.

The computation of different families of periodic orbits that bifurcate vertically from

the family g provides regions of stability of three-dimensional motion around the smaller

primary that are new, to our knowledge, and could have practical implications. Notably,

there exist three-dimensional connections between different phases of planar, direct motion

that extend the stability of three-dimensional, oval-shaped, periodic orbits to values of the

Jacobi constant where the planar orbits are clearly unstable. These kinds of connections

are always found for the computed families for different values of the mass parameter even

in Hill’s limiting case, which corroborates the view that the different classes of planar,

oval-shaped periodic orbits that exist close to the smaller primary belong to the same

family g.

Finally, the precise continuation of the mild instability loop of the family g for values of

µ close to the critical value of the cusp point challenges numerical continuation algorithms

and may be used by researchers as a strong validation test for numerical continuation

procedures.
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Appendix

Equations of motion of the Circular Restricted Three-body Problem

In a synodic system with the origin at the smaller primary and the bigger one to

the left of the origin (negative x axis direction), the equations of motion of the Circular

Restricted Three-body Problem are

ẍ − 2ẏ = Ωx, ÿ + 2ẋ = Ωy, z̈ = Ωz, (1)

where the potential function is Ω = (1/2) [(x + 1 − µ)2 + y2] + (1 − µ)/ρ + µ/r, µ is

the ratio mass of the smaller primary to the total mass of the system, and ρ and r are

the distances to the bigger and smaller primaries respectively ρ2 = (x + 1)2 + y2 + z2,

r2 = x2 + y2 + z2. The transformation to the baricentric origin is made by a simple

translation along the x axis.

Equations (1) accept the Jacobi integral 2Ω − (ẋ2 + ẏ2 + ż2) = C, where C is known

as the Jacobi constant.

Linear stability definitions

The stability of a periodic orbit is derived from the eigenvalues of the state transition

matrix at the end of one period, which appear in reciprocal pairs (λ, 1/λ) in Hamiltonian

systems. As periodic orbits enjoy one trivial eigenvalue λ0 = 1, periodic orbits of Hamil-

tonian systems with three degrees of freedom have 4 non-trivial eigenvalues. Then, two

stability indices bi = λi + 1/λi (i = 1, 2) are normally used, where the condition b1,2 real

and |b1,2| < 2 applies for linear stability.

For planar motions, one index measures the “horizontal” or in-plane stability (that

we note bh), whereas the other (noted bv) shows the “vertical” stability character of the

periodic orbit. At critical values of the stability indices (some non-trivial eigenvalues

taking the value λ = ±1) new families of periodic orbits can bifurcate from the original

one, either in the plane (bh = ±2) or orthogonal to it (bv = ±2).

The representation of the stability indices versus the parameter generator of a family

of periodic orbits results in stability curves where the changes in the stability of a family

can be noted. The stability curves are usually represented in the real plane, but unstable

orbits with complex eigenvalues out of the unit circle have complex stability indices.

Bifurcations of families of periodic orbits are not limited to the critical cases b = ±2.

For −2 < b < 2 new families of periodic orbits may bifurcate from the original one with

multiple period. Thus, for eigenvalues λ that are n-th roots of the unity the stability

index is b = 2 cos (2π d/n). A bifurcation orbit with b = +2 results after n-periods.
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