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ABSTRACT

Sharp estimates are obtained for the rates of blow up of the norms of embeddings
of Besov spaces bs

p,q in Lorentz spaces as the parameters approach critical values.
In [8] the case 1 ≤ p < ∞ was investigated. The case 0 < p < 1 of the
present paper requires different methods as the pointwise estimates established
are different and the interpolation argument used in [8] is no longer available.
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Introduction

In [8] we obtained sharp estimates for the rates of blow up of the norms of embeddings
of Besov spaces in Lorentz spaces as the various parameters approached critical values.
We describe this work briefly so as to provide some background and motivation for
the present paper.
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Let p ∈ (0,∞), q ∈ (0,∞], denote by ‖·‖p the standard (quasi-)norm on
Lp = Lp(Rn) and let Lp,q be the usual Lorentz space, defined by the quasinorm

‖f‖p,q :=

⎧⎪⎨
⎪⎩

(∫ ∞
0

{t1/pf∗(t)}q dt
t

)1/q
, 0 < q < ∞,

sup0<t<∞{t1/pf∗(t)}, q = ∞.

Here f∗ is the non-increasing rearrangement of f , given by

f∗(t) = inf{λ ≥ 0 : μf (λ) ≤ t }, t ≥ 0,

where μf is the distribution function of f , defined by

μf (λ) = |{x ∈ Rn : |f(x)| ≥ λ}|n,

|·|n denoting Lebesgue n-measure. We remark that all the spaces considered in this
paper will consist of real- or complex-valued functions. Given any s ∈ (0,∞), the
(homogeneous) Besov space bs

p,q is defined to be the set of all f ∈ Lp(Rn) with finite
quasinorm

‖f | bs
p,q‖ :=

(∫ ∞

0

{t−sωk
p(t, f)}q dt

t

)1/q

,

(suitably interpreted when q = ∞), where ωk
p(t, f) := sup|h|≤t

∥∥Δk
hf

∥∥
p

is the kth-order
Lp-modulus of continuity of f , Δk

h being the kth-order difference operator with step
length h defined recursively by

Δhf(x) = Δ1
hf(x) := f(x + h) − f(x), Δk

h := Δ1
hΔk−1

h , (k ≥ 2).

Here k is any natural number greater than s; different choices of k give equivalent
quasinorms. We shall also write bs

p,q(k) rather than bs
p,q if it is desirable to stress the

dependence on k. Moreover, we shall write ωp(t, f) instead of ω1
p(t, f).

It is well known (see [19]) that, if p ∈ [1,∞),

bs
p,q ↪→ Lr,q, where 1/r = 1/p − s/n and 0 < s < n/p, (1)

where by X ↪→ Y we mean that X is continuously embedded in Y . In [8] sharp esti-
mates were obtained of the rates of blow up of the embedding constant as
s → (n/p)− in terms of

b1 := sup
f �=0

‖f‖r,q/‖f | bs
p,q‖, b2 := sup

f �=0
‖f‖r/‖f | bs

p,q‖. (2)

Since s → n/p and 0 < s < k, we must have n/p ≤ k. It was shown that as
s → n/p < k, with 1 < p < ∞ and 0 < q ≤ ∞,

b1 ≈ rc, b2 ≈ r(1−1/q)+ , where a+ = max(a, 0) and c = max(1, 1/q). (3)
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Here we use the notation c � d or d � c to mean that c is bounded above by a multiple
of d, the multiple being independent of variables in c and d; also, c ≈ d means that
c � d and d � c. If k = n/p the results were different since

∥∥f | bs
p,q

∥∥ may tend to
infinity as s → n/p = k. With s = σk, 0 < σ < 1, we showed that if 1 < p < ∞,
k = n/p, and 0 < q ≤ ∞, then

bkσ
p,q ↪→ (1 − σ)−a+cLr,q,

where
1/r = (1 − σ)/p, a = min(1/p, 1/q), c = max(1, 1/q).

In this, by X ↪→ λY , where X and Y are quasi-Banach spaces and λ > 0, we mean that
there is a constant C > 0, independent of λ, such that for all f ∈ X, λ‖f | Y ‖ ≤ C‖f |
X‖. Special cases of these results were proved by Bourgain, Brezis, and Mironescu
([5, 6]), Maz’ya and Shaposhnikova ([15, 16]), Kolyada and Lerner ([11]). For the
embedding constants b1 and b2 of (2) we proved that if 1 < p < ∞, k = n/p,
q ∈ [1,∞], and 1/r = (1 − σ)k/n, then as r → ∞,

b1 ≈ r1−1/p, b2 ≈ r1−2/p. (4)

In this paper we extend the embedding (1) to cover the case in which 0 < p < 1
and make corresponding extensions of (3) concerning the rates of blow up of the
embedding constants. We show that

bn/p−(1−σ)n
p,q ↪→ r−cLr,q,

where
1/r = 1 − σ, 0 < σ < 1, c = max(1, 1/q), 0 < p < 1,

and that as σ → 1, with 0 < p < 1, n/p < k, and 0 < q ≤ ∞,

b1 ≈ rc, b2 ≈ r(1−1/q)+ , where a+ = max(a, 0). (5)

The estimates (5) are also proved when n/p = k, but only in the case n = 1; compar-
ison with (4) shows that the cases p < 1 and p > 1 give entirely different results. The
proofs make substantial use of the (nonlinear) spaces L(γ)(r, q) defined to be the set
of all functions f ∈ Lγ + L∞ (0 < γ ≤ 1) such that f∗(∞) = 0 and

‖f | L(γ)(r, q)‖ :=

⎧⎨
⎩

{∫ ∞
0

tq/r
(
(|f |γ)∗∗(t) − (|f |γ)∗(t)

)q/γ dt
t

}1/q

, 0 < q < ∞,

supt>0 t1/r
(
(|f |γ)∗∗(t) − (|f |γ)∗(t)

)1/γ
, q = ∞,

is finite (see [2, 12,17]). Here g∗∗(t) = t−1
∫ t

0
g∗(s) ds.

The paper concludes with a brief discussion of the supercritical case of embeddings
of Besov spaces, by which we mean that the target space is L∞, and the proof of
sharp embeddings of Besov spaces in the critical case s = n/p (see also [13, 14] and
for Sobolev spaces see [1, 9, 12,17]).

447
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1. Preliminaries

1.1. The spaces L(γ)(r, q)

These spaces will play an important technical rôle in our arguments. For 0 < q ≤
∞ and −∞ < 1/r < 1/γ, 0 < γ ≤ 1, the (nonlinear) space L(γ)(r, q) is defined
(following [2,12] and [1,17]) to be the family of all f ∈ Lγ +L∞ such that f∗(∞) = 0
and

‖f | L(γ)(r, q)‖ :=
{∫ ∞

0

tq/r(δγf∗(t))q dt

t

}1/q

< ∞

(with the natural interpretation when q = ∞). Here

δγf∗(t) =
(
(|f |γ)∗∗(t) − (|f |γ)∗(t)

)1/γ

and f∗∗(t) = t−1
∫ t

0
f∗(s)ds. We recall that (see [3, Proposition 2.1.7]) (|f |p)∗ = (f∗)p.

Since d
dt (|f |γ)∗∗(t) = t−1{(|f |γ)∗(t) − (|f |γ)∗∗(t)}, it follows that

(|f |γ)∗∗(t) =
∫ ∞

t

(
(|f |γ)∗∗ (s) − (|f |γ)∗ (s)

)ds

s
if f∗(∞) = 0. (6)

Note that an application of l’Hôpital’s rule to f∗∗(t) = t−1
∫ t

0
f∗(s)ds shows that the

condition f∗(∞) = 0 is equivalent to f∗∗(∞) = 0. Moreover,

L(γ)(∞, γ) = L∞.

The case γ = 1 corresponds to the spaces L(r, q) used in [8]. Routine inequalities
show that

L(r, q) ↪→ L(γ)(r, q) if −∞ < 1/r < γ < 1, γ > 0,

and
L(γ1)(r, q) ↪→ L(γ)(r, q) if −∞ < 1/r < γ < γ1, γ > 0,

with an obvious extension of the use of the symbol ↪→.
Many properties of the spaces L(γ)(r, q) follow from those known for L(r, q) to-

gether with the facts that f ∈ L(γ)(r, q) if and only if |f |γ ∈ L(r/γ, q/γ), and

‖f | L(γ)(r, q)‖ = ‖|f |γ | L(r/γ, q/γ)‖1/γ .

In particular, we have the following embedding result immediately from [8, Lemma 1.1].

Lemma 1.1. Let 0 < γ < r < ∞, γ ≤ 1, 0 < q ≤ ∞ and put c = max(1/γ, 1/q).
Then

L(γ)(r, q) ↪→ r−cLr,q.
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We note in passing that we can easily extend some of the results of [7] to the case
when the functions involved are not necessarily integrable. First, we generalise the
spaces L(γ)(r, q), replacing the weight tq/r−1 by a general weight w. Thus we define
the (nonlinear) space L(γ)(w, q) to be the set of all f ∈ Lγ +L∞ such that f∗(∞) = 0
and

‖f | L(γ)(w, q)‖ :=
{∫ ∞

0

(δγf∗(t))qw(t) dt

}1/q

< ∞

(with the usual understanding when q = ∞). The case γ = 1 corresponds to the
spaces considered in [7] and there denoted by Sq(w). We remark that f ∈ L(γ)(w, q)
if and only if |f |γ ∈ L(w, q/γ), and

‖f | L(γ)(w, q)‖ = ‖|f |γ | L(w, q/γ)‖1/γ .

Now consider the corresponding generalised Lorentz spaces Λ(γ)(w, q) with quasi-norm

‖f | Λ(γ)(w, q)‖ :=
{∫ ∞

0

((|f |γ)∗∗)q/γw(t) dt

}1/q

(interpreted appropriately when q = ∞). As a consequence of the above remark and
[7, Theorem 3.3] concerning the spaces L(w, q) we see that

L(γ)(w, q) = Λ(γ)(w, q) for q > γ if and only if w ∈ RBq/γ .

Here the class of weights RBp is defined in [7]: for 0 < p < ∞, w ∈ RBp if there is a
constant c > 0 such that, for all r > 0,

∫ r

0

w(s) ds ≤ crp

∫ ∞

r

w(s)s−p ds.

Analogously, L(γ)(w, q) is a quasi-normed space for q > γ if and only if w ∈ RBq/γ .

1.2. Pointwise estimates for the rearrangement

Lemma 1.2. Let k ∈ N and suppose that 0 < p < 1. Then for all f ∈ Lp(Rn),

{(|f |p)∗∗(t) − (|f |p)∗∗(2t)}1/p � t−1/pωp(t1/n, f), 0 < t < ∞, (7)

where ωp = ω1
p, and

(|f |p)∗∗(t) − (|f |p)∗∗(2t) �
∫ ∞

t

∫ ∞

sk−1

· · ·
∫ ∞

s2

s−1
1

{
ωk

p(s1/n
1 , f)

}p ds1

s1
· · · dsk−1

sk−1
,

0 < t < ∞, k ≥ 2. (8)
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Revista Matemática Complutense

2007: vol. 20, num. 2, pags. 445–462



Edmunds et al. Sharp estimates of the embedding constants for Besov spaces bs
p,q , 0 < p < 1

Proof. First, note that

(|f |p)∗∗(t) − (|f |p)∗(t) ≤ 2{(|f |p)∗∗(t) − (|f |p)∗∗(2t)}. (9)

This follows from a more general inequality: see [20, Lemma 3.2]. Here we present
another simple proof. From (6) it follows that

(|f |p)∗∗(t) − (|f |p)∗∗(2t) =
∫ 2t

t

{(|f |p)∗∗(s) − (|f |p)∗(s)}ds

s
,

and we now simply use the fact that t 	→ t{(|f |p)∗∗(t) − (|f |p)∗(t)} is non-decreasing
since its derivative is −t d

dt (|f |p)∗(t).
Let t > 0 and let Bt be the ball in Rn with centre 0 and volume 2t. Let u ∈ Bt.

Since
|f(x)| ≤ |Δuf(x)| + |f(x + u)|,

and hence
|f(x)|p ≤ |Δuf(x)|p + |f(x + u)|p,

we have, integrating with respect to u over Bt,

2t|f(x)|p ≤
∫

Bt

|Δuf(x)|pdu +
∫ 2t

0

(|f |p)∗(s) ds.

Now integrate with respect to x over a subset E of Rn with Lebesgue n-measure t and
take the supremum over all such sets E. This gives (see [3, p. 53, Proposition 2.3.3])

2t{(|f |p)∗∗(t) − (|f |p)∗∗(2t)} ≤
∫

Bt

(|Δuf |p)∗∗(t) du

=
1
t

∫
Bt

∫ t

0

(|Δuf |p)∗(s) ds du � 1
t

∫
Bt

‖Δuf‖p
p du

≤ sup
|u|≤(2t/�n)1/n

‖Δuf‖p
p

= {2ω1
p((2t/�n)1/n, f)}p, (10)

where �n is the measure of the unit ball in R
n. In view of [4, (5.4.5), p. 332], and the

fact that ω1
p is an increasing function, we see that (7) follows. Further, applying (6)

to Δuf and using (9) and (10), we obtain

(|f |p)∗∗(t) − (|f |p)∗∗(2t)

� t−1

∫
Bt

∫ ∞

t

{(|Δuf |p)∗∗(s) − (|Δuf |p)∗∗(2s)}ds

s
du. (11)

Now (7) gives

(|f |p)∗∗(t) − (|f |p)∗∗(2t) � t−1

∫
Bt

∫ ∞

t

s−1
1 {ωp(s

1/n
1 , Δuf)}p ds1

s1
du.
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From [3, Lemma 5.4.11] and this we see that

(|f |p)∗∗(t) − (|f |p)∗∗(2t) �
∫ ∞

t

s−1
1 {ω2

p(s1/n
1 , f)}p ds1

s1
,

which is the required estimate (8) for k = 2. We proceed by induction. If (8) is valid
for some k ≥ 2, then from (11) we have

(|f |p)∗∗(t) − (|f |p)∗∗(2t)

� t−1

∫
Bt

∫ ∞

t

∫ ∞

s

∫ ∞

sk−1

· · ·
∫ ∞

s2

s−1
1 {ωk

p(s1/n
1 , Δuf)}p ds1

s1
· · · dsk−1

sk−1

ds

s
du.

The induction is established from [3, Lemma 5.4.11].

We also need the following variant of the estimate (8).

Lemma 1.3. Let k ∈ N, k ≥ 2 and suppose that 0 < p < 1. Then for all f ∈ Lp(Rn),

(|f |p)∗∗(t) − (|f |p)∗∗(2t) �
∫ 1

t

∫ 1

sk−1

· · ·
∫ 1

s2

s−1
1 {ωk

p(s1/n
1 , f)}p ds1

s1
· · · dsk−1

sk−1

+ (1 + |log t|k−2)‖f | Lp + L∞‖, 0 < t < 1. (12)

Proof. From (6) we have

(|f |p)∗∗(t) =
∫ 1

t

(δpf
∗)p(u) du/u + (|f |p)∗∗(1).

Since the K-functional for the pair Lp, L∞ satisfies

K(t, f ; Lp, L∞) ≈
(∫ tp

0

(f∗(s))pds

)1/p

(see [4, Theorem 5.2.1]), we have

‖f | Lp + L∞‖p = K(1, f ; Lp, L∞)p ≈
∫ 1

0

(f∗(s))pds = (|f |p)∗∗(1).

Thus

(|f |p)∗∗(t) ≈
∫ 1

t

(δpf
∗)p(u) du/u + ‖f | Lp + L∞‖p. (13)

Applying this to Δuf and using (9), (10), and (7) we obtain

(δpf
∗)p(t) � t−1

∫
Bt

∫ 1

t

s−1
1

{
ωp(s

1/n
1 , Δuf)

}p ds1

s1
du + ‖f | Lp + L∞‖p.
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From [3, Lemma 5.4.11] and this we see that

(δpf
∗)p(t) �

∫ 1

t

s−1
1 {ω2

p(s1/n
1 , f)}p ds1

s1
+ ‖f | Lp + L∞‖p. (14)

Repeating this procedure, we have from (13) and (14),

(|Δuf |p)∗∗(t) �
∫ 1

t

(∫ 1

s2

s−1
1 {ω2

p(s1/n
1 , Δuf)}p ds1

s1
+ ‖f | Lp + L∞‖p

)
ds2

s2

+ ‖f | Lp + L∞‖p.

Hence

(δpf
∗)p(t) �

∫ 1

t

∫ 1

s2

s−1
1 {ω3

p(s1/n
1 , f)}p ds1

s1

ds2

s2
+ (1 + |log t|)‖f | Lp + L∞‖p.

In this way by induction we prove (12) for all k ≥ 2.

1.3. Embedding of Besov spaces in L(r, q)

The main idea now is to reduce everything to the case p = 1.

Theorem 1.4. Let 0 < p < 1, 0 < q ≤ ∞ and 0 < s < k ∈ N. Then

bs
p,q(k) ↪→ βc(m − β)cbβ

1,q(m), (15)

where β = s − n/p + n, 0 < β < m < k, and c = max(1, 1/q).

Proof. First we prove that

b
n/p−n
p,1 (k) ↪→ L1, n/p − n < k. (16)

If k = 1 this follows from (7), (9), and Lemma 1.1. If k ≥ 2, then on substituting
s1/s2, s2/s3, . . . , sk−2/sk−1, sk−1/t for s1, s2, . . . , sk−2, sk−1 in (8) we get

(δpf
∗∗(t))p �

∫ ∞

1

· · ·
∫ ∞

1

gp(s1s2 · · · sk−1t)
ds1

s1
· · · dsk−1

sk−1
, g(u) = u−1/pωk

p(u1/n, f).

Applying Minkowski’s inequality, we find that

∫ ∞

0

δpf
∗∗(t) dt �

(∫ ∞

1

· · ·
∫ ∞

1

(∫ ∞

0

g(s1s2 · · · sk−1t) dt

)p
ds1

s1
· · · dsk−1

sk−1

)1/p

,

and after a change of variables we have

∫ ∞

0

δpf
∗∗(t) dt �

(∫ ∞

1

· · ·
∫ ∞

1

s−p
1 · · · s−p

k−1

ds1

s1
· · · dsk−1

sk−1

)1/p ∫ ∞

0

t−1/pωk
p(t1/n, f) dt,
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which is exactly (16) in view of Lemma 1.1.
Application of the embedding (16) to the function Δk

hf for |h| ≤ t gives

‖Δk
hf‖1 �

∫ t

0

sn−n/pωk
p(s, f) ds/s +

∫ ∞

t

sn−n/p‖Δk
hf‖p ds/s.

Hence

ωk
1 (t, f) �

∫ t

0

sn−n/pωk
p(s, f) ds/s + tn−n/pωk

p(t, f)(n − n/p)−1.

Using also the estimate
∫ t

0

sn−n/pωk
p(s, f) ds/s � tn−n/pωk

p(t, f),

which follows easily from the monotonicity of ωk
p(t, f) and the equivalence ωk

p(t/2, f) ≈
ωk

p(t, f), we obtain

ωk
1 (t, f) �

∫ t

0

sn−n/pωk
p(s, f) ds/s.

This estimate shows that

I :=
∫ ∞

0

{t−βωk
1 (t, f)}qdt/t �

∫ ∞

0

t−βq

(∫ t

0

g(u)du/u

)q

dt/t,

where g(u) = un−n/pωk
p(u, f).

If q ≥ 1, then by a change of variables and Minkowski’s inequality,

I �
(∫ 1

0

(∫ ∞

0

t−βqg(ut)qdt/t

)1/q

du/u

)q

�
(∫ 1

0

uβdu/u

)q ∫ ∞

0

t−q(β+n/p−n)(ωk
p(t, f))qdt/t.

In other words,

‖f | bβ
1,q(k)‖ � β−c‖f | bs

p,q(k)‖, s = β + n/p − n, c = max(1, 1/q). (17)

If 0 < q < 1, we put h(t) =
∫ t

0
un−n/pωk

p(u, f) du/u and use integration by parts
to obtain, assuming that the integrated terms play no part in the inequality,

I �
∫ ∞

0

t−βqhq(t)dt/t � β−1

∫ ∞

0

hq(t)dt−βq

� β−1

∫ ∞

0

t−βqhq−1(t)h′(t)dt.
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Since

h′(t) = tn−n/p−1ωk
p(t, f) and h(t) � tn−n/pωk

p(t, f),

we have (17) for this case also. It remains to justify the neglect of the integrated
terms. As ωk

p(u, f) is monotonic in u,

∫ 2t

t

(u−sωk
p(u, f))qdu/u ≥ ((2t)−sωk

p(t, f))q

∫ 2t

t

du/u,

and so

(t−sωk
p(t, f))q �

∫ 2t

t

(u−sωk
p(u, f))qdu/u → 0 as t → 0

since f ∈ bs
p,q. Hence by l’Hôpital’s rule,

lim
t→0

∫ t

0
un−n/pωk

p(u, f)du/u

ts−n/p+n
= lim

t→0

tn−n/p−1ωk
p(t, f)

(s − n/p + n)ts−n/p+n−1
= 0.

Further, we show that (17) implies (15). We have to prove that

bβ
1,q(k) ↪→ (m − β)cbβ

1,q(m), k > m. (18)

To this end we use the Marchaud inequality (see [3, p. 332])

ωm
1 (t, f) � tm

∫ ∞

t

ωk
1 (u, f)u−1−mdu, m < k.

Arguing as above (applying Minkowski’s inequality if q ≥ 1 and integrating by parts
if 0 < q < 1) we obtain (18).

Using also the estimate (see [8, (13)])

f∗∗(t) − f∗∗(2t) � t−1ωm
1 (t1/n, f), m < n + 2,

we obtain the following Corollary.

Corollary 1.5. Let 0 < p < 1, 0 < q ≤ ∞, let m, k ∈ N and s ∈ R be such
that m < k, 0 < s < k, n/p − n < s < n/p − n + m, and let 1/r = 1/p − s/n,
β = s − n/p + n, β < m < n + 2, c = max(1, 1/q). Then

bs
p,q(k) ↪→ βc(m − β)cL(r, q).
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2. Sharp embedding constants for Besov spaces

2.1. Subcritical case

Here we establish the embedding (see [19])

bs
p,q ↪→ Lr,q, 1/r = 1/p − s/n, 0 < s < n/p, 0 < p < 1,

and aim to find sharp rates of blow up for the embedding constants as s → n/p. As
explained in the introduction, this means that n/p ≤ k. We remind the reader that
the embedding constants are given by

b1 := sup
f �=0

‖f‖r,q/‖f | bs
p,q‖ and b2 := sup

f �=0
‖f‖r/‖f | bs

p,q‖.

From Theorem 1.4 with β = σn and [10, Theorem 6] we obtain

Theorem 2.1. Let 0 < p < 1, 0 < q ≤ ∞, n/p ≤ k, 0 < σ < 1, 1/r = 1 − σ and put
c = max(1, 1/q). Then as σ → 1,

bn/p−(1−σ)n
p,q ↪→ (1 − σ)cLr,q. (19)

The estimates
b1 ≈ rc and b2 ≈ r(1−1/q)+ (20)

hold if, in addition, either n/p < k or n = 1 and p = 1/k. The upper estimates
for b1 and b2 implicit in (20) hold without these additional restrictions.

Proof. We only need to prove the relations (20). The embedding (19) gives the
required estimate from above, and when n/p < k the estimates from below can be
proved in the same way as in [8]. The case k = n/p is more difficult to settle, and at
the moment we can deal only with the situation when n = 1.

First suppose that 0 < q ≤ 1, n = 1 and p = 1/k, k ∈ N. Define a function f
on R by

f(x) =

⎧⎪⎨
⎪⎩

x, 0 ≤ x ≤ 1/2,

1 − x, 1/2 < x ≤ 1,

0, otherwise.

We estimate Δk
hf(x) for small positive h and observe that it is zero everywhere except

in the intervals (−kh, 0), (1/2−kh, 1/2), and (1−kh, 1), in which we have the pointwise
estimate

|Δk
hf(x)| � h.

It follows that ∫
R

|Δk
hf(x)|pdx � h1+p,
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so that
ωk

p(t, f) � tk+1.

Hence
‖f | b1/p−1+σ

p,q ‖ � 1.

On the other hand,
‖f | L(r, q)‖ ≈ r1/q,

and thus
b1 � r1/q.

Since ‖f‖r = (r + 1)−1/r/2 ≈ 1, the desired lower estimate for b2 also follows.
Next suppose that 1 < q ≤ ∞, n = 1 and p = 1/k, k ∈ N. Again we obtain lower

bounds for b1 and b2 by constructing a test function, but this time the argument is
more delicate. Let f : R → R be even, zero outside the interval (−1, 1) and given by

f(x) = j + 2 − 2j+1x, x ∈ (2−j−1, 2−j ], j ∈ N0 := N ∪ {0}.

We aim to estimate Δ2
hf(x), and first take h = −2−m for a fixed large m ∈ N.

Since f is even, we need only consider intervals in the positive half-line. For each
a ≥ 0 let δa be the interval (2−a−1, 2−a). Let x ∈ δj for some j ∈ N0. We estimate∫

δj
|Δ2

hf(x)|1/2dx for j > m − m0, where m0 will be specified below. For any fixed
x ∈ δj we can find s0, s1 such that s0 > s1 > j and |x + 2h| ∈ δs0 while |x + h| ∈ δs1 .
In this way the interval δj may be covered by a union of corresponding intervals,
where

|f(x + 2h) − f(x + h)| ≤ s0 − s1 + 2 if x ∈ δj ∩ δs0 ∩ δs1

and

|f(x + h) − f(x)| ≤ s1 − j + 2 if x ∈ δj ∩ δs1 .

Then we have∫
δj

∣∣Δ2
hf(x)

∣∣1/2
dx ≤

∑
sj>j

∑
s0>s1

(s0 − s1 + 2)1/22−s0−1

+
∑
sj>j

(s1 − j + 2)1/22−s1−1

≤
∑
sj>j

2−s1
∑

s0>s1

(s0 − s1 + 2)1/22−(s0−s1)−1

+
∑
sj>j

(s1 − j + 2)1/22−(s1−j)−12−j

� 2−j .
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Hence
∑

j>m−m0

∫
δj

|Δ2
hf(x)|1/2dx � |h|.

To handle the case j ≤ m−m0, let x ∈ δj and suppose that x + 2h ∈ δj+1. Then
j ≤ m − 4, and so we define m0 = 4. For j ≤ m − 4, if x ∈ (2−j−1 + 2|h|, 2−j), then
all points x, x + h, x + 2h lie in the same interval δj , so that the second difference is
zero. Thus we need to consider only the interval (2−j−1, 2−j−1 + 2|h|). Then (if, say,
x + h ∈ δj)

f(x + 2h) − 2f(x + h) + f(x) = j + 3 − 2j+2(x + 2h)

− 2{j + 2 − 2j+1(x + h)} + j + 2 − 2j+1x

= 1 − 2j+1x − 2j+2h,

and since 1 < 2j+1x < 1 + 2j+2 |h|, we obtain

|Δ2
hf(x)| � 2j−m.

Hence

∑
j≤m−4

∫ 2−j−1+2|h|

2−j−1
|Δ2

hf(x)|1/2dx � |h|.

Now we suppose that h = 2−m for a fixed large positive integer m. Let 2−j−1 <

x < 2−j , j ∈ N0. First we estimate
∫ 2−j

2−j−1 |Δ2
hf(x)|1/2dx for j > m−2. We can reduce

the problem to that of estimating the first-order differences f(x + 2h)− f(x + h) and
f(x + h) − f(x). Since f is even, given any fixed x ∈ (2−j−1, 2−j), there exist s0, s1,
with j > s0 ≥ s1 ≥ −1, such that 2−s0−1 < |x + h| < 2−s0 and 2−s1−1 < |x + 2h| <
2−s1 ; that is, x + h ∈ δs0 and x + 2h ∈ δs1 . Then

|f(x + 2h) − f(x + h)| ≤ s0 − s1 + 4 if x ∈ δj ∩ δs0 ∩ δs1 , s1 ≥ −1

and

|f(x + h) − f(x)| ≤ j − s0 + 4 if x ∈ δj ∩ δs0 .

We claim that s0, s1 > m−4. To justify this, first let j ≥ s1+2. Then the inequalities
2−s1−1 < x + 2h < 2−s1 and 2−j−1 < x + h < 2−j imply that 2−s1−2 ≤ h = 2−m, so
that s1 ≥ m − 2. If j < s1 + 2, then s1 + 2 > m − 2, and so s1 > m − 4. The proof
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that s0 > m − 4 is analogous. Hence

∑
j>m−2

∫
δj

|Δ2
hf(x)|1/2dx ≤

∑
s1>m−4

2−s1
∑

s0>s1

(s0 − s1 + 4)1/22−(s0−s1)

×
∑
j>s0

2−(j−s0)

+
∑

s0>m−4

2−s0
∑
j>s0

(j − s0 + 4)1/22−(j−s0)

� 2−m.

Now consider the case j ≤ m − 2. If 2−j−1 < x < 2−j − 2h, then Δ2
hf(x) = 0,

and so we have only to consider the interval 2−j − 2h < x < 2−j , of length 2h. Let,
for example, x + h ∈ δj . Then

Δ2
hf(x) = j + 1 − 2j(x + 2h) − 2{j + 2 − 2j+1(x + h)} + j + 2 − 2j+1x,

and so
|Δ2

hf(x)| ≤ |−1 + 2jx + 2j+1h| � 2jh = 2j−m.

Hence ∑
j≤m−2

∫
δj

|Δ2
hf(x)|1/2dx � h

∑
j≤m−2

2−(m−j)/2 � h.

In this way we obtain the estimate

ωk
p(t; f) � tk if 0 < t < 1, k = 1/p,

which gives ‖f | b
k−1/r
p,q ‖ � r1/q. It remains to check that ‖f‖r ≈ r. In fact,

‖f‖r
r =

∑
j≥0

∫
δj

(j + 2 − 2j+1x)rdx =
∑
j≥0

2−j−1

∫ 2

1

(j + 2 − s)rds �
∑
j≥0

2−jjr � r!.

On the other hand, for j ≈ r,

‖f‖r
r ≥

∫
δj

(j + 2 − 2j+1x)rdx = 2−j−1

∫ 2

1

(j + 2 − s)rds � 2−rrr,

so that b1 � r. The estimates for b2 follow as before.

2.2. Supercritical case

When s > n/p we know (see [21]) that

Bs
p,q ↪→ L∞,
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where Bs
p,q is the inhomogeneous Besov space, defined by means of Fourier decomposi-

tions. The problem of finding sharp rates of blow up for the corresponding embedding
constants as s → (n/p)+ was considered recently by Triebel [22], who dealt not only
with Besov but also with Lizorkin-Triebel spaces, both types of spaces being con-
sidered on bounded Lipschitz domains. Here we consider the same problem for the
slightly larger Besov spaces b̃s

p,q, 0 < p < 1 (the case 1 ≤ p < ∞ was considered
in [8]), defined by means of the quasi-norm

‖f | b̃s
p,q‖ :=

(∫ ∞

0

{t−sωk+1
p (t, f)}q dt

t

)1/q

+ ‖f | Lp + L∞‖, n/p < s < k.

Using monotonicity, we can replace the above integral by a sum and conclude that
the scale b̃s

p,q is increasing with respect to q. It turns out that the results concerning
the embedding constants are the same as in [22]. Let

b3 := sup
f �=0

‖f‖∞/‖f | b̃s
p,q‖.

Theorem 2.2. Let 0 < p < 1, 0 < q ≤ ∞, and σ > 0. Then as σ → 0,

b̃n/p+σ
p,q ↪→ σ(1−1/q)+L∞.

Proof. First we prove that in the definition of the space b̃s
p,q we can replace the weaker

quasi-norm of Lp + L∞ by the stronger norm of L1 + L∞. To this end we establish
the embedding

b̃n/p
p,q ↪→ L1 + L∞. (21)

In fact,

‖f | L1 + L∞‖ =
∫ 1

0

f∗(s) ds ≤
∫ 1

0

(
t−1

∫ t

0

(f∗(u))pdu

)1/p

dt

=
∫ 1

0

((|f |p)∗∗)1/pdt

≤
∫ 1

0

(∫ 1

t

(δpf
∗(s))pds/s + ‖f | Lp + L∞‖p

)1/p

dt

�
∫ 1

0

(∫ 1

t

(δpf
∗(s))pds/s

)1/p

dt + ‖f | Lp + L∞‖

�
∫ 1

0

(∫ 1/t

1

(δpf
∗(st))pds/s

)1/p

dt + ‖f | Lp + L∞‖

�
(∫ ∞

1

(∫ 1/s

1

(δpf
∗(st))pdt

)p

ds/s

)1/p

+ ‖f | Lp + L∞‖

�
(∫ ∞

1

s−pds/s

)1/p ∫ 1

0

δpf
∗(t)dt + ‖f | Lp + L∞‖.
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Thus

‖f | L1 + L∞‖ �
∫ 1

0

δpf
∗(t)dt + ‖f | Lp + L∞‖.

Now we use the estimates (9) and (12). Applying also Minkowski’s inequality as
above, we obtain the estimate

‖f | L1 + L∞‖ �
∫ 1

0

(∫ 1

t

∫ 1

sk−1

· · ·
∫ 1

s2

s−1
1 (ωk

p(s1/n
1 , f))p ds1

s1
· · · dsk−1

sk−1

)1/p

dt

+ ‖f | Lp + L∞‖
∫ 1

0

(
1 + |log t|(k−2)/p

)
dt

�
(∫ ∞

1

· · ·
∫ ∞

1

s−p
1 · · · s−p

k−1

ds1

s1
· · · dsk−1

sk−1

)1/p ∫ 1

0

u−1/pωk
p(u1/n, f) du

+ ‖f | Lp + L∞‖.

Hence (21) is established for q = ∞, and so also for any q by monotonicity. The same
proof gives

b̃n/p+σ
p,q ↪→ L1 + L∞,

uniformly for σ ≥ 0. In other words, we have

b̃n/p+σ
p,q = bn/p+σ

p,q ∩ (L1 + L∞), (22)

uniformly for σ ≥ 0.
Moreover, from Theorem 1.4 with s = n/p + σ, β = σ + n, m = n + 1 and small

σ > 0, together with (22), we have

b̃n/p+σ
p,q ↪→ b̃n+σ

1,q (n + 1), 0 < p < 1,

uniformly with respect to σ. Finally, [8, Theorem 4.1] gives

b̃n+σ
1,q ↪→ σ(1−1/q)+L∞.

As a consequence we have

Corollary 2.3. Under the conditions of the last theorem,

b3 ≈ σ−(1−1/q)+ .

Part of this follows from [22], since Bs
p,q ↪→ b̃s

p,q, uniformly with respect to s →
(n/p)+ (see [21, p. 110]).
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2.3. Critical case

Here we derive sharp embeddings in the critical case s = n/p, 0 < p < ∞. First,
from Corollary 1.5, with s = n/p, β = n and m = n + 1 if 0 < p < 1, and from
[8, Lemma 2.2] if p ≥ 1, it follows that

bn/p
p,q ↪→ L(∞, q), 0 < p < ∞, 0 < q ≤ ∞. (23)

If 0 < q ≤ 1, then L(∞, q) ↪→ L∞, and so (23) is a sharpening of the well-known
embeddings [21]. When q > 1 we can replace L(∞, q) by a linear and larger space.
Let L∞,q(log L)−1 be the space with norm

‖f | L∞,q(log L)−1‖ =
(∫ ∞

0

{(1 + |log t|)−1f∗∗(t)}qdt/t

)1/q

.

Then
L(∞, q) ∩ (L1 + L∞) ↪→ L∞,q(log L)−1, q > 1. (24)

To prove this, we start with (6) for γ = 1:

f∗∗(t) =
∫ 1

t

(f∗∗(s) − f∗(s)) ds/s + f∗∗(1).

Then by the Muckenhoupt inequality [18] for q > 1,
(∫ 1

0

{(1 + |log t|)−1f∗∗(t)}qdt/t

)1/q

�
(∫ 1

0

(f∗∗(s) − f∗(s))qds/s

)1/q

+ f∗∗(1),

and obviously (∫ ∞

1

{(1 + |log t|)−1f∗∗(t)}qdt/t

)1/q

� f∗∗(1).

Thus (24) is proved.
As a consequence, we obtain the embedding

b̃n/p
p,q ↪→ L∞,q(log L)−1, 0 < p < ∞, 1 < q ≤ ∞.

In fact, we have proved a little more, namely

b̃n/p
p,q ↪→ ∩w∈W Λq(w), 0 < p < ∞, 1 < q ≤ ∞,

where the norm in Λq(w) is given by

‖f | Λq(w)‖ =
(∫ ∞

0

{w(t)f∗∗(t)}qdt/t

)1/q

and W is the family of all positive Muckenhoupt weights, that is, weights w satisfying
(∫ t

0

wq(s)ds/s

)1/q

� (1 + |log t|)1/q−1, 0 < t < 1, q > 1.
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